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Summary. Self-decomposable probability measures # on IR§ are character- 
ized in terms of minus the logarithm of the Laplace transform of #, say f, 
by the requirement that s~--,sf'(s) is again minus the logarithm of the 
Laplace transform of an infinitely divisible probability on IR+. Iteration of 
this condition yields characterizations in the case of IR+ of Urbanik's 
classes L n of multiply self-decomposable probabilities. The analogous char- 
acterization for discrete (multiply) self-decomposable probabilities on 2g+ is 
discussed and used to give a representation of the generating functions for 
discrete completely self-decomposable probabilities on •+. Classes of gen- 
eralized F-convolutions analogous to the multiply self-decomposable proba- 
bilities on IR+ are studied as well as their discrete counterparts. 

Introduction 

In a study of limit laws for certain classes of normalized sums of real-valued 
random variables Urbanik [17] introduced classes Ln, n=0, 1, ..., 0% of mul- 
tiply self-decomposable probability measures on IR and characterized the prob- 
abilities in these classes by their L6vy measures. This led via the L4vy-Hin~in 
formula to integral representations of the (logarithm of) the Fourier transforms 
of these measures. 

The classes Ln were further studied by Kumar and Schreiber [107 who gave 
characterizations of L, by "monotonicity" properties of the associated L4vy 
measures, and used Choquet theory to obtain Urbanik's integral represen- 
tations. 

Multiply self-decomposable probabilities on more general spaces have been 
considered in [117-[-14 ] . 

The purpose of the present paper is to study decomposability properties of 
probabilities on IR+ and 2g+ directly in terms of (the logarithm of) their 
Laplace transform respectively their generating functions. 

In w 1 we start by giving a simple and useful characterization of self- 
decomposable probabilities on IR+. The condition for self-decomposability of # 
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is that, with f = - l o g 5 o #  (5~ the Laplace transform of #), the function s 
~--~sf'(s) is again minus the logarithm of the Laplace transform of an infinitely 
divisible probability on IR+. Iteration of this condition yields characterizations 
of L n for n =0, 1, 2, ..., oo. The results are of course consequences of Urbanik's 
integral representations, but being so simple we have preferred to establish 
them directly. Also the integral representations and the characterizations in 
terms of L6vy measures take very simple forms in the special case of IR+. 

In w 2 we study the analogues on 7Z+ of multiply self-decomposable proba- 
bilities. Our study is based on the notion of discrete self-decomposability due 
to Steutel and vanHarn [15]. As in the case of IR+ we obtain characteri- 
zations of the (logarithm of the) generating functions for these probabilities in 
terms of iterates of a certain differential operator, and we give their integral 
representations. 

There is a strong similarity between the self-decomposability classes on IR+ 
and on 7Z§ and one way of expressing this similarity is in terms of mixtures of 
Poisson distributions as discussed in w 3. 

Finally in w 4 we consider self-decomposability properties of generalized F- 
convolutions on IR+ and their discrete analogues on 27+, the generalized 
negative binomial convolutions. 

w 1. Multiply Self-Decomposable Probabilities on IR+ 

Let P(N+) be the set of probability measures on N+ =[0, oo[ and let ~ denote 
the set of C~ f:  ]0, oo[--~N+ for which f '  is completely monotone 
(in [2] called the set of Bernstein functions). 

Denoting by 5O# the Laplace transform of #eP(IR+), it is well known that 
the mapping #~- , - log5o# defines a one-to-one correspondence between the 
set I(IR+) of infinitely divisible probabilities on N+ and the set ~ - t  
= { f ~ l f ( 0 + ) - - 0 } ,  cf. Feller [7] (see also [3]). 

Furthermore a function f belongs to N-1 if and only if it has the form 

co 

f ( s )=bs+ S(1-e-X~)dv(x) for s=>0, (1) 
0 

where b > 0  and v>0 is a measure on ]0, oo[ such that the integral in (1) is 
finite for s > 0  (i.e. such that x~-~min(x, 1) is v-integrable). The couple (b, v) in 
(1) is uniquely determined by f and is called the representing couple for f ;  v is 
the Ldvy measure for #~I(IR+), where f =  - l o g  5O #. 

A probability #~P(IR+) is called self-decomposable if for each c~]0, 1[ there 
exists #c~P(IR+) such that 

# = ( ~  #)* #c, (2) 

where T~# is the image measure of # by the mapping To: x~--,cx of N+ into 
IR+. The measure #c in (2) is uniquely determined and is called the c-com- 
ponent of #. The set of self-decomposable probabilities on IR+ is denoted 
L(~+). 
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It is well known that L(IR+)_cI(IR+) and that the c-components of any 
#EL(N+) are also infinitely divisible. 

Let #~P(IR+) with f = - l o g ~ #  and c~]0,1[. Then -logS~(T~#)=foT~, 
and it follows that #~L(IR+) if and only i f f - f o T c ~ N  for all c~]0, 1[ and that 
in this case the c-component #c of # corresponds to the function f - f o  T~. 

Consider now the differential operator S on ]0, oo[ given by 

Sh(s)=sh'(s) for s>0.  

1.1. Lemma. Let f: ]0, ~[--+]R be a Cl-function. Then S f e ~  if and only if the 
function f - f  o T~ belongs to ~ for all ce]0, 1[. 

Proof The set N is a convex cone of functions which is closed in the topology 
of pointwise convergence on ]0, oo[, cf. [2], and stable under composition with 
the family of mappings {T~lc>0 }. The assertion now follows from the formulas 

S f(s) = sf'(s) = lim f(s) - f ( c  s) 
c ~ 1  1 - - C  ' 

f ( s ) - f ( c s )=  ! au f(us)du= Y(Sf)(us)l-du'c u 

valid for all s>0  and c~]0, 1[. 

1.2. Theorem. Let #~P(1R+) with f = - l o g Y # .  Then # is self-decomposable if 
and only if S f~N.  

Proof This follows immediately from Lemma 1.1 and the preceding 
discussion. 

The c-components of a self-decomposable probability are not in general 
self-decomposable, and we will therefore consider the following classes of 
multiply self-decomposable probabilities on IR+ (cf. Urbanik [17]) 

Lo(IR+)_~LI(IR+)_~... and L~(IR+)= (~ L,(IR+), 
n = O  

where L0(IR+)=L(IR+) and L,+ t(1R+) for n>0  is defined inductively by 

L,+a(IR+)={#eL,(IR+)IVce]O, 1[: #ceL,(lR+)}. 

Theorem 1.2 can now be generalized. 

1.3. Theorem. Let #~P(IR+) with f =  - l o g  5~ Then 

#~Ln(1R + )~=~ Sk f ~ 

for all n = O, 1, 2,..., and 

where S k denotes the k-th iterate of S. 

for k = l ,  2 , . . . , n + l  (3) 

for all keN,  (4) 
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Proof Theorem 1.2 gives (3) for n=0, and we shall prove (3) by induction. 
Suppose that (3) holds for some n>0. It follows that #eL,+ I(IR+) if and only if 
S~feN for k = l , 2 , . . . , n + l  and 

sk( f  -- f o T~) = Sk f - (Sk f )  o Teen 

for k=1,2, . . . , n + l  and all ce]0, 1[, and by Lemma 1.1 this holds if and only 
if SkfeN for k--1,2, . . . , n + l , n + 2 .  Clearly (4) follows from (3). D 

1.4. Remark. I~et #eLo(]R+) with f = - l o g ~ # .  Using the representation (1) of 
f it is easy to see that S f(0+)--0, i.e. S f e N _ l ,  and it follows that there exists 
#(1)~I(]R+) such that S f - - - l o g S q #  (~}. Moreover #~LI(IR+) if and only if 
#(l~sL0(lR+). 

More generally, if #eL,0R+) there exists #(k)~Ln_k(]R+) for k= 1, 2, ..., n+ 1 
(with the convention L I(IR+)=I(IR+) ) such that s k f  = --1Og~#- (k). 

For comparison with the case of discrete multiply self-decomposable proba- 
bilities on Z+ treated in w we will now give integral representations of the 
convex cones 

N , =  { - l o g  5r n=0, 1,2, ..., oo. 

Let for n=0, 1,2, ... the function F,: IR+--*IR+ be given by 

1 
S 

F,(s)=(n+l)! !(- logt)"+le-tSdt  for s>0. 

1.5. Theorem. Let f:  R + ~ I R  and n~77+. Then f e N ,  if and only if f has the 
form 

f (s)=bs+ ~ F,(sx) d'c(x) for s>O, 
0 

where b>O and ~>0 is a measure on ]0, oo[ such that 

1 

J xdz(x)< oo and ~ (logx)"+l dz(x)< oo. 
0 1 

Here (b, ~) is the representing couple for S "+ lf~N. 

Proof This is a special case of Proposition 2 in Urbanik [17] (and of Theorem 
4.1 in Kumar and Schreiber [10]). A simple direct proof analogous to the 
proof of Theorem 2.6 below could of course be given. See also the proof of 
Theorem 4.3 below. [1 

1.6. Theorem. A function f:  I R + ~  belongs to N~ if and only if it has the form 

1 

f (s)= ~ s~da(cO for s>O, 
0 

where ~>=0 is a finite measure on ]0, 1]. 
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Proof This is a special case a Proposition 5 in Urbanik [17] (and of Theorem 
4.2 in Kumar and Schreiber [101). See also Remark b) in w 3 below. [3 

1.7. Remark. Let #e l (N+)  with f = - l o g 2 ~ #  and suppose f has representing 
couple (b, v). It is well known that #eL0(lR+) if and only if v is absolutely 

continuous with a density of the form 1 h(x) where h is decreasing. In terms of 
x 

the formal adjoint S* of S (S* h(s)= -(sh(s))') this is the case if and only if S*v 
(derivative taken in the Schwartz distribution sense) is a non-negative measure. 
In the affirmative case (b,S* v) is the representing couple for S f  By com- 
bination of this remark and Theorem 1.3 we get 

#~L,(IR+)e*(S*)kv>O for k = l , . . . , n + l  

where n = 0, 1, ..., Go. 

1.8. Remark. For 0 < e < l  we have 

5~ dx j -e-~S) s ~ -  (1 xl+Ct, S~---0, 
F ( I ~  c0 o 

(cf. [2]). It follows from 1.6 that the L6vy measures for the class L~(IR+) have 
the densities 

i d~(~) 

1 
where z =>0 is a measure on 10, 1[ such that ~ (~(1-  ~))-1 dz(~)< Go. 

0 

w 2. Multiply Self-Decomposable Probabilities on 77+ 

Let P(2g+) be the set of probability measures # =  ~ Pkek (ek degenerate proba- 
k=0 

bility at k) on Z+={0 ,  1,2, ...} for which p0>0,  and let N denote the set of 
C~~ (p: [0, 1[--+1- ~ ,  0] with (p' absolutely monotone. 

Denoting by M,  the generating function of #~P(~+),  i.e. M,(z )=  ~ pk zk 
k=0 

for z~[0,1],  the mapping #~-, logM u defines a one-to-one correspondence 
between the set I(2g +)= p(Tz+)c~ I(IR +) of infinitely divisible probabilities on 2~+ 
and the set N_l={cp~NIq~(1-)=0}. 

Furthermore a function (p belongs to ~ 1 if and only if it has the form 

(p(z) = ~, hk(Z k -  1) for zE[0, 11, (5) 
k=l  

where (hk) is a sequence of non-negative numbers such that ~ hk< oe. The 
k=t  

sequence (hk) is uniquely determined by (p and is called the representing 
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sequence for q~. In fact, ~ h k e  k is the L~vy measure for-#sI(~,+) where ~o 
= log M u. k = 1 

We shall now discuss a discrete version of the notion of self-decom- 
posability which has been proposed and studied by Steutel and van H a m  [15]. 
First some discrete analogues Tc of the multiplications T c on P(~,+) are 
introduced by 

~o ~o k k - c) k- J c j ej ) for 

In terms of generating functions we find for ze[0, 1] 

Mr = M,(1 - c + c z) : (M,o zc) (z) 

where zc: [0, 1 ] ~ [ 0 ,  1] is given by L ( z ) : l - c + c z .  

Definition. A probability #~P(T+) is called discrete self-decomposable if for all 
ce]0, 1[ there exists #c~P(7/+) such that 

# = ( ~ # ) , # , .  (6) 

Here the probability #~ in (6) is uniquely determined and is called the c- 
component of #. The set of discrete self-decomposable probabilities on 7/+ will 
be denoted L(7/+). 

In Steutel and vanHarn  [15] it is shown that L(7/+)~_I(7/+) and that also 
the c-components of #EL(7/+) belong to 1(7/+). 

Let #6P(7/+). In terms of the corresponding function cp=logM u the con- 
dition for discrete self-decomposability is that ~0-~ooLeN for all ce]0, 1[, and 
in the affirmative case the function corresponding to the c-component of # is 
(p --cpoz c. 

The c-components of #~L(7/+) are not in general discrete self-decompos- 
able, and we therefore consider the following classes of discrete multiply self- 
decomposable probabilities on T+ 

Lo(7/+)~_L1(7/+)_~... and L~(7Z+)=~Ln(7/+) ,  
n = O  

where Lo(7/+)=L(Z+) and L,+ 1(7/+) for n>O is defined inductively by 

L,+ I(T+) = {#EL,(7/+)IVce]O, 1[: #eeL,(7/+)}. 

The differential operator ;~ on [0, 1[ defined by 

Scp(z )=(z -  1) ~0'(z) for ze[0, 1[ 

is the "discrete" analogue of S. 

2.1. Lemma. Let ~p: [0, I [ ~ I R  be a Cl-function. Then Sq~e~ if and only if the 
function ~o-(po L belongs to ~ for all ce]O, 1[. 

Proof The set ~ is a convex cone which is closed in the topology of pointwise 
convergence on [0, 1[ and ~ is stable under composition with the mappings z~, 
O < c < l ,  and as in the proof of Lemma 1.1 the conclusion follows. [3 
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Using the observation that for any Cl-function (p 

S((pozc)=(Sq~)oz c for c~]0, 1[, 

a simple adaptation of the proof of Theorem 1.3 gives 

2.2. Theorem. Let #~P(~ +) with (p=logM,.  Then 

#~L,(7Z+)~=~Sk~o~ for k = l ,  2 , . . . , n + l  

for all n = O, 1, 2, ..., and 

#ELm(Z +),*:~sk q)E~ for all keN,  

where ~k denotes the k-th iterate of S. 

2.3. Remarks. a) The above characterization gives for n=0  the Theorem 2.2 in 
Steutel and van Harn [15]. 

b) Let #eLo(TZ+) with (p=logMu~N. Using the representation (5) it can be 
seen that Sop(i-)=0, and the situation on 7Z+ is as described in Remark 1.4 
for IR+. 

We shall now give integral representations of the convex cones 

~ , =  {logmu[#~L,(7/+)} for n=0,  1, 2, ..., oo. 

Consider the family of functions ~b,,j: [0, 1] ~ ]  - 0% 0], n, je~+,  defined by 

~b,,j(z) - ( j + l ) ( z - 1 )  i ( - l o g t ) " + l ( 1 - t + t z ) J d t ,  z~[0, 1]. (7) 
(n+l)!  o 

2.4. Lemma. For n,j~TZ+ we have ~ , ,Y~n .  

Proof. The formula 

~b,,~(z) = n~ i ( - l ~  t)n [(1 - t + tz)J+l-1] 
dt 

�9 0 t 

shows that ~ n , j ~  for n,j~7l+ since ~ is closed in the topology of pointwise 
convergence and stable under composition with the mappings {zt[t~]0, 1[}. 
Moreover, this formula gives by a simple computation that 

S~b,,j= ~b~_ t, j for n , j ~ +  

l 
, (putting ~b_ Lj(z)=(j+ 1)(z-  1)~ ( 1 - t  +tz) j d t=z  ~+ 1_ l s ~ ) ,  hence that Sk~b,,j 

0 
=~b ,_k , j~  for k = l , 2 ,  . . . , n + l ,  i.e. ~ b , , ~ , .  

2.5. Lemma. For fixed n~TZ+ and z~]0, 1[ we have 

1 
O,,~(z) (n+ 1)! (l~ as j--. o~. 
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Proof For x > 1 we have 
1 

X 
(logx) n+i ! ( ' l ~  t)"+i(1 - t + t z ) X d t  

-i(1 0 -o -1G g / 
Splitting the integral as i + i we see that the limit for x ~ oo is 

0 1 
1 
f e - , (1 -Z)du+ ~ ,(1 z" 1 
o e- - Jdu= 1 -  

1 Z 

and the assertion follows. [3 

2.6. Theorem. Let q): I-0, 1]--*N and neTZ+. Then O e ~ ,  if  and only if 

q)(z)= ~ asq),,s(z ) for ze[0, 1], (8) 
j = o  

where (as)s> o is a sequence of non-negative numbers satisfying 

~ ai(logj)"+ i < oo. (9) 
j = l  

In the affirmative case, ~ a s_ 1 es is the LOvy measure for S"+ 1 (o. 
j=l 

Proof Suppose first that q0~ , .  Since (o(1-)=0 we find for ze[0, 1] 

1 1 1 dt 
(o(z) = - 5 ( p ' ( u ) d u = S q o ' ( 1 - t + t z ) ( z - 1 ) d t = 5 ( S q o ) ( 1 - t + t z ) - - .  

z 0 0 t 

More generally, for k=0, 1, 2, ..., n+ 1 we have by induction 

1 dt 
~o(z)=~ !(- logt)k(~ k+l(o)(1-t+tz)  T '  ze[0, 1]. (10) 

In fact, suppose (10) holds for some k<n.  Then, since (~k+l r we have 

1 i d v  
~k+ l  q)(u) = -- f (~k+ 1 q))t(v) d v  = S (~k+ 2 q))(1 - v + vu) - - ,  

u 0 v 

and therefore by interchange of integrations 

qo (z) = ~.  T ! (--log t) k (sk'+2qO)(1--V+V(1--t+tz)) ~- 

=k~-. ! ( - l ~  t)k (Sk+2q))(1--w+wz) ~- 

=--k, o l  i ( ! ( - l ~  kd@)( 'k+2q~ 

1 1 dw ! (k+ 1)l. (--logw)k+ l(S k+ z (p)(1 --W+WZ) --.W 
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For  k : n +  1 equation (10) can be written 

1 1 
~o(z) = ( n +  1)! ! ( - l o g  t) "+ 1(~.+ 1 q))'(1 - t +  t z ) ( z -  1) dt, 

and since qoe~.,  we have 

(g.+ t (p)'(z) = ~ ( j +  1) ajz j 
j=O 

where ~ aj_~ ej is the L6vy measure for 57 "+~ ~o, which gives 
j = l  

1 ( - l o g t )  n+t ~ ( j + l ) a j ( 1 - t + t z )  j ( z -1 )d t  
~o(z)-(n+ 1)! o ,j= o 

= ~ aj ~b,, j(z) 
j=O 

as desired. Since q)(z) is finite for zE]0, 1[ we get in particular by Lemma 2.5 
that  (9) is satisfied. 

If conversely (aj j> o is a sequence of non-negative numbers satisfying (9) 
then by Lemma 2.4 and 2.5 the function (p defined by (8) belongs to ~ , .  

2.7. Theorem. Let ~o: [0, 1] ~IR.  Then ~ o e ~  if and only if 

1 

~o(z) : - S ( l - z ) "  do'(e), z~[0, 13, (11) 
0 

for some non-negative finite measure a on ]0, 1]. 

Proof Suppose first that c p e ~ . D e f i n i n g  g ( s ) = - c p ( 1 - e  -s) for s>O, we see 
that  

g' (s) = - e-S ~o'(1 - e -  s) = (g(p) (1 - e -  9, 

and by induction for k > 0 

( _ 1)k g(k)(S) = -- (~k Cp) (1 -- e-  9. 

Now Sk~os~) and in particular sgcp__<0, thus g is completely monotone,  
hence by Bernstein's theorem of the form 

-7 g( s ) -  e - ~ d a ( c 0  for s > 0 ,  
0 

for some non-negative finite measure (g(0)< oe) a on [0, oe[. For  z~[0, 1[, z =  1 
- e  -s with s > 0  we may  write 

~(z): -g(s)= - ~ (i -z) ~ d~(~), 
0 

and we shall show that  o- is a measure on ]0, 1]. 
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and 

For k e n  and z~10, 1[ we have 

~k q~(Z) = -- ~ ek(1 -- Z) ~ da(c 0 
0 

oo 

(~k ~0)" (Z) : ~ ek +2 ( 1 -- a) (1 -- Z) ~ - 2 d a (a). 
0 

Since ( p e ~  we have ~ ' q ) ~  and therefore (Skq~)"=0 for all keN. If a is not 
supported by [0, 1], then for any ze]0, 1[ 

oo 

ak+ 1(1 --C0(1 --Z) ~-2 da(o:)~ -- oe 
1 

for k ~ oo, but this is not possible since 

1 

ek+ 2(1 _ C0(1 _ Z)~- 2 da(c 0 ~ 0  
0 

for k ~ oe, and the sum of these two terms is > 0. 
Finally a has no mass at 0, since ~0(1)=0. 
If conversely ~o has the form (11) then for k s~+  

1 

S~ q~(z) = - -  ~ ~k(1 - -  Z) ~ dG(~) ,  
0 

and since for every c~10, 11 the function z ~ - , - ( 1 - z )  ~ belongs to ~,  it follows 
that Sk~0e~ for ke;g+, hence that q ~ e ~ .  D 

2.8. Remarks.  a) The c-components of peL~(~+)  belong to Loo(2g+) and if ~o 
: l o g M , ~ o  has the representation (11) we find for ce]0, 1[ and z~[0, 11 

1 

log M~o(z) : ~o(z) - q0(1 - c + cz) = - ~ (1 - z)~(1 - c ~) da(c O. 
0 

b) Theorem 2.7 can be reformulated: L~(2g+) is the set of weak limits of 
finite convolutions of discrete stable (cf. Steutel and van Harn [151) probabili- 
ties on 7Z+, i.e. the set of discrete mixed stable probabilities on 2g+. 

2.9. Remark. Let #e l (Z+)  with ~o=logM, s ~ ,  and suppose that ~o has the 
representation (5). It is easy to see that S q o ~  if and only if the sequence 
(jhj)~>_ ~ is decreasing and that in the affirmative case 

S~o(z) : ( z -  1) ~o'(z)= ~ ( j h j - ( j +  1) hi+ 1)(z j -  1). 
j = l  

By means of the operator S* acting on sequences b =(hj)~>__~ by 

(S* h_)i = j h j - ( j  + 1) hi+ 1 
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we thus get the following: Let #EI(7Z+) with LO W measure ~ hje; and put _h 
= (hj)~ >= ~. Then j= 1 

#eL,(TZ +)~=>(s*)k h > 0 for k = l , 2 ,  ..., n + l ,  

for ne7Z+ vo{oo}. 
For " n =  oo" we get from Theorem 2.7 that #~1(7Z+) belongs to Lco(~+) if 

and only if the L6vy measure ~, hy ej for # satisfies 
j = l  

hz=~(-1)J- lo  J d~(cO, j ~ l ,  

for some finite measure r > 0  on ]0, 1]. 

w Poisson Mixtures 

With the purpose of relating the self-decomposability classes on N+ and Z+ 
consider for 0 > 0 the mapping #~-~nu(0) of P(N+)  into p(7Z +) defined by 

M~.(o)(z)=dY#(O(1-z))  for z~[0, 1]. 

This formula means that rE(0) is the Poisson mixture (or Poisson sub- 
ordinate, cf. [83, [9]) co 

~.(0)  = j" ~,0 d#(t), 
0 

where (~t)t>o is the convolution semigroup of Poisson distributions ~t 
co tk 

=e-~k=~ 0 k T ek. 

It is well known that many properties of #~P(IR+) are reflected into 
"similar" properties of rc.(O)eP(7Z+), 0>0.  For self-decomposability properties 
this is based on the fact that the mapping #~--*rc.(0) for each 0 > 0  is a 
convolution homomorphism (this is clear) which transforms the multiplication 
T c on P(IR+) into the multiplication ~ on P(;g+) in the sense that 

7rTe#(O ) = rc('g#(0)) for ce]0,  1[. 

In fact, for zE[0, i]  we have 

M~To.(o)(z ) = Y (T~ #) (0(1 - z)) = ~ # ( 0  c(1 - z)) 

= Y#(0(1 -- (1 - c + cz))) = Mfc(~.(o))(z ). 

Moreover, many properties of p e P ( N + )  can be characterized by "similar" 
properties of n.(O)~P(~+), 0>0,  due to the following "inversion formula", cf. 
[81, 

# =  lim ~ ~.(0)kek/o weakly, 
0 ~ o o  k=O 

where rc,(O)k denotes the mass at k of rcu(0). 
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It follows that for #~P(IR+) 

#~I(IR +)*~V 0 > 0: zru(O)EI(2g+), 

and for n~7Z+w{oo} 

#eL,(R +) e:~V 0 > 0: re,(0)eL, (;g +). (12) 

Remarks. a) The characterization (12) above for n=0  was given in [--8]. 
b) It follows from the integral representations of N~ and ~ that the 

mapping #~--~7c,(0) for each fixed 0>0 is a bijection of Loo(R+) onto L~(77+). 
On the other hand, the integral representation of Noo is a simple con- 

sequence of the integral representation of : ~  and the characterization (12). 
Also (12) in the case of n= oo can be sharpened to the following: #eP(IR+) 
belongs to L~(IR+) if there exists one 0>0 for which nu(0)eLoo(TZ+). 

c) It is clear that the support of n,(0) is 2~+ for any 0>0 and #eP(IR+), 
and it follows that not every element of I(•+) is of the form It,(0) with 
#~P(IR+) (I(IR+)) and 0>0. 

There also exist elements of Lo(~+) which are not Poisson mixtures of any 
#eLo(R+) (and not even of any #sP(IR+)). In fact, the function 

q~(z)-=-z-l+�89 for z~[,0, 1], 

belongs to ~o, and if #eP(IR+) and 0>0 where such that exp(q0(z)) 
= 2P#(0(1 - z)), then the function 

S 2 

g(s) =exp (~0 ( 1 - 0 ) )  -- exp (~ ~ -  2 0) , s~[,0, 0] 

would be the restriction of a completely monotone function, and this is not the 
case. 

w 4. Self-Decomposability Classes of Generalized F-Convolutions 
and Negative Binomial Convolutions 

The set of so-called generalized F-convolutions, introduced by Thorin, is an 
important subset of L(IR+). 

We consider the set J-  of C~-functions f:  ]0, oo[~lR+ for which f '  is a 
Stiehjes transform, i.e. of the form 

d#(x) 
f'(s)=b+ J s>0  

o S -+-X  ' 

where b>0  and # > 0  is a measure on [-0, oo[. It follows that r is a convex 
cone contained in B, and it is easy to establish the following integral repre- 
sentation of the functions f ~ Y :  

oo 

f(s)=a+bs+ S log(1 +sx) die(x), s>O (13) 
0 
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where a, b > 0  and ~=>0 is a measure on ]0, oc[ such that the integral is finite 
for s>0.  From (13) it can be seen that .7 is closed under pointwise con- 
vergence and stable under composition with T~, c > 0. 

A generalized F-convolution, cf. Thorin [16] (see also [1] or Bondesson [5]) 
is a probability measure #eP(IR+) for which f =  - l o g  5r (Note that f (0  +) 
= a = 0  in (13)). The set FOR+) of generalized E-convolutions can be described 
as the set of weak limits of finite convolutions of E-distributions. 

Clearly F(IR+)_cI(IR+), but we even have F(IR+)_cL(IR+). This result of 
Thorin can be seen from Theorem 1.2 because f e 3 -  implies SfeN. In fact, i f f  
has the representation (13), then 

sf'(s)=bs+ ~ sx 
o l~sxsx d~(x) (14) 

which belongs to N' because s~-+s(l+sx) -1 does so for every x>0.  For 
0 < f l < l  the fucntion s a is a Stieltjestransform, cf. [2], so by Theorem 1.6 we 
get Loo (IR +)_c F(1R+). 

In analogy with the classes L,(IR+) we now consider 

Fo(IR+)~-FI(IR+)__..._~F,(IR+)_... and F~(IR+)= (~ F,,(IR+) 
n : 0  

where F0(IR+)=F(IR+) and Fn(N+) for n > 0  is defined inductively by 

~+ ~0R+)= {#aU~R+) I V ca]0, 1[: #caUR+)}. 

By induction we find L~o(IR+)_cF~(IR+)___L,(IR+) for n>0,  and consequently 

L~o (]R +) = Foo (IR+). 

The classes F,(IR+) can be described in terms of S and Y like L,(IR+) could 
be in terms of S and ~ (Theorem 1.3). In fact, for a Cl-function f : ]0 ,  oo[~lR 
we have S f e Y  if and only if f - f o  T~ag"- for all ca]0, ![, because J-  is a 
convex cone of functions which is closed in the topology of pointwise con- 
vergence and stable under composition with the family {T~, c>0}, cf. Lemma 
1.1. We therefore have: 

4.1. Theorem. Let #eP(IR+) with f =  - l o g S # .  Then for ne~+  

#eF,,(IR+)<=>SkfeY for k=0,  1, ...,n. 

In analogy with the classes ~ ,  we will find the integral representation of 
the convex cones 

5'2 = { - l o g  s #[#eF~(IR+)}, n=0,  1, .... 

Clearly J - o = { f e J I f ( 0 + ) = 0 } .  Let for nag+  the function G~:IR+~IR+ be 
given by 

1 S 
a~(s)-(n+ 1)! ! ( - l o g  t) "+ 1(1 +s  0 .2  dt. (15) 
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4.2. Lemma. For n~7L+ we have G , ~  and 

G,(s)~s for s--,O, 
1 

G,(s) (log s) "+1 for s---, oo, 
(n+l ) !  

Proof. By two partial integrations we find (for n > 1) 
1 S 

G,(s) =I~.T ! ( -  log t)"(1 + st)-1 dt 

1 1 
= ! log( l+st)( - - logt)  "-xdt  

(n- 1)! t' 

and the last formula shows G,e~--. Furthermore we see that SG,= G,,_ 1 which 
combined with Theorem 4.1 shows that G,s~-~,. The asymptotic behaviour is 
established as in 2.5. [] 

4.3. Theorem. Let n ~ + .  A function f:  IR+--+l( belongs to ~ if and only if it 
has the form 

oo 

f (s )=bs+ ~ G,(sx)d~c(x), s>O (16) 
o 

where b>O and ~>0 is a measure on ]0, oo[ such that 

' 7 yxdK(x)<oo and (logx)"+adK(x)<oo. (17) 
0 1 

Proof. Suppose first that #~F,(N+) with f = - l o g ~ # ,  so Sk f~3  - for k 
=0,1 , . . . ,n .  Clearly f ( 0 ) = 0  and (14) implies that S f (0)=0 .  It follows that 
Skf (0)=0  for k=0,  1, . . . , n + l .  We have 

s t dt 
f(s) =~ f '(u)du=~ S f(ts) - -  

0 0 t 

and in general 

f(s)=~ T1 oi(--logt)kSk+lf(ts)~ for k=O, 1,...,n+l. (18) 
1 - -  

In fact, suppose (18) holds for k<n. Then since Sk+if(O)=O we have 
1 du 

Sk+ l f (s)=y Sk+ Z f ( u s ) - - ,  
0 IA 

and inserting this in (18) yields 

~(~)__ 1 oi ((-,o~ ,)~ oi ~ + ~  (. ,s, ~U/u, T ~ 

_ 1 i (- l~ x) k+' Sk+2f(xs) dx. 
(k+ 1)! o x 
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If 

and hence 

ao 

S"f(s)=bs+ S log(1 +sx) d~c(x) 
0 

ov S X  

S"+2 f(s)=bs+ ! (1 +sx) 2 d~c(x), 

we get from (18) with k = n + l  

1 i ( i t S X d ~ c ( x ) )  dt f(s)-(n+l)! ( - l o g t )  n+l bts+ (l+tsx)2 t 

=bs+ ~ Gn(sx ) d~c(x). 
0 

In particular 

j G,(x) d~c(x) < oo 
0 

so the asymptotic behaviour of Gn(x), cf. 4.2, implies that ~c satisfies (17). 
That conversely any function of the form (16), with ~c satisfying (17), 

belongs to J,, is an easy consequence of Lemma 4.2. [3 

4.4. Remark. Let f = - l o g L ,  q # ~  with #~F,(IR§ Since skf~Jo0 for k 
=0, 1, ..., n there exist numbers bk>O and positive measures ~c k on ]0, ~ [  such 
that 

Sk f (s) = b k s+ ~ log(1 + s x) dG (x ). (19) 
0 

We claim that bo=b~=...=b" and that S*~Ck=~Ck+ z for k=0,  1 , . . . , n - 1  in the 
Schwartz distribution sense, hence S *k ~Co= G for k<n.  In fact, from (19) with k 
= 0 we get 

oo 

S f(s)=b os+ ! sx d 

and from (19) with k=  1 we get 

S f(s)=bl s+ i (i l~sudU) d~l(x) 

=b~s+~j su ~:~(]u,~[-) du 
o l + s u  u 

which show that b o =b 1 and that ~o has the density ~l(]u, ~[)/u with respect 
to Lebesgue measure, hence S* ~o = ~q. 

Conversely, let f =  - l o g  ~C~ # E J  o with #~Fo(IR§ and 

f(s) = b o s + ~ log (1 + s x) d~c o (x). 
0 
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If S*~co>0 on ]0, oo[- in the distribution sense then /~EF~(IR+). In fact, the 
condition S* ~co>0 implies that ~o has a density of the form h(u)/u for some 
decreasing function h: ]0, oo[---+IR+ which may be assumed continuous from 
the right. Since 

oO 

~Co(]e, oeE)=< J" logx  d~co(X) < oo 
e 

there exists a non-negative (Radon) measure ~l on ]0, m[, such that •l(]u, oo[,) 
= h(u), u >0, and the above calculation shows that 

S f(s)=b o s+ ~ log(1 +sx) dtq(x) 
0 

hence S f e Y  and #~FI(IR+). Iteration of this argument leads to 

4.5. Theorem. Let f =  - l o g  2 ' p  for #~Fo(IR+) have the representation 

f(s)=b s+ ~ log(1 + sx) d,c(x). 
0 

Then we have for n > 1 

#~F,(N+)~=>S*k~:>O on ]0, oo[, for k = l ,  ..., n. 

Let us finish by the discrete analogues of the classes F,. 
Consider the set F(2g+) of so-called generalized negative binomial convo- 

lutions, introduced by Bondesson [-5] to be the set of weak limits of finite 
convolutions of negative binomial distributions on g+ .  

The set F(7/+) is the discrete analogue of FOR+). In fact, it is easy to see 
that for #~P(IR+) we have 

~eF(lR +)<=>V 0>0: rc~(O)~F(7/+), 

(see also Bondesson [-5], Theorem 2.2). Moreover, for each fixed 0>0,  the 
mapping #~--,~zu(0) is a bijection of FOR+) onto F(2g+). 

Introducing discrete self-decomposability classes F,(2g+) for nEN vo {c~} we 
find that for each fixed 0 > 0  and neNva{oo} the mapping #~--~zu(0 ) is a 
bijection of F,(IR+) onto F,,(g+). In particular 

G(v,+) = Loo(v,.). 

The authors want to thank one of the referees for helpful comments. 
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