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An Iterated Logarithm Law for the Maximum 
in a Stationary Gaussian Sequence* 

JAMES PICKANDS l l I  

Summary. Let {X., n = 1, 2 .... } be the successive terms of a discrete coordinate stationary Gaussian 
stochastic process. Assume, without loss of generality, that EX. = 0 and r o = EXZ, = 1 for all n. Let 
r, ~ EX k Xk+,, be the covariance function. If either there exists an ~ > 0 such that 

l imn ' r ,=0,  or ~ r.2<o% 

then 

P {liminf(21og n)~ (Z,-(21og n)~)/log log n= -�89 limsup(21og n)~(Z,-(21og n)~)/log log n= �89 = l, 
n ~  n ~ o o  

where 
Z.~- Sup X k. 

l<k<=n 

It is not sufficient that 
lim r, = 0. 

n ~ o o  

Section I 

Let  {X, ,  n - 1, 2, .. .} be  the  successive t e rms  of  a s t a t i o n a r y  G a u s s i a n  sequence .  
I t  is a s s u m e d ,  w i t h o u t  loss of  genera l i ty ,  tha t  E X , = O ,  E X  2 = 1, for all  n. W e  
def ine  the  c o v a r i a n c e  f u n c t i o n  

r, -~ E X k  Xk + . .  

By s t a t iona r i ty ,  o f  course ,  the  c o v a r i a n c e  does  n o t  d e p e n d  on  k. T h e  p u r p o s e  of  
this  p a p e r  is to es tab l i sh  T h e o r e m  1.1. 

T h e o r e m  1.1. I f  either 
3 ~ > 0 :  (1.1) 

or 

then 

where  

l im n ~ r, = 0,  

r2 < oo, 
n =  - o o  

e { l iminf (2  log n) ~ ( Z , - ( 2  log n)~)/log log n 

= - � 8 9  l i m s u p  (2 log n) ~ (Z ,  - (2 log n)~)/log log n =�89 = 1, 
n ~ o D  

Z.  = Su p  X k. 
l < _ k < _ n  
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(1.2) 
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The theorem follows as a consequence of the results of Sections 2 and 3. If r, = 0, 
for all n + 0, the variables X i are mutually independent, and identically distributed. 
In this case, (1.2) follows as a Special case of the general result proved in [5]. 

Section 2 

In this section, we consider the asymptotic behavior of the limit supremum. 
The main result for this is Theorem 2.3. 

Theorem 2.1. Let {X~, n=0,  1, 2, ...} be a sequence of normalized Gaussian 
variates. Then 

P {limsup (2 log n) -~ (X, - (2 log n)-~)/log log n < �89 = 1. 
n ~ o o  

Remark. No conditions on the joint distributions of the variates are required. 

Proof. Let 

c n = (2 log n) -~ + 0 (2 log n)- + log log n. (2.1) 
It is known that 

P {X. > x} ~ q5 (x) - (2 rt)- ~ x -  1 e- X2/2 (2.2) 

as x ~oo (Cram& [2] p. 374). Clearly - l o g  qS(c,)=�89 log 2re+log c,+c2/2. But 

log c, = �89 (log 2 + log log n) + log (1 + 0 (2 log n)- 1 log log n) 

= �89  as n~oo ,  
and 

c2,/2 = log n + 0 log log n + o (1) as n ~ oo. 
So 

q~ (c,) --~ (4 ~)- ~ n-  1 (log n)- (0 +-~) (2.3) 
as n --* oo, and 

q~ (c,) < o% (2.4) 
n = l  

iff 0 > �89 By the Borel-Cantelli Theorem (Loeve [3] p. 228) X, > c, only a finite 
number of times with probability one. Equivalently 

(2 log n)~(X, -  (2 log n)~)/log log n>  0 

only a finite number of times with probability one, provided 0>�89 The theorem 
is proved. 

Theorem 2.2 . / f  

and 

thet~ 

3 7 < 1 :  ~ k -~ l rk l<~ ,  (2.5) 
k = l  

lim r, = 0, (2.6) 
n ~ o o  

P {lim)up (2 log n) ~ (X, - ( 2  log n)~)/log log n = �89 = 1. (2.7) 
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P r o o f  Let A. be the event { a , < X , < b , } ,  where a , - (21og  n)-~+0(2 log n) -~. 
log log n, b,-=(2 log n)~+�89 + 0 ( 2  log n) --~ log log n, e>0  is arbitrarily chosen 
and 0<�89 By (2.1), and Theorem 2.1, X . > b ,  only a finite number of times, with 
probability one. Therefore, it is sufficient to prove that with probability one, 
infinitely many of the events A k occur. Let n o be so chosen that if n > n o, 

�9 �89 (2 Jog n)- = a,, b, -< (2 log n) ~ + e. 
Let 

L= ~ Ik, 
k =  no  

where I k is the indicator function for A k. By (2.3), it follows that 

(2.8) 

- - 3  - 1  --  ( ~ - + 0 )  EIk~(47z  ) k ((logk) - ( l o g k ) - ( ~ + ~ / 2 ) ) ~ ( 4 ~ ) - ~ k - ~ ( l o g k )  -(~+~ (2.9) 

as k ~ ~ .  Since the term on the right side of (2.9) is not summable, then for any 
t / 1  ~_~ / l  0 , 

n 

EJ, , , ,  ~ EIk~(47z)-�89 ~ t - l ( log t) -(~+~ dt  
k=,, ,, (2.10) 

= (�89 0)- 1 (47r)- ~ (Iog t) (~- 0) 1~, ,,~ (�89 0)-1 (4 re)- ~ (log n) (+- 0), 

as n ~ ~ .  It is sufficient to prove that for any integer 172, 

l imP {J,<nz} =0 .  
n ~ c o  

But by the Chebycheff inequality, 

P {J, < n2} = P {Jn -- EJ ,  < n 2 -- EJ ,}  <= Var Jn/(n2 - E J,,) 2 "~ Var Jn/(EJn) 2 . 

Consequently, it is sufficient to prove that 

since n 2 is arbitrary. But 

Clearly 

lim Var JJ (EJ , )  e = 0, (2.11) 
n---~ oo 

V a r J . =  ~ Var lk+  ~ cov(Ik,I,). (2.12) 
k = n o  k # l = n o  

Var I  k <- E1 k = o  ~ E1 k , 
k ~ n o  k = n o  ",k=no 

as n ~ ~ .  So the first term on the right side of(2.12) can be neglected in establishing 
(2.1 I). Clearly, if k < I, 

bk bt 

COV(Ik, I,)=(2rc) -1 ~ [D(rk_ , ,  s, t ) d s d t ,  
ak al 
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where  
D ( r k _ t ,  S, t ) = ( 1  -- r2_t) --1 e-(~2+t=-2~k-,*')/2(l-r~-, ) 

3 

- - e - (S~+t2 ) /2=  2 D i ( r k - t ,  S, t), 
i=1  

D l ( r k _ l ,  S, t ) = (  1 _ r/~_l ) 2  --~ e-S2/2 (e-(t-r~,_~s)2/2(1-r~_O 

- e -  ( t ~ / 2  (1 - r~ _ O ) ,  

D2 (rk - t, S, t) = ( 1 -- r 2_ t) - -1 e - ~/2 (e -t=/2 (1 - ~ _ ,) _ e - r~/2), 

2 - •  Da (rk_ t, S, t) ---- ((1-- rf,_ t) =-- 1) e -(~+'~)/2 
Clear ly ,  

e -( '  . . . . . .  ) 2 /2 (1 - - r2 - ' ) - - e - t2 /2 (1 - r2 - t )~_~_( rk_ l )+  (1--rk2_l) --1 s e - ( t - ( rk - t )+s)2 /2 (1-r2- , ) ,  

where  (r k_ l) + = m a x  (r k_t, 0). Consequen t ly ,  

Dl (rk_l, S, t) <= (rk_t) + (1--rff_z) - -1 s e -(sz +t=- 2(rk-O+ st) /2(1- ,2- ' )  

<= (rk_t) + (1 - rff_,)--1 s e - ( s=+tz -2 (  . . . .  )+ so/2. 

Reca l l ing  (2.8), if k < 1, 

bk bl 

(2,0 -1 SDl(rk_t,s, 0 
ak al 

=< (2 rt) - 1 (b k _ ak ) (b t _ at ) bl (r k _ t) + ( 1 - -  r 2_ l) - -1 k - 1 1 - (1 - 2 (rk - z) + (1 + e)) 

< (8 rt)-  x (1 + e -  2 0) 2 (2 log k ) -  -1 (2 log 1)--I ((2 log 0-1 + e) 

�9 (log log k) (log log 1) (r k _ t)  + ( 1 - r 2 _  t )  - -1 k - x l - (1 - 2 ( r .  _ ,) + (1 + ~)) 

(2.13) 

bk bt 

(2re) -1 5 I D 2 ( r k - t ,  s, t) d s  clt<=O. (2.14) 
ak a! 

bk b! 

(2re) - '  j" ~ D 3 ( r k _ t , s , t ) d s d t  
ak al 

< (2 7t)-1 ((1 - r~_ z)- -1 - 1) (b k -  ak) (b z - a,) (k  I ) -1  (2.15) 

< (8 ~ ) - ,  (1 + e - 2 0) 2 (log k) - -1 (log 1)- -1 (log log  k) 

�9 (log log l) ((1 - r ~ _  t)  - -1 - 1 )  ( k  l )  - 1 .  

By (2.6), 
Sup  r , <  1. (2.16) 
n > l  

There fo re ,  the  express ion  ( 1 - r 2 _ t )  --1 is d o m i n a t e d  by  a cons t an t  for  all k ~ l .  In  
(2.13) the  express ions  (2 log k)--1 log log k, and  (2 log l)--1((2 log l)-1+e) are  domi -  
na t ed  by  cons t an t s  for  all k and  l, and  in s u m m i n g  the  te rms  (2.13), log log I will be  
24 Z. Wahrscheinlichkeitstheorie verw. Geb. 
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dominated  by log log n. In (2.15), (log k) -~ log log k, and (log l) -~ log log 1 are 
dominated  by constants for all k and I. Consequently,  there exists a constant  Co, 
such that, on regrouping terms 

cov (Ik, Ii)/EJ ~ < C o (log n)- 1.2 0 (log log n) 
k :# l= no 

?1 oo 

"( ~, (rk)+ Z P-I(P+k) -(1-z(~)+(1+~') 
\ k = l  p=no 

(2.17) 

+ ((1-- r~) ~--1) p - l ( p +  k) - i  
k = l  p=no 

By (2.6), since e > 0 is arbitrarily chosen, it is possible to chose it so that  

1 - 2 (rk) + (1 + e ) >  1 - y > 0 ,  

for all sufficiently large k. Note  that  for any fl, 0 < fl < 1 - ~,, 

~P-I(P+k) -(~-~)<= ; t-l(t+k) -(1-~)dt= i t-l(t+k) -(1-r 
p= no no -  1 no - 1 

co k co 

-~ S t - l ( t + k )  - ( 1 - p )  d t ~ k - ( 1 - p )  ~ t - l d t +  ~ t - Z + P d t  

k no -  i k 

= k - ( 1  - fl) (log k -- log (n o -- 1)) + (1 -- fl)- a k -  o -  ~) < k -  ~ 

for all sufficiently large k. Clearly for all sufficiently large k, 1 -  2(rk) + (1 + 0 >  
1 - f l > 7 > 0 ,  so that  the first sum on p in (2.17) is dominated by k -~. The second 
sum on p is dominated by the first one, and for sufficiently large k, ((1 - r 2 )  -+ - 1) 
<= Irk[. Therefore, there exists a positive real constant  C 1 such that  

coy (Ik, Ii)/EJ f <_ C1 (log n) 1-2~ log log n 
k ~ l = n o  

n 

. ~ k-rlrkl+o(1), 
k = l  

as n ~ oo. The theorem is proved. 

Theorem 2.3. The result (2.7) of Theorem 2.2 holds, provided either 

o r  

3 ~ > 0 :  ~imn ~ r , = 0 ,  (2.18) 

~, r 2 < ~ .  (2.19) 
~ =  - c o  

Proof Clearly both condit ions imply (2.6). Suppose (2.19) holds 

n = l  n = l  n = l  
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So (2.5) holds. Now assume (2.18). For any positive finite constant C, r ,< Cn -~ 
for all sufficiently large n, and n -1+~/2 r,< Cn -1-~/2 which is summable. So (2.5) 
holds. 

With probability one, Z , >  c, infinitely many times with probability one, if 
and only if X, > c, infinitely many times with probability one. This follows from 
the fact that c, is a non-decreasing sequence. So the results of this section hold if 
X, is replaced by Z,.  

Section 3 
In this section we consider the behavior of the limit infimum as n approaches 

infinity. 

Lemma 3.1. I f  the X i are independent, and normal with means zero and vari- 
ances 1, and 0 = -�89 then 

l imp {Z, > c,} = exp - (4 re)- ~. 
n---, ~3 

Proof For any d.f. F(x), (1-F(x)),,~ - l o g  F(x), as F ( x ) ~ l .  This can be seen 
by expanding - log F(x) in a power series about F(x) = 1. Thus, 

- l o g  F" (c , )= -n logF(c , )~n (1 -F(c , ) )~n (o (e , )= (47 r ) -~+o(1 ) ,  as n ~ o e ,  

by (2.3). The lemma is proved. 

Berman [-1] has shown that for any non-negative integer n, and real c, 

where 
]P { Z , s  P {Z , s  

n - 1  

D.(c ) -  ~ (n-j)Irjl  Q(c, lSI), 
j = l  

Q (c, Irjl)-(1 -[rjl2) -~ exp { -  cz/(1 + Irjl)}, 

(3.1) 

(3.2) 

and the measures P(-) and fi(.) refer respectively to that of the given process with 
covariance function r,, and that of a sequence of i.i.d, normalized Gaussian 
variates. 

Lemma 3.2. I f  

where 

and 0 = - (�89 + e), then 

lim D.(C(n, 0))=0, (3.3) 
n ~ O 0  

C (n, e) = c,, (3.4) 

P {liminf (2 log n) ~ (Z, - (2 log n)~)/log log n < - �89 = 1. 

Proof. Clearly, by (3.2), the conclusion of Lemma 3.1 holds. But this is sufficient 
to establish the result of the present lemma. 
24* 



350 J. Pickands III: 

Lemma 3.3. Suppose that for any e > O, n (e, m) is a sequence of  integers, such that 

C(n(e, m), e)> C(n(e, m+ 1), 28) (3.5) 

for all sufficiently large m. If, for all e > 0 

z.(,.m)<<_ C(n(e, m), ~), 

only a finite number of  times with probability one, then 

(3.6) 

P {liminf (2 log n) r ( Z , -  (2 log n)r log n > - �89 = 1. (3.7) 

Proof. By definition (2.1) of c,, and by (3.4) it is sufficient to prove that for any 
~ > 0 ,  

z . <  C(n, E) (3.8) 

only a finite number of times with probability one. Let us assume a realization 
of the sequence, which is such that (3.6) holds. By assumption, of course, almost 
every realization has this property. Let n o be sufficiently large so that for any 
n>n  o, there exists an m, so that, n(e ,m)<n<n(~+ 1, m), and (3.6) holds. Clearly 

Z , >  Z,(~,,,) > C(n(e, m), ~)> C(n(e, m+ 1), 2e)> C (n, 2e). 

So (3.8) holds provided e is replaced by 2e. But e was arbitrarily chosen. The 
theorem is proved. 

Lemma 3.4. The condition (3.5) is satisfied if, for all e > O, 

n(e, m ) - e x p  em. (3.9) 

Proof By definitions (2.1) and (3.4), clearly 

C (n, e ) -  (2 log n) ~ -( �89 + e)(2 log n)- ~ log log n. 

For convenience, let 
3 

C(n(~, m), ~) -  C(n(e, m+ 1), 2 e ) -  Z Di(e, m), 
i=1 

where 

and 

Dl(e, m)-=(2 log n(e, m))~- (2 log n(e, m+ 1)) ~, 

D 2 (e, m) = (�89 + e) ~2 log n(e, m+ 1)) -3 log log n(e, m+ 1) 

- ( 2  log n(e, m)) -~ log log n(e, m)), 

Da(e , m)-= e(2 log n(e, m+ 1)) -~ log log n(e, m+ 1). 

(3.1o)~ 

(3.11) 

(3.12) 

It is sufficient, of course, to prove that the term on the left side of (3.11) is positive 
1 1 -~-(l+o(1)),asm__+oo. So for sufficiently large m. Clearly (m + 1) = -  m ~ = ~ m 2 

D 1 (e, m) = - �89 e/m) ~ (1 + o (1)), 
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as m ~ .  But D2(s  , m)=(2s)-+(�89 1)-g(m)), where g(m)=m -�89 logem. 
So, for sufficiently large n, 

D 2 (g, m) ~ - - ~ m  ~ log e m+m -~ (3.13) 
as m - ~ ,  and 

D 3 (s, m) = s (2 s (m + 1))- ~ log s (m + 1). (3.14) 

Combining (3.11), (3.12), (3.13) and (3.14), the result clearly follows. The lemma is 
proved. 

Lemma 3.5. I f  the X i are independent and normalized Gaussian variates, then 
(3.7) holds. 

Proof. Reviewing the reasoning of Lemma 3.1, and (2.3), 

- logP{Z,<C(n,O}~(4zO-~( logn)  ~ as n - ~ .  
So 

- log P {Z.(~, m) < C (n (e, m), s)} ~ (4 To) -~  (e my, 

and there exists a real constant A~ such that for sufficiently large m, 

P{Z,(~,,,)< C(n(e, m), s)} < e x p - A  a m ~. 
Consequently 

P {Z, (e, m)<= C(n(s, m), 0} < oo. (3.15) 
m = l  

By the Borel-Cantelli Theorem (Loeve [3] p. 228), the conditions of Lemma 3.3 
are satisfied and consequently its conclusion holds. The lemma is proved. 

Under what conditions on the covariance function does the result of Lemma 3.5 
hold? Reviewing the proof with particular attention to (3.15), and recalling (3.1), 
it is sufficient that for all sufficiently small s, 

m = l  

It is sufficient that for all sufficiently small s, 

3/3 > 1 : lim m (log m) a D, ~, m)(C (n (e, m), e)) = 0. 
m ~ o o  

By definition (3.9), it is sufficient that for all sufficiently small s, 

3 fl> 1: lim (log n) (log log n) ~ D,(C(n, s))< oo. 
n-- .  oo 

(3.16) 

It follows from the definitions (3.2) and (3.10) that D,(C(n, s)) is monotonically 
increasing in s, for every fixed n, and so the condition (3.16) implies (3.3). So the 
condition of Lemma 3.2 is satisfied. Thus, the following theorem has been proved. 

Theorem 3.1. I f  (3.16) holds, 

n) ( Z , - ( 2  log -�89 = 1. P {liminf (2 log ~ n)~)/log log n = (3.17) 
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Theorem 3.2. The condition (3.16) holds, provided 

and 

n - 1  

3 e > 0 :  l imn  ~-1 ~, [r j l=0 (3.18) 
n ~ o o  j = l  

lim r. = O. 
n + o o  

Proof By the second of the condit ions (3.18), it follows that  the terms rj, 
l < j <  0% are all smaller than 1 in absolute value. Fur therfore  it follows that  1 
cannot  be a limit point  for r 2, and so ( l - r 2 )  -~ is bounded  away from oo on 
1 < j <  c~. Thus, these terms can be replaced, uniformly, by a constant  C~. Re- 
calling (3.2), and (3.10), then 

n - 1  

(log n) (log log n) p O, (C (n, e)) =< C a ~ I ral n 1 -  2/(1 + ]rjD (log n) (' + 2 ~)/~1 + Irjl) 
j=t 

n - 1  

-'= C1 n -  I 2 ]rj[ t'l 2 Ir~l/tl+l'JD (log n) (l + 2e)/(l + lrjl) 
j = l  

(3.19) 

for any e > 0. Clearly, for sufficiently large n, the term on the right side of (3.19) is 
less than 

n - -1  

c ,  n F, rrjl. 
j = l  

Let n o be the smallest value of n, for which this is true. Consider  the sum in (3.19), 
when the sum is from 1 to n o . This sum approaches  zero as n--+ 0% since each of 
its terms does. The theorem is proved.  

Theorem 3.3. The result (3.17) holds, provided that either 

o r  

3 c~ > 0: lim n ~ r, = 0, (3.20) 
t l~oo  

oo 

Z rf < oo. (3.21) 
j = l  

Proof Clearly by Theorem 3.1 and 3.2, it is sufficient to show that, if either 
(3.20) or (3.21) holds, then (3.18) does. First, assume that  (3.20) does. Let  e > 0  be 
arbitrari ly chosen. Then, there exists an n o, such that  if n>n o, r,<en -~. Then 

1 "-* < 1  1 n-1 1no-1 q_~no~  1 
- -  ~ [rjl ~ [ r j l +  n Y, I r i l < •  • [r~l x-=dx 

n j = l  = n j = l  j = n o + l  n j = l  - 

n - 1  

_~e(1--~)-l n-~+o(n-1). So n ~-1 ~ [rjl<=e(1-cQ-l +o(n~-l), 
j = l  

provided ~ < 1. But g was arbitrari ly chosen. If e_-__ 1, then, without  loss of general- 
ity, it can be replaced by a value e' which is not.  
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Now consider the condition (3.21). By the Cauchy-Schwarz inequality, 

n--1 -~2 n - - I  

. _12 Lrjl) 4, 
j = l  / j = l  

which approaches 0, for any e<�89 That the second of the conditions (3.18) holds, 
is immediate. The theorem is proved. 

Section 4 

Theorem 1.1 has now been proved. The conditions (3.20) and (3.21) cannot be 
weakened substantially. In particular, in order that the conclusion of Theorem 1.1 
hold, the condition 

lim r, = 0 ,  (4.1) 
n ~ 3  

is not sufficient. Clearly (1.2) implies that 

n) ~ 0, (4.2) Z,  - (2 log 

with probability one. But in [-4] a class of processes is presented, whose members 
are such that (4.1) holds, and (4.2) does not. 

References 
1. Berman, S. M.: Limit theorems for the maximum term in stationary sequences. Ann. math. Statistics 

35, 502-516 (1964). 
2. Cram6r, H.: Mathematical methods of statistics. Princeton University Press 1951. 
3. Loeve, M.: Probability theory. Princeton: D. Van Nostrand 1955. 
4. Pickands, J.: Maxima of stationary Gaussian processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 

7, 190-223 (1967). 
5. - Sample sequences of maxima. Ann. math. Statistics 38, 1570- 1574 (1967). 

Professor James Pickands III 
Virginia Polytechnic Institute 
College of Arts and Sciences 
Department of Statistics 
Blacksburg, Virginia 24061, USA 

(Received May 13, 1968) 


