Lévy Homeomorphic Parametrization and Exponential Families

OLE BARNDORFF-NIELSEN

Summary. Let $\mathscr{P} = \{P_{\theta}: \theta \in \Theta\}$ be an exponential family of probability distributions with θ the canonical parameter and consider the one to one mapping $\varphi: P_{\theta} \to \theta$. It is shown that, under mild regularity assumptions, φ and φ^{-1} are continuous with respect to the Lévy metric in \mathscr{P} and Euclidean metric in Θ .

Let $(\mathscr{X}, \mathscr{B}, \mathscr{P})$ be a Euclidean statistical field, i.e. \mathscr{X} is a measurable subset of some Euclidean space, \mathscr{B} is the σ -algebra of its Borel subsets and \mathscr{P} is a family of probability distributions on \mathscr{B} . \mathscr{P} is said to be *parametrized* by φ if φ is a one to one mapping from \mathscr{P} onto a subset Θ of a Euclidean space. Such a mapping φ will be called *Lévy homeomorphic* if it is a homeomorphism with respect to the Lévy metric in \mathscr{P} and the usual, Euclidean metric in Θ .

 \mathscr{P} is exponential if it is dominated by a σ -finite measure μ and if there exist a positive integer k, real functions $a|\mathscr{P}, \alpha_1|\mathscr{P}, \dots, \alpha_k|\mathscr{P}$ and real, measurable functions $b|\mathscr{X}, T_1|\mathscr{X}, \dots, T_k|\mathscr{X}$ such that μ -a.e.

$$\frac{dP}{d\mu}(x) = a(P)b(x)e^{\alpha(P) \cdot T(x)}, \qquad P \in \mathscr{P}, \tag{1}$$

where $\alpha = (\alpha_1, ..., \alpha_k)$, $T = (T_1, ..., T_k)$ and where \cdot denotes inner product. The smallest k for which there exists functions a, α, b and T so that $dP/d\mu$ can be written in the form (1), is the *order* of \mathcal{P} ; the order does not depend on which dominating measure μ is considered. In an exponential family the probability measures are mutually absolutely continuous.

It is assumed in the sequel that \mathscr{P} is exponential and that k is equal to the order of \mathscr{P} . Under this assumption the functions 1, T_1, \ldots, T_k are linearly independent in the sense that if for some constants $\gamma_0, \gamma_1, \ldots, \gamma_k$ and some (and hence all) $P \in \mathscr{P}$ there holds

$$P\{\gamma_0 + \gamma_1 T_1 + \dots + \gamma_k T_k = 0\} = 1$$

then $\gamma_0 = \gamma_1 = \cdots = \gamma_k = 0$.

Consider the mapping

$$\varphi \colon P \to \alpha(P), \qquad P \in \mathcal{P},$$

and let

$$\Theta = \{ \alpha(P) \colon P \in \mathscr{P} \} (\subset \mathbb{R}^k).$$

 φ is one to one and hence \mathscr{P} is parametrized by φ .

The purpose of this note is to prove the following

Proposition¹. If Θ is open and T is continuous, then φ is Lévy homeomorphic.

Remark. As is apparent from the following proof, φ is continuous whether Θ is open or not.

Proof. Let $P_{\theta} = \varphi^{-1}(\theta)$ and write $a(\theta)$ for $a(P_{\theta})$. Then, μ -a.e.

$$\frac{dP_{\theta}}{d\mu}(x) = a(\theta) b(x) e^{\theta \cdot T(x)}, \quad \theta \in \Theta,$$
$$a^{-1}(\theta) = \int e^{\theta \cdot T(x)} b(x) d\mu.$$

where

a is a continuous function of θ because the multidimensional Laplace transform is continuous at all inner points of its domain of convergence.

Thus $\theta_n \rightarrow \theta \ (\theta, \theta_n \in \Theta)$ entails

$$\frac{dP_{\theta_n}}{d\mu} \rightarrow \frac{dP_{\theta}}{d\mu} \ \mu - \text{a.e.}$$

and this implies, by a wellknown corollary to the dominated convergence theorem,

$$\frac{dP_{\theta_n}}{d\mu} \rightarrow \frac{dP_{\theta}}{d\mu} \qquad \text{in mean w.r.t. } \mu.$$

Consequently $P_{\theta_n} \rightarrow P_{\theta}$ (weak convergence) and the continuity of φ^{-1} is established.

To prove continuity of φ it must be shown that if $P_{\theta_n} \to P_{\theta}$, then $\theta_n \to \theta$. Let $C_0(R^k)$ denote the space of continuous functions on R^k with compact support and let $T \circ P(P \in \mathscr{P})$ be the measure on R^k induced from $(\mathscr{X}, \mathscr{B}, P)$ by the mapping T. From $P_{\theta_n} \to P_{\theta}$ and the continuity of T it follows that $T \circ P_{\theta_n} \to T \circ P_{\theta}$, i.e.

$$\int f(t) \, dT \circ P_{\theta_n} \to \int f(t) \, dT \circ P_{\theta}, \quad f \in C_0(\mathbb{R}^k)$$

For shortness, let $\pi = T \circ P_{\theta}$. Now,

$$\int f(t) dT \circ P_{\theta_n} = \int f(t) \frac{a(\theta_n)}{a(\theta)} e^{(\theta_n - \theta) \cdot t} d\pi$$

and thus it suffices to prove that if $0 \in \Theta$ and if for some sequence a_n

$$a_n \int f(t) e^{\theta_n \cdot t} d\pi \to \int f(t) d\pi, \quad f \in C_0(\mathbb{R}^k),$$
(2)

then $\theta_n \rightarrow 0$.

On account of the compactness of the surface of the unit sphere in \mathbb{R}^k , one can, without loss of generality, assume

$$\frac{\sigma_n}{\|\theta_n\|} \to e, \quad \text{where} \quad \|e\| = 1.$$

$$F(c) = \pi \{ t \in \mathbb{R}^k \colon t \cdot e \leq c \}, \quad c \in \mathbb{R}$$

Let

F is a distribution function with at least two points of increase,
$$c_1$$
 and $c_2 > c_1$.
In fact, if F had only one point of increase c, then

$$1 = \pi \{t \cdot e = c\} = P_{\theta} \{T \cdot e = c\}$$

^{1.} This proposition gives an answer to the question raised by Nölle [1; p. 77].

58 O. Barndorff-Nielsen: Lévy Homeomorphic Parametrization and Exponential Families

in contradiction to the linear independence of 1, T_1, \ldots, T_k . Choose a $\delta \in \left(0, \frac{c_2 - c_1}{5}\right)$ and let $J_1 = \{t: c_1 - \delta < t \cdot e < c_1 + \delta\}$. Furthermore, let f be a nonnegative function in $C_0(R^k)$ which satisfies $f(t)=0, \quad t \notin J_1$

and

$$\int_{J_1} f(t) \, d\pi > 0.$$

Such f certainly exists. Let S_f denote the (compact) support of f. For n sufficiently large one has

$$\theta_n \cdot t = \|\theta_n\| \left[\left(\frac{\theta_n}{\|\theta_n\|} - e \right) \cdot t + e \cdot t \right] \leq \|\theta_n\| (c_1 + 2\delta), \quad t \in S_j$$

and hence

$$a_n \int_{R^k} f(t) e^{\theta_n \cdot t} d\pi \leq a_n \int_{S_f} f(t) e^{\|\theta_n\| (c_1 + 2\delta)} d\pi = a_n e^{\|\theta_n\| (c_1 + 2\delta)} \int_{R^k} f(t) d\pi$$

By letting $n \rightarrow \infty$ and employing (2), one obtains

$$1 \le \liminf a_n e^{\|\theta_n\| (c_1 + 2\delta)}.$$
(3)

In a similar way it may be shown that

$$1 \ge \limsup a_n e^{\|\theta_n\| (c_2 - 2\delta)}. \tag{4}$$

(3), (4) and the inequality $c_1 + 2\delta < c_2 - 2\delta$ together imply $\theta_n \rightarrow 0$.

Acknowledgement. I am indebted to Karl Pedersen for a useful remark which led to a shortening of my original proof of the continuity of φ .

Reference

1. Nölle, G.: Zur Theorie der bedingten Tests. Inaugural-Dissertation an der Universität Münster (1966).

Ole Barndorff-Nielsen Matematisk Institut Aarhus Universitet Ny Munkegade 8000 Aarhus C, Danmark

(Received February 15, 1968)