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Summary. Let I11, Y2, ... be a sequence of i.i.d, random variables with 
distribution P(YI=k)=G (k= _1,  -t-2, ...), E ( Y 0 = 0  , E(y2)=a2<c~. Put T, 
=I11+. . .+I1 ,  and N(x,n)=~{k: O<k<n, Tk=x }. Extending the result of 
Rhvhsz (1981) it is shown that for appropriate Skorohod construction we 
have 

suplL(x, naa)-aZN(x,n)l=o(n 1/4"+~) a.s. 
x e ~  

provided all moments E(lg~lm), m~0 exists where L is the local time of a 
Wiener process. Certain rate of convergence is given also under weaker 
conditions and for [L(x, na 2)- a2N(x, n)] too, when x is fixed. 

1. Introduction 

Let Y1, Y2,... be a sequence of i.i.d, random variables taking on integer values 
with P(Y~=k)=pk (k= _+1, _+2, ...). We assume that 

EYl=Zkpk=O, EY~'=~k2pk=a2<oG 
k k (1.1) 

g.c.d. {k: P k > 0 } = l .  

Let furthermore T,= Y1 +... + Y, (n-- 1,2, ...), T O =0. 
The occupation time of the recurrent random walk T1, T2,... is defined by 

N(x,n)= =~{k: O<k <n, Tk= X}, 
(1.2) 

n = 1 , 2 , . . . ;  x=O, +1,  +_2,... 

i.e. N(x,n) is the number of visits of the random walk to the point x in the 
time interval (0, n]. Set 
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where max 
results: x 

Theorem A. 

and 

N (n) = max N (x, n), (1.3) 
X 

is taken over all integers. Kesten (1965) proved the following 

N(n) 1 
lira sup = -  a.s. (1.4) 

. ~  (2nloglogn) 1/2 t7 

l iminf (l~ ~~ n) 1/2 - -  2 V ( n ) =  
t l ~ o o  

a.s. (1.5) 

where y is a positive constant. 
The exact value of ~ is not known. 
In the case of simple symmetric random walk, i.e. for the i.i.d, sequence 

X1, X2,.. .  with 
P(X I = + 1)=P(X 1 = - 1)= 1/2, (1.6) 

Kesten (1965) has shown: 

Theorem B. Let S ,= X 1 + ... + X n (n=1,2, ...), S0=0 and 

m(x ,n)= ~{k: O<k <n, Sk=X}, (1.7) 

m(n) = max M(x, n), (1.8) 
X 

where max is taken over all integers. Then 
X 

lira inf M(n) = y 1, (1.9) 

< 71 < 1/5 q2(2q 2 - 4)- 1/2 (1.10) 

where 

and qo =2, 405 ... is the smallest root of the Bessel function Io(x ). 
For the case of symmetric random walk Chung and Hunt (1949) proved: 

Theorem C. Let f ( x )  (x>=O) be an increasing function with lira f ( x ) = o o  and 
define the functional ~ 

I i ( f ) =  i f ( f )  exp ( - f ~ )  dy. (1.11) 

M(x, n) < n 1/2 f(n) a.s. (1.12) 

I f  I i ( f ) <  ~ ,  then 

exists a random sequence 
for all but finitely many n and for any given x. 

I f  I i ( f ) = ~ ,  then for any given x there 
0 < n  I <n z < ... of integers such that for all i, 

M(x, ni) > n~/Z f(ni) a.s. (1.13) 



Strong Invariance for Local Times 265 

Theorem D. Let f (x )  (x>O) be a function with f(x)$O and xl/2f(x)~cx3 as 
x---, oo and define the functional 

I f  I2(f)  < oo, then 

f (y)  I2(f)  = j dy. (1.14) 
1 Y 

M(x,n)>nl/2 f(n) a.s. (1.15) 

for all but finitely many n and for any given x. 
I f  12(f)=oo,  then for any given x there exists a random sequence 

0 < n  1 < n 2 < . . .  of integers such that for all i 

M(x, ni) < Ill/2 f (n l )  a.s. (1.16) 

Kesten (1965) also studied the limiting behavior of the local time of a 
Wiener process { W(t), t > 0}. He showed: 

Theorem E. Let L(x, t) denote the local time at x of a Wiener process and put 
L(t) = sup L(x, t). Then for any given x, 

- - O O < X < ~  

and 

L(t) - lim sup L(x, t) 
limsupt~ (2 t loglogt )  1/2 , ~  (2tloglogt)  1/2 =1 a.s. 

(1.17) 

( )1j2 
l iminf L(t)=71 a.s., (1.18) 

t ~ O O  

where ~1 is the same constant as that of Theorem B. 
By comparing Theorems A, B, C, D with Theorem E, one can see the 

similarity in the limit behavior of M(x, n) and L(x, n) and that of M(n) and 
L(n). An explanation of this phenomenon was given by R6v6sz (1981) who 
showed that for appropriate construction the processes M(x,n) and L(x,n) are 
close to each other. In fact he proved: 

Theorem F. Let {W(t); t>0} be a Wiener process defined on a probability space 
{f2, 50, p}. Then on the same space one can define a sequence X1, X 2 . . . .  of i.i.d. 
random variables with 

P (XI=  + 1)=P(X1 = - 1 ) = 1 / 2  ( i= 1,2, ...) (1.19) 

such that for any ~ > 0 we have 

lim n-  1/4- ~ sup IM(x, n) - L(x, n)l = 0 a.s. (1.20) 
n ~ o o  x 

and 
lim n-  1/4 ~ IS.- W(n)l = 0 a.s. (1.21) 

r l ~ o o  

where Sn=XI + X2 + . . . +  X, ,  M(x,n) is defined by (1.7) and L(x,n) is the local 
time at x of W(.). 
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The aim of this paper is to generalize the above theorem for the case when 
the basic distribution given by (1.1) possesses some moments, but is arbitrary 
otherwise. We shall prove the following result: 

Theorem. On a rich enough probability space {Q, SP, P} one can construct a 
Wiener process {W(t); t>0}  and a sequence I11, Y2,. . .  o f  i.i.d, random variables 
with distribution given in (1.1) such that for  any ~ > 0 

(i) # 2 m = ~  [k[ zm Pk < oV for  some ~ < m < 2  implies 
k 

lim n-  1/(2 m)- ~(L(x, n o -2) -- o -2 N(x ,  n)) = 0 a.s. (1.22) 
n ~ o o  

(ii) #m+ 1 = ~ Ikl "+ i Pk < CO for  some m > 6 implies 
k 

lira n 1/4- 3/~2m)-~sup[L(x, n a 2 ) - a Z N ( x , n ) l = O  a.s. (1.23) 
n ~ o o  x 

where sup is taken for  all integers, N(x ,  n) is defined by (1.2) and L(x,  t) is the 
x 

local time of  the Wiener process W( . ) .  Furthermore, for  the same construction 
with #r < ov implies 

lira n-  1/+-~ lS . - W(n)l = 0 a.s. (1.24) 
n ~ o o  

The authors are indebted to the referee who suggested the application of 
the Burkholder inequality in Lemma 4. This suggestion led to the moment- 
condition (ii) of the Theorem instead of the original condition what was 
somewhat stronger. 

2. Preliminaries 

2.1 The Skorohod Embedding. In our construction in Sect. 3 we use the Skoro- 
hod embedding (Skorohod (1961)) as given in Breiman (1967). For  a survey 
and further results in this field we refer to Sawyer (1974). 

Assume that a Wiener process { W ( t ) , t > O }  is defined on a probability 
space {Q, SP, P} and on the same space a sequence "cl,z 2 .. . .  of randomized 
stopping times can be defined in the following way: Let {Pk, k =  _+ 1, +2,  ...} be 
a distribution satisfying (1.1) and put 

2 
p i , j = -  (i +j)  p~p_ j, i=1 ,2 , . . ,  j = l , 2 , . . .  (2.1) 

#1 

where #1 = ~  [klPk. Let the random variables U 1, V 1 have the distribution 
k 

P ( U I = i  , V~=j)=pi,~ , i=  1,2, ... j = l , 2  .. . .  

and be independent from {W(t), t>0}.  Define the stopping time ~1 by 

zl=inf{t=>0: W(t)=ei ther  U I or - V  a}. (2.2) 
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Repeat this procedure by defining ((22, V2) to have distribution p~,j and to be 
independent from {W(t), t>0}  and from (U~, V~). Let ~2 be defined by 

z2=inf{t >'cl : W( t ) -  W(zl)=either U 2 or -V2}. (2.3) 

By repeating this procedure we can define a sequence {z j , j= l ,2 , . . . }  of stop- 
ping times for which the following theorem holds 

Theorem G. The random variables YI=W(z~), Yn=W(%)-W(G 1), n=2,3 , . . .  
are independent and each has the distribution 

P(Y,=k)=p k, k =  +_1, _+2 ....  (2.4) 

Moreover E(rl)= a 2 and the following inequality holds 

E('c~)~Cm2llglNmpk, m>l. (2.5) 
k 

2.2 Wiener Local Time. If W(t) is a Wiener process on the probability space 
{f2,Y,P}, then (Trotter (i958)) there exists an Q0_c(2 with P(f2o)=l and a 
function L(x,t)=L(x,t ,  co) (x~R,t~R+,coef2o)jointly continuous in x and t, 
such that d t 

I( . . . .  ~(W(s)) ds, (2.6) L(x, t, co) =d;x o 

where I( . . . .  )(') denotes the indicator function of the interval ( -o% x). L(x, t) is 
called the local time at x of the Wiener process W(t). We also refer to the 
book of Knight (1981, p. 107) where the continuity of local time is proved 
using methods close to ours. 

For the distribution of L(x, t) we have (see L6vy (1948)) 

(Ixi+u~ 
P(L(x,t)<u)=2q~ ~ - 1 - 1 ,  u>_O. (2.7) 

We use also the following result of Knight (1969): 

Theorem H. Let the Wiener process W(t) start from W(O)=z and stopped at z 
defined as the first point t>0 ,  where W(t) hits either z+i  or z - j .  ( i>0 , j>0) .  
Then for O< z < j, L(0, z) has the distribution 

Z 
0 with probability z+i  

L(0, z)= ( i+j ) i 
[Exp wzth probability - -  where Exp(2) 

z + i '  
denotes a random variable having exponential distribution 
with parameter 2. 

As a consequence of this result we have e.g. 

2 i ( j -  z) 
E ( L ( O , z ) ) = - - ,  OGzGj 

i+j 
(2.9) 
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and in general 

2mF(m + 1) i ( j -  z) m (z + i) m- 1 
E(Lm(O,z)) - , O<=z<j, m>0.  (i+j) m 

(2.10) 
Similarly, for - i<z<O we obtain 

2mF(m+ 1)j(i+ z)m(j-  z) m-x 
E(Lm(O, z-)) = (2.11) 

(i+j) m 

2.3 Occupation Time. We shall use certain properties of occupation times for 
random walk, given in Spitzer (1976) and in Kesten and Spitzer (1979). 

Let N(x, n), x =0, _+ 1,... ,  n = 1, 2,... be the occupation time of the random 
walk {Tk, k=  1,2, ...} as defined by (1.2). 

Define the stopping time c~ by 

~ =min( j :  Tj = 0 , j>  0). (2.12) 

The following results hold (see Kesten and Spitzer (1979), Lemma 2). 

Theorem I. 
E(N(x,c~))=l, x = 0 ,  +_1, ... (2.13) 

E(gm(x, cO)<Km(l + a ( x ) + a ( - x ) )  m-l, m> l (2.14) 

where K m is a constant, independent from x and a(') is the potential kernel of the 
random walk T k. Moreover 

a ( x ) + a ( - x ) ~ l x l  as Ixl--,oo. (2.15) 

Hence the following corollary is true: 

E(gm(x, cO)<-_K'~[x] "-1,  x=  _+1, +2, ... (2.16) 

with some constant K~ independent from x. 
Note furthermore that (2.16) is true for arbitrary m__> 1, i.e. for non-integral 

value of m as well. 

3. Proof of the Theorem 

In this section we give the proof of our main result through several lemmas. 
Assume that on the probability space {~2,SP, P} we have a standard Wiener 
process W(t), t>0 ,  W(0)=0 together with a sequence of stopping times %, 21, 
22,... such that Y, = W(z , ) -  W(z,_ 1), n = 1, 2 .. . .  are i.i.d, random variables with 
the distribution given by (1.1). The stopping times z~ are constructed as de- 
scribed in Sect. 2.1. 

Recall that T, = YI + . . .  + I1, = W(z,), n = 1, 2,... and 

~=min( j :  Tj =0 , j  > 0). 
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In the sequel x always runs through the integers. 

L e m m a  1. 
E(L(x, %)) = a 2, 

and # 3 = ~  Ikl 3 Pk < oo implies that 
k 

Proof Obviously 

x=0 ,  _+1,... (3.1) 

E(LZ(x, %)) < oo. (3.2) 

L (x ,~ )=  E (L(X'Zr+ 1)-L(x,  Zr)) �9 (3.3) 
r = O  

Rearrange the sum in (3.3) in the following manner: since the random walk 
T~, T 2 ... .  visits all points z=0,  • ... infinitely many times with probability 1, 
for each z there is an infinite sequence fi~ < fl~ < . . .  such that T~ = z and Tj#:z 
ifj#fl~ (i=1,2, ...). Now define 

I2~(x) = L(x, z~ + 1) - L(x, "c~), 

i.e. /~(x) is the local time at x of W(-) between two consecutive stopping times 
~ and ~+~, where s is the i-th visit to z of the random walk T~, T2,.... For 
given x, the random variables/~:(x), i = 1, 2,... z = 0_+ 1,... are independent and 
for given z, the variables U~(x),/~2(x), ... are also identically distributed. For 
convenience we usually replace z by z + x and put 

H(z) = ~ Us+Z(x) I(fl x+z < c~) (3.4) 
s = l  

where I(A) is the indicator variable of the event A. We can write 

L(x , r , )=  ~ H(z) 
z ~  - o o  

For brevity, in the sequel we put E x+~ for IYJZ(x). From (2.9) and (2.11) 

E(U,+z)_ ~ 2i(j-z) pi,j=2 ~ (j-z)p_j if z_>0 
i=i j=~ i+j j=z  

(3.5) 

and (3.6) 

E(Us+z)=2 ~ (i+z)p i, if z<0,  s = l , 2  .. . .  
i = - - z  

Put a~=E(/Y~+z). Since E x+Z and I(fi~+~<e) are independent, we have from 
(2.13) 

) E(H(z))=a~E I(fl~+z<co =a~E(N(x+z,~))=~. (3.7) 
s -  

Hence 

E(L(x,'c))= ~ as= ~ j ( j + l ) p  j +  ~ i(i-1)pi=a 2, 
z = - - o c  j = l  i = 1  

(3.s) 
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showing (3.1). To show (3.2), assume that  x + 0 .  

H2(z) = ~ (L~+~) 2 I(fls~+~<cQ 
s = l  

S l  ~ S2 

(3.9) 

Therefore, by using (2.10), (2.11), (2.13) and (2.16), for z>0 ,  we obtain 

oo e(I-I~(z)l<=Z=~ Z 8~(/-z)~(z+0 
_ J=~ (i +j)2 Pi,j 

+ a~ E(g2(x  + z, cO) 

8 ~ ( j -  z) 2 p_ j + g~(Ixl + Izl) a 2 
j = z  

t 2 < 8 F, i 2 pi + g~(Ixl + Izl) az. 
Iil>-Izl 

The same holds for z < 0, i.e. 

(3.1o) 

E(H2(z))<=8 ~ i 2 pz+K'2([xl + Iz[) a 2. (3.11) 
Ill _> Izl 

By using the inequality 

E(N(x + zl,  ~) N(x  + z2, cQ) < (E(NZ(x + zl,  ~)) E(NZ(x + z 2 , c~))) 1/2, 
(3.12) 

one can see that  

Therefore 

E(H(z 1) H(z2)) =< K~(Ixl + Iz~ l) ~/z ([xl + Iz2[) ~/2 az~ a~. (3.13) 

~(L2(x, ~,)) = F, e(H2(z)) + F F, e(H(z0 H(z2)) 
z ~  - (3o z 1  : ~ z 2  ( )2) 

<=C ~_ lilSpi+ ~ (Ixl+lzl)l/2a~ (3.14) 

c(~3 +(Ixl 1/z 0.2+~ iklS/2 pk)2) 
k 

with some constant  C. This shows (3.2) for x 4= 0. Similar procedure shows 

E(L2(0, z~)) < C(/~ 3 + (0 .2 + #5/2)2). (3.15) 

This completes the proof  of L e m m a  1. 

Lemma 2. Assume that p a = ~ l k l a p k < o o .  Then for f ixed x and any e > 0  we 
have k 

L(x, ~,) -- 0.2 N(x, n) 
lira nl/r ~ = 0  a.s. (3.16) 

n ~ o o  
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Proof Put  E i =L(x, z~,) - L ( x ,  ~ . . . .  ), i = 1, 2 . . . .  where c% = 0, 

~ i=~ ,c~ i=min( j :  Tj=0, j>c~i  1), i = 2 , 3 , . . . .  

Then  Ez are i.i.d, r andom variables. F r o m  L e m m a  1 it follows that  E(I2z)=a 2, 
E(E 2) < oe. By the law of the i terated logarithm, 

lim El + "'" + E k - k a 2  
k~oo kl/2(loglogk)l/2+~ = 0  a.s. (3.17) 

Since Nn=N(0,  n )~oo  with probabi l i ty  1 as n~Go,  we have also 

lira E1 + "'" + EN"-N~a2 = 0  a.s. (3.18) 
,~o~ N,1/2(log log Nn) 1/2+e 

By Theorem A, N, = O((n log log n) 1/2) a.s., therefore 

g I + ... +gu.-a z N, 
lira ~7~ilogl~-ogn~3m+i = 0 a.s. (3.19) 

n ~ o o  

Since E ~ + . . . + E u < L ( x , r , ) < E  ~+. . .+Eu.+z and (3.19) remains obviously 
true if E 1 + . . .  +EN.  is replaced by E 1 + . . .  +EN.  + E u .  + a, we have also 

L ( x ,  z~  - a 2 N. 
lira nl/g(log log n) a/g+ ~ - 0 a.s. (3.20) 

n ~ o o  

Similar a rgument  shows that (2.13) and the law of  the i terated logari thm 
imply 

N ( x , n ) - N ,  - 0  a.s. (3.21) 
lira nl/4(loglog n) 3/4+~ n ~ o o  

N ow (3.16) follows from (3.20) and (3.21). 

Lem ma  3. Assume that #2m=~lklZmpk < o~ for some m with 1 <m=<2. Then for 
any e > 0 we have k 

sup IL(x, z,) - L(x, na2)l 
lim i~1 ~(, log,)~/2 = 0  a.s. (3.22) 
n~eo nl/(2m)+e 

Proof Under  the condi t ion of L e m m a  3, we have E(z'~)< o% therefore by the 
law of the i terated logari thm (if m = 2 )  or by a theorem in Lo6ve (1963, p. 243) 
(if m < 2), 

I % - n a  21 <:nl  1/m+~ a.s. (3.23) 

for n large enough. Hence for all x, 

IL(x, ~,) - L ( x ,  na2)l < L(x, --r1~2~ __A-!2 '~'l/nt + el! -Ltx~, na2 _1_2 nile+q,. (3.24) 

But from (2.7) 

P(L(x, na 2 + �89 n 1/m+~) - L(x, n~ z - �89  n I/m+~) > n a/(z")+~) 

< P(L(O, n 1/m+~) > n 1/(2m)+~) = 2(1 - q~(n~/2)) 
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and 

P( sup (L(x, n62 + i n  i/"+~) - L ( x ,  na 2 -�89 
Ix[ < (nlogn) 1/2 

> n i/(z")+ ~) < 2(n log n) i/z (1 - q~(n~/2)). 

Since ~ (n log n) i/2 (1 - q~(ne/2)) < oo, Borel-Cantelli lemma implies that 
n 

1 nl /m+~'~] sup (L(x, na 2 -}-�89 1/m+~) - L ( x ,  nG 2 - ~ , ,  j, 
lim Ixl <(nlogn) i/2 = 0 ,  

y/1/(2m) +~ 
n ~ o o  

(3.25) 

hence using (3.24), (3.22) follows. 

Lemma 4. Assume that ]2m+l=~lkl~+tpk<o�9 for some m>6.  Then for any 
> 0 we have k 

sup Ig(x, 'c ,)-  ~, a~N(x + z,n)l 
lim Ixl<(nl~ z = - o e  =0 a.s. (3.26) 
n~oo  ~ 1 / 4 +  3 / ( 2 m ) +  ~ 

x + z  Proof. Recall that a~ =E(E~ ) and 

N ( x + z , n )  

L ( x , ~ , ) -  ~ a z U ( x + z , n ) =  ~ Z (IYs+~-a~) , (3.27) 
z = - o o  z ~ - o o  s~] .  

void sum being zero. Put 
k 

u~  = y~ (~s + ~ -  az). 
s = l  

U~ is a partial sum of i.i.d, random variables with mean 0. From (2.10) 

z.+lr(m+l) ~ ~ i ( j_z)m(z+i) , ,  x 
E((E~+Z) m) - PiP- j 

]21 i = 1  j = z  (i+J) m-i  

---_2'~F(m+l) ~ (j-z)'~p_j<=2"F(m+ 1) ~, lil'~p~ 
j = z  I i l> lz l  

(3.28) 

(3.29) 

< C,,km/2( ~ lil" p~ + a~") < Cm ~ /2  ~ lil" p~ 
lil__>lzl [i] > z 

where Cm denotes a constant which may change from line to line. Let 

V~= max IU;,I, EVz=Vz, 
l <_k<nl/2+~ 

v2=B-v~. 

(3.30) E I U~I" < Cmk '~/2 E IE~ +z-az l  m 

for z > 0 and similar inequality holds for z < 0. From the inequality of Marcin- 
kiewicz and Zygmund 
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Then  we also have 

EVzm~Cm//m/4+ma/2 2 [ilmp~" ( 3 . 3 1 )  

[il_->[zl 

In case 1 < m < 2  by (3.31) one gets 

E Vy =<_ (E V~2) m/2 <= Cm n "/4+ '~ ~/2 ( ~ i z pl)m/2. (3.32) 
lil_->N 

The r.v.'s V z (z=0,_+1,  _+2, ...) are independent ,  hence by the inequality of 
Burkholder  (1973, Theorem 21.1) we have 

E(I~ W21 m) ~ Cm E(~ E Vj 2)m/2  ~_ E(max I Wjl~)3 
z z g 

C m [ ( 2  E Vz2)m/2 + 2 E(Vzm)]. 
z z 

Consequently,  applying (3.31) and (3.32) in case m =  1, 2 we obtain 

E [(~ vd"] -_< cm [(Z E K2) m/2 + ~ E I V~I" + (Y~ v~) ~] 
z g z z 

<--C,,[(nl/Z+~Z Z iZPl)'~/Z+nm/4+m~/2Z Z lilmPi] 
z [il__>lzl z Iil_>lzl 

< C,,,n"/'*+m=/2[(~ 1il a pi)"/2+~ Iil m+l pi] < C,,,n,,/4§ 
i i 

(3.33) 

providing/~,,+ 1 < ~ .  
The Markov  inequality and (3.33) imply 

P {  z=-oo ~ l<~k<-nmaxlUdl>nl/4+3/2m+@ 

and 

= P { ( 2  Vz)m>nm/4+ 3/2+e} ~ Cm n -  3/2-ma/2 
z 

{ +Z } P sup m a x  [U~[ > n 1/4+ 3/2m+e 
[x[<(nlogn) 1/2 z=--~x~ 1 <k<n~/2+~ 

(log n) 1/2 
Cm / / l + m  e/2 

(3.34) 

(3.35) 

therefore by Borel-Cantell i  lemma 
+ o e  

sup ~ max [U~J 
lim Ixl < (nlogn) 1/2 z= -c~ 1 <_k<_nl/2+~ 

/ / 1 / 4 +  3/2m+e 
n ~ o o  

- 0  a.s. (3.36) 

By Theorem A for sufficiently large n we have N(n)<n 1/z+~ with probabili-  
ty 1 and hence 
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(E~ +~ -a~)  < max 
s = l  z = - - o o  l <-k<-n 1/2+~ 

(3.27), (3.28), (3.36) and (3.37) together imply (3.26). 

Lemma 5. For any e > 0 we have 

IU{I. (3.37) 

sup IN(x + 1, n) - N ( x ,  n)l 
lim x - 0 a.s. 

nl/4+~ n~oo 
(3.38) 

where sup is taken over all integers. 
x 

Proof First we show that  for all m > 2 and all 6 > 0 we have the inequality 

E(IN(1, n ) - N ( 0 ,  n)l ~) ~ Cn~ +~ (3.39) 

with some constant  C (which may depend on m but not  on n). Put 

k 
Sk= ~, (N(1,cfi)--N(1, cq 1)-1),  (3.40) 

i=1 

where ei are defined in the proof of L e m m a  2. It follows from Theorem I, (see 
Sect. 2.3) that  S k is a sum of i.i.d, r andom variables with mean 0 and possessing 
all moments.  Therefore m 

E(ISk[~) < Clk  2 
and also 

Since 

E( max 
k < n l / 2 + ~  1 

m m ~ l  

LSkP) < C 2 J  2 

N(1, ~N~ - N(0, n) __< N(1, n) - N(0, n) 

N ( I ,  ~N.+ 1) --  (N(0,/7) ~- 1) + 1, 

where N, = N(0, n), on the event {N, + 1 < n 1/2+~} we have 

IN(1, n) - N ( 0 ,  n)[ < max [Ski 
l < k < n l / 2 + 6 1  

and hence 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

E(IN(1,n)-N(O,n)t")<E( max ]Sg[m)+n"P(N,+l>nl/2+~l). (3.45) 
l < k < n l / 2 + d  1 

Using the fact that  E(Ny)=O(n 'w2) (see Kesten and Spitzer (1979)), from (3.42) 
and (3.45) we obtain (3.39). The same inequality holds with N(1, n) replaced by 
N ( - 1 ,  n) and it is easily seen that for all integral x, 

E(IN (x + 1, n) - N (x, n)] m) <= C n m/4+ ~, (3.46) 

where the constant  C does not depend on x, because N ( x + l , n ) - N ( x , n )  is 
stochastically smaller than max(IN(i,  n) - N(0, n)], ]N( - 1, n) - N(0, n)h). 
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On choosing m = (2 + 6)/~ we obtain by Markov's  inequality 

and hence 

C 
P(IN(x + 1, n) - N(x, n)l > n 1/4+ ~) ~ ~ (3.47) 

P( sup 
Ix l < (n log n) 1/2 

< 2 C(log n) 1/2 
- -  ~,/3/2 

IN(x+ 1, n ) - N ( x ,  n)l > n  1/4+~) 

which by Borel-Cantelli lemma, implies that  

sup ]N(x + 1, n) - N(x, n)[ 
lim I~1 ~(. 1og,)1/2 

n l / 4 + e  n ~ o o  

(3.48) 

= 0  a.s. (3.49) 

The law of the iterated logari thm 
Ix[ >(n log n) 1/2 and n sufficiently large, hence (3.38) follows. 

Now we are ready to prove our Theorem. Since 

L(x, n o-2) _ o-2 N(x, n) = (L(x, n o-2) _ L(x, %)) + (L(x, z,) - o-2 N(x, n)), (3.50) 

(1.22) follows from Lemma 2 and Lemma 3. 
To show (1.23) we use the identity 

L(x ,  n o  -z) - 0 -2 N(x, n) = (L(x, no- 2 ) - L ( x ,  v,)) 

+ ( ( L ( x , ~ , ) ) -  ~ azN(x+z ,n) )  (3.51) 
Z=--OO 

and the estimation 

for T, implies that N(x,n)=O a.s. for 

z=~_ ~ az(N (x + z, n) - N (x, n)) 

< ~ I z la z sup lN(x+l ,n ) -N(x ,n ) l  
z ~  - - o o  X 

--< #3 sup [N (x + 1, n) - g (x, n)[. 
X 

From L e m m a  3, L e m m a  4 and L e m m a  5 it follows that 

sup IL(x, no- 2) - 0 .2 N(x, n)l 
lim [x[<(nl~ 
n ~ o ~  nl/r = 0  a.s. (3.52) 

The law of iterated logari thm for W and T n implies that  a.s. L(x, naZ)=N(x,  n) 
= 0  for Ixl>(nlogn) 1/2 and n sufficiently large, hence (1.23) follows. (1.24) 
follows from Strassen's theorem. 
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4. Remarks and Consequences 

For fixed x we have the rate n 1/~+~ provided #4<  oo and for sup we have the 
og 

same rate provided all moments exist. We do not know whether n ~ can be 
replaced by some logarithmic factor, and whether our moment conditions can 
be weakened. The rate n 1/4+~ however, can not be replaced by o(n 1/4) for any 
construction, because by a result of Dobrushin (1955) for the simple symmetric 
random walk, 

M(1, n)-M(O,  n) 
21/2 hi~4 D--~Z 1 ]Z2I 1/2 as n ~ o e  (4.1) 

where & means convergence in distribution, Z 1 and Z 2 are independent 
standard normal random variables. It can be shown similarly that 

L(1,n)-L(O,n) gZ1 ]Z2[1/2 as  n - - , oe  (4.2) 
2nl/4 

Our Theorem implies that all statements of the Introduction formulated to 
any of the sequences m(x,n), a2N(x,n), L(x, na 2) (resp. M(n), aZN(n), L(no-2)) 
will be true to the other two sequences under the conditions of our Theorem. 
In particular the statements of Theorems C and D remain true if M(x,n) is 
replaced by L(x, n) or aN(x, n). Furthermore 

lim inf aN(n) = 71 a.s., (4.3) 
n~oo 

where 71 is the constant of Theorem B. 
Moreover our Theorem implies also that the functional law of the iterated 

logarithm for L(x,t) due to Donsker and Varadhan (1977) is inherited by 
N(x, n). 

Corollary. Assume (1.1) and # , , = ~  [k[" pk< o% for some m>7.  Then the set of 
k 

limit points (in the topology of C( -  0% oo)) of the functions 

( [  [ n , 1 / 2 - ] ,  
(nloglogn)-l/2aN x a ~ )  ] , n / - o o < x < o o  (4.4) 

consists of those and only those subprobability density functions f (x) for which 

1 ' X  2 e(f ()) �9 g j ~ - a x >  l. (4.5) 

The occupation time N(x, n) of the random walk T1, T2, ... was defined by 
(1.2). In order to characterize the time spent at x by the random walk we may 
also introduce the random variables 

Nl(X,n)= #{t :  O<t<=n, T(t)=x}, (4.6) 

Nz(x,n)=lim(2~) -1 2{t: O<_t<_n, [r(t)-x[<=~}, (4.7) 
g--+O 
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where 2 is the Lebesgue measure and T(t) is the stochastic process defined by 

r ( t ) = T k + ( t - k )  Yk+,, if k < t < k + l ,  (k=0,1,2, . . . ) .  (4.8) 

The connection between N,, N 2 and N is given in the following 

Lemma 6. Assume (1.1). Then for any e > 0  

lim n- 1/4-~ sup IN, (x, n) - # i  N(x, n)l = 0 a.s. 
n ~ o o  x 

and 
lim n- 1/4-~ sup [N2(x, n) - N(x, n)l = 0 

n ~ o o  x 
a.s .  

(4.9) 

(4.10) 

where l~1 =~, [kip k and sup is taken for all integers. 
k x 

The proof runs along the same lines as the proof of our theorem. Define 
the following variables: 

~+~ I :  (Y~+:+~<-z )  i f z > O  
Qs (x)= if z=O (4.11) 

[I(Yp~+z+:> z) if z < 0  
and 

(4.12) 

lYe§ + l l - I I (Y~+ +l<--Z) 
R~ + ~(x)= , -1  -1  

- - i  [ Y~+ ~+i I(Y~ + ~+i > - z) 

if z>O 

if z=O 

if z<O. 

Then the following identities hold: 

Xl(x ,  n) = 
N ( x + z , n )  

E 
Z = - - O 0  8 = 1  

N2(x, n)= 
N ( x +  z, n) 

2 
Z= --00 $ = i  

Moreover, 

A~=E(Q~+~(x)) = 

B~ = E(R'~ +:(x))= 

P-i 
i = z +  i 

I 

i = - - z + l  

i = z + l  i 

~=-oo [i[ 

i = - - z + l  i 

x + z  
Q s (x), 

R'~ + :(x). 

if z>O 

if z=O 

if z<O 

if z>O 

if z=O 

if z<O. 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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and 

It is easy to see that ~ Az=pl and ~ B~=I, hence 
Z= --oo z : - - O 0  

N ( x + z , n )  

Nl(x,n)-plN(x,n)= ~ ~ (QsX+Z( 
Z = - - O O  s = l  

+ ~ Az(N(x + z, n)- N(x, n)) 
Z =  - -  cxD 

(4.17) 

N(x + z,n) 

N2(x,n)-N(x,n)= ~ E (R'~+~(x)-Bz) 
~ - - 0 0  8 = 1  

+ ~ B~(N(x+z,n)-N(x,n)). 
Z =  - - 0 0  

(4.18) 

The first sums in (4.17) and (4.18) can be treated similarly to the proof of 
Lemma 4, while for the second sums we refer to Lemma 5. 
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