
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
41, 161 - 176 (1977) 

Zeitschrift far  

Wahrschein l ichkei t s theor ie  
und verwandte Gebiete 

�9 by Springer-Verlag 1977 

P-Convolution Algebras: 
Representation and Factorization 

Alan L. Schwartz* 

Department of Mathematics Sciences, College of Arts & Sciences, University of Missouri- St.Louis, 
8001 Natural Bridge Rd., St.Louis, Missouri 63121 (USA) 

Summary. Let �9 denote a convolution with respect to which l 1 becomes a 
Banach algebra. Necessary and sufficient conditions are given for (P, *) to be 
represented by pointwise products of series of orthogonal polynomials. 
Properties of the polynomials are related to properties of the convolution; 
and, in the case of positive convolutions, an analogue of HinSin's factor- 
ization theorem is obtained through the use of Delphic semigroups. 

I. Introduction 

Let ~ denote the probability measures on N = { 0 ,  1,2, . . .}.  That  is, u =  

(u~ u 2 .... )belongs t o , ~  if and only if u ">0  for all n and ~ u " = l .  Let * 
n = 0  

denote a commutative, associative binary operation on ~ so that (~, .) becomes 
a semigroup; such an operation is called a convolution after the classic example 

U S U = W 4::> w k  = 2 uk  - n v n 

(the unmarked summation sign ( ~ )  indicates that the sum is to be performed as 
all repeated indices range over N). Observe that the relation above is equivalent 
to 

Z w"x" = (Z u"x~ v~176 �9 

This can be generalized: suppose that for each nEN, R, is a polynomial of 
degree exactly n; then let 

U* V=W<=>(2 unRn)(2 VmRm)= ~ wkRk. (1) 

* Portions of this work were supported by a Summer Research Fellowship at the University of 
Missouri - St. Louis 
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If R, are the normalized Gegenbauer polynomials P~a(x)/P,a(1) then (~a, ,) is a 
semigroup (see Hirschman [7, 8]). This is also the case for the Jacobi poly- 
nomials; see [1] and [4] for a discussion of these and for additional references. 

Given a semigroup (~a, ,) one is naturally led to questions of structure such 
as infinite divisibility, factorization, etc. In the classical case such a study may 
be conducted by means of generating functions ([5, 6]) or characteristic func- 
tions ([2, 12, 14, 17, 18]). 

Any convolution on ~ can be extended to give a convolution on all of 11 (the 
absolutely convergent series), so that (l 1, *) becomes a Banach algebra. (Note 
that if 11 is a Banach algebra with respect to an operation ,, N need not be a 
semigroup with respect to that operation.) Theorem 1 gives necessary and 
sufficient conditions that a convolution on N, or even on l ~, the space of 
absolutely convergent series, is given by (1) for some sequence of orthogonal 
polynomials. The fact that (1) holds leads to information about the polynomials 
which can be used, in turn, to obtain results about the structure of (P, ,); this is 
done in the proof of Theorem 1 and in Section III. Sections IV, V and VI 
contain a study of positive convolution; that is, it is assumed that u �9 v is a non- 
negative sequence whenever u and v are. In this case it is possible to obtain 
sharp bounds for the polynomials on the support of the measure with respect to 
which they are orthogonal (Theorem 5). This is done by introducing a canonical 
semigroup (~3, ,) which has a characteristic function similar to the object of that 
name studied elsewhere ([12, 14]). Some of the properties of the characteristic 
function are listed in Theorem 7; a discussion of infinitely divisible characteristic 
functions including an analogue of the Levy-Hin~ine formula is contained in 
Theorem 8. Finally Section VI contains analogs of Hin~in's factorization theo- 
rems ([11, 12]) for the semigroup (~, ,) (Theorem 9) and many semigroups of 
non-negative sequences for which (~, ,) is not a semigroup (Theorem 10). 
Theorem 9 is proved with the help of the delphic semigroups of Kendall [9], 
an approach suggested to the author by Richard Askey of the University of 
Wisconsin. 

The operation defined by (1) can be given a more explicit form. Let C,km be 
the linearization constants determined by 

R.R,.-= Z C~,,.Rk 

then 

(2) 

U*~=W~Wk=F C~.,mU"~m. (3) 

It is often useful to know, and difficult to determine, whether the k Cn, m are non- 
negative (see [-1] and [4]); for instance, if R,(1)= 1 for all n an Ck,,m>0 then N is 
a semigroup with respect to .. Necessary conditions for the non-negativity of the 
linearization constants can be obtained from Theorem 5, these are expressed as 
the negative results of Theorem 6. 

Notations and Definitions. Let N={0,  1,2,...} and N'---N-{0}. An unmarked 
summation sign, ~ ,  indicates summation as all repeated indices range over N; 
~ '  indicates the same for N'. I f  u = (u ~ u 1, u2,.. .) let [luLl = ~ ]u"l and write 
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u e l  ~ if Ilulr < ~ ,  

u e cc if uk= 0 except for k in a finite set, 

u > 0  if uk>O for all k e N ,  

uell+ if u > 0  and u e l  1, 

and lu[ for the sequence (lu~ lull, lu21,...). 

A convolution is any operation,  , ,  on 11 with respect to which l ~ becomes a 
commuta t ive  Banach algebra denoted (?,  ,). 

Let  n" be the project ion opera tor  defined by rc"(u)=u", and define the basis 
elements E,  by n"(E,) = 1 and rtk(E,) = 0 if n q= k. If * is a convolut ion on l l and 
u e l  1, define u * ~  and u * " = u . u  *("-1) for n > l .  If Q ( x ) = ~ a . x "  is a poly- 
nomial  let Q(u) = ~ a. u*". 

The convolut ion is evidently determined by the numbers  

k - nk(E. * E.,) C n ,  m - -  

so that  E . . E , . = ~ ,  k C.,,.Ek and (3) holds. The Banach algebra inequality 
Ilu* vii < j[ul] ]lvll with u=Em and v = E .  implies 

k eN) .  IC . ,ml~l  (n,m 
k = O  

II. Representation of ll-Convolution Algebras 

Let ~ be a measure on ( -  o% ~ ) ;  the support of ~ consists of those x such that  
c~([x-e ,x+e])>O for every e. A measure is degenerate if it is supported on a 
finite set of points. 

Theorem 1. The following two sets of conditions on an ll-convolution algebra are 
equivalent 

I. Eo * u = u (u el l ) ,  (1) 

n~ * E.) > 0 (n e N), (2) 

nk(E. .E1)=O if I n - k ] > l  (n, k eN) ,  (3) 

n"+~(E.*E1)~:O (neN).  (4) 

II. There is a positive non-degenerate measure ~ supported on a subset S of 
[ -  1, 13 and polynomials {P.}.~N orthogonal with respect to ~ and bounded by 1 on 
S such that 

Po(x) = 1 and Pl(x) =x ,  

and if u and v are in 11 then 

u �9 v =w <:~(Z u"P.)(Z vmP~)=Z WgPk" (5) 
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The convolution and the polynomials are related by 

~,=P,(G).  

Remark 1. Hypotheses (1)-(4) are related to properties 

(6) 

of orthogonal poly- 
nomials; i.e., (2) corresponds to the fact that ~p2 dc~>0, (3) to the recursion 
relation, and (4) to the observation that P~ P, has degree n + 1. 

Remark 2. The relation P~(x)=x is not typical of orthogonal polynomials, but 
the restriction is easily removed. Indeed, if {Rn},~N is a sequence of polynomials 
orthogonal with respect to a measure fl and if the convolution satisfies Equation 
(1), Section I then Rn(x)=P,(Rl(x)) and if R 1 is chosen to be an increasing 
function there is Z > 0  such that fl(E)=2e({Rl(X): x e E}) for measurable sets E. 

Remark 3. The set S need not be all of [ - 1, 1], for if R,(x) =P,(~'~(x)/P,(~'~(1) are 
the normalized Jacobi polynomials (see [16]) then 

1 1 

R,,(x) Rm(x)(1 - x)=(1 +x)  ~ dx = S P.(RI(x)) P~(RI(x))(1 - x)=(1 + x) ~ dx 
- - 1  - 1  

and the change of variables y = R l ( x )  in the last integral shows that 

S = L - I - ~  ~ [  l + f l , 1 ] $ [ - 1 , 1 ] .  

Proof of Theorem 1. Assume (1)-(4) and let 

ck.,,. = r~k(E. * E.,) (7) 

then 

k __ k C o , , - E , ,  (1') 

c~~ > o, (29 

C~,~ = 0  if I n - k l > l ,  (3') 
c n +  1 , .t  4=0. (4') 

Application of Xk to E. *Em = Em* E~ and to (Ep * Eq) * E, = Ep* (Eq * E~) 
yields 

C~,., k 

and 

Cp, j Cq,~. (8) 

An inductive argument based on (3') and (8) yields. 

k _ C, ,~-O unless I n - m l < k < n + m .  (9) 

If now k = 0 in (8), (9) implies there is only one non-zero term on each side so 
that Cp, q~ C~,~~ __ Cp, p~ C~,~ which combined with (2') and (4') yields 

C "+t C ~ >0.  (10) n, 1 " 1 , n +  1 
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Finally lIE. * E,.]I < 1 implies 

k ~ C~ ~1<1 ' Ic.,~l_-__ I , _ 
k=O 

The relations (3') and (4') together with 

(11) 

Po(x)= 1, 8 ( x ) = x ,  
P~P._~=~C._k  ~,,P~ ( n > l )  (12) 

define a unique sequence of polynomials {P.}.~s with degree of P. being exactly 
n 

n. It can be shown inductively that E~"= ~ A~Ek with A ~ 0  so that {E*"}.~u is 
k=0 

a linearly independent subset of 11, thus if Q and R are polynomials then Q = R if 
and only if Q(EI)= R(E O. Hence (12) is equivalent to 

Po(EO =Eo, ~(EI)=E. 

Pl(El) ./)n_ I(EI) = ~ Cn_l , k  i Pk(E,) (n>l) 

so (6) follows inductively. 
Now (7) can be written 

Em . En= ~ k Cm, nEk 

so that (6) yields 

k P,.P~= Z Cm,.Pk. 

Equation (13) implies 

(13) 

(14) 

u , v = w , ~ w k = Z  c~.,.,u.v "~ 

thus (5) holds. 
Now let k. be the leading coefficient in P., so k .+0,  and from (12) and (3') 

k._ 1 = C"._ 1,1 �9 k.; thus if p. = P./k., (12) can be transformed into 

po(x) = 1, pl(x) = x, 

p.(x) = ( x -  c.) p._ a (x ) -R .P . -  a(X) (n > 1) 

. -1  and 2 . = C  "-2 . -1  Equation (10) implies 2 . > 0  and (11) where c. = C._ 1, ~ . -  1,1 C,,_ 2,1. 
implies 0<lc.[,  2. <1. It then follows from [3] or [15] that there is a positive 
measure ct of total mass 1 supported in a compact set S with respect to which 
{P.}.~N and hence {P.}.~u are orthogonal polynomials. Integration of (14) with 
respect to c~ yields 

_ 0 ~ P , . e . - c  . . . .  (15) 
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so if u r cc 

I(E u"P.)2 de_-__E .urn .u" 
= ~ ~  u) 

<_-Ilu * ul[ _-< Ilull 2. (16) 

Now let u = E *k, then ~ u"P~(Ea) = ~ u"E. = E *k = [P,.(E ~)].k = pm k (El), SO ~ u"P. 
=P~ and (16) implies 

IFm~l 2 de_-__ I[E*~ll 2 = 1 

o r  

{SIPnlZ~de}l/Zk~l ( k = 0 ,  1,2, . . . ) .  

These inequalities and the continuity of P. imply 

IP.(x)l < 1 (x~S). (17) 

Let n =  1 in (17); the fact that P~(x)=x implies that S c  [ - 1 ,  1]. Equations (15) 
and (2') imply that S P. 2 de >0  for all n, so the orthogonality of {P.}.~N implies 
that e is non-degenerate. 

Now suppose that the hypotheses II hold. Let hk={Spk2de} -1 and define 
k constants C,.,. by Equation (14) so that 

Ckm,. = hk S Pk Pm P. de 

then 

Ck o,. = hk S Pk P. de=  Ek., (1") 

C.~ = ho ~ p2 de > 0, (2") 

c.k, 1 =hk~PkP.P~de=0 if I n - k [ > l ,  (3") 

C"+ I - h . +  I ~ P.+ I P.Pl de # 1 - (4") 

If the right-hand member of (5) is multiplied by h,P1 and integrated it will yield 

WI Z 1 m n Cm,  n u V 

so that rcZ(E m �9 E . ) -  z - Cm.. and hence (1")-(4") imply (1)-(4). 

III. Harmonic Analysis of  (11, *) and the Non-Existence of Generating Functions 

Let (?, *) and {P,,}.~N be as in Theorem 1. The representation of (11, *) as a space 
of continuous functions on S may or may not be the Gelfand representation, but 
is closely related to it. Let A be the set of complex numbers defined by 

A={z:  IP.(z)l__<l for all n ~ N }  
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and, when defined, 

hz(u) = Y~ u"P.(z) .  

Theorem 2. Eaeh complex homomorphism h of (l 1, *) has the form h~ for a unique 
z~A. 

Proof The ideas of the proof is essentially that of Hirschman [7], Lemma 2d, 
but since that paper is not generally available an argument is given here. 

If z ~ A, then hz(u) is defined for each u, and h~ is a homomorphism because 
of Theorem 1. The uniqueness follows from the observation that hz(E1)=Pl(z) 
~ - Z .  

Now assume that h is a homomorphism of (l l, .), let z=h(E1) then zh(E,_l) 
= ~ ck,- 1, 1 h(E,) for n > 1 so that h(E,) = P,(z) for all n. But h is a bounded linear 
functional on 11 with norm no greater than one [13, p. 206] so ]P,(z)[ =Jh(E,)[ 
< lIE, I[ =1, thus z~A. 

Corollary. Let z be any complex number, then the sequence {P~(z)},Eu is either 
unbounded or bounded by unity. 

Proof If {P,(z)},E N is bounded h~ is a homomorphism of 11. 

Remark. Theorem 1 implies that S e A  and (cf. Remark 3 in Section II) the 
inclusion may be proper. It would be desirable to have a condition on the 
convolution which would guarantee equality. 

The results of Szeg6 [16] will be used to show equality holds for many 
systems; but unfortunately the hypothesis must be given in terms of the measure 
dc~. 

Theorem 3. Assume that {P,},~u are as in Theorem 1 but that de(x)= w(x)dx, and 

suppose that S [log w(cos 0)[ dO exists, then A = [ -  1, 1]. 
o 

The proof here is also inspired by [7]. 

Proof The integral condition implies w(x)>'0 for almost all x, so that the sup- 
port of ~ is [ -  1, 1]. Thus Theorem i implies [ -  1, 1] cA.  

The hypotheses of the Theorem ensure the validity of the asymptotic formula 

0 �89 n P,(z)~DC,,, ~ (1) 

where z is a complex number not in [ - 1 ,  1], z= �89  with ]([>1, and D 
depends only on z and is not zero ([16], Theorem 12.1.2). Now assume by way 
of contradiction that z ~ A - [ - 1 , 1 ] .  Let [([>1 be such that z= �89  
Define ~x=l~l and z1=�89 Since z~A, P,(z) is bounded, so that (1) 
implies c o ~'" is also. Thus r-0 ~-, is bounded and (1) shows that P,(zl) must 
be as well. The Corollary to Theorem 2 implies that z l=P . (za )< l  which 
contradicts zl = �89 + [(] - ~) > 1. 

Many of the results proved below can be obtained when (P, ,) admits a 
generating function (see [6]). However it will be shown here that a large class of 
convolutions which satisfy (1)-(4) including those arising from the Gegenbauer 
or more generally the Jacobi polynomials do not admit of generating functions. 
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A generating function ([6]) is an injcctive mapp ing  f rom B = {u ell+ : tl ull ~ 1 } 
into the ho lomorph ic  functions on the unit  disk such tha t  if u, v e B, a, b > 0, and 
a + b __< 1 then q)(au + by) = a~b(u) + bq)(v), ~(u * v) = ~b(u) ~b(v), and if {un},~ s c B 
satisfies ~zku~Tcku for some ueB  and each keN ,  then 4~(u,) converges uni- 
formly on compac t  subsets of the disk to ~(u), ~6 can be extended to give a 
representa t ion  of (P, .), which will also be called a generating function, and (cf. 
[13], p. 206) 

I4)(u)(z)l<ilull (uell, lzl<l). (2) 

Theorem 4. I f  the hypotheses of Theorem 3 are satisfied, then (11, *) does not admit 
a generating function. 

Proof. Assume, by way of  contradict ion,  that  ~b is a generat ing function, let 
lz] < 1 and w = q)(EO(z). Observe  that  P,(w) = P,(~(E1)(z)) = ~/i(P,(E1))(z) = ~(E,)(z), 
so (2) implies [P,(w)]<l for all n. This implies, by T h e o r e m  3 that  - 1 - - - w < l ,  
so the Open  Mapp ing  T h e o r e m  allows us to conclude that  z--,rb(E1)(z) is a 
cons tant  funct ion with value, say, t 1. N o w  choose k, m, n such that  Pk(tl)<Pro(q) 
=<P~(ti) , so there is a )~e[0,1] such that  Pm(tl)=~Pk(tl)-I-(1-2)P~(tl). It  then 
follows that  ~(E,,)=r 0 En) which violates the injectivity of ~b. 

IV. Positive Convolution Algebras 

To the assumpt ions  that  (l 1 , , )  and  {P,}n~N are as in T h e o r e m  1 add  now the 
requi rement  tha t  C~,~>0 (k, m, neN)  so that  (11+, *) becomes  a semigroup.  The  
a im of the present  section is to obta in  a sharp  bound  on S for the po lynomia ls  
Pn(x). 

It  will be useful to s tudy a larger a lgebra  than (ll, . ) :  let b = l u b S ,  and let 

qn=~(h ) .  

The  definit ion of the larger a lgebra  requires a 

L e m m a .  0 < q, < 1. 

Proof. If  k~ is the leading coefficient of P~ then k~=k~_i/C",_x,~ and k o = l  so 
that  kn > 0. Since all the zeros of  P~ lie in ( - 1, b) the first inequali ty follows. The  
second is a consequence of T h e o r e m  1. 

N o w  define for sequences u 

[lullb=Y~lu"lq~, 
l~ = {u: [ lul lb< ~},  
Qn(x) = P~(x)/qn 

and, if u e c~ let 

u' (~ )  = Y~ u ~ q~ Qo(~)  
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SO that if v ~ c c 

( u , v )  = u  v. (1) 

The convolution is readily extended to an operation of l~ which satisfies 

I lu ,  vlPb < Ilu/Ib [IvHb, 

while 

IlU*VlIb=]IUlIbIIVHb if U>0 and v_>0. (2) 

Note also that the Lemma implies l lc l~.  The utility of (l~, ,) rests largely on the 
following 

Theorem 5. I f  Ck >_ 0 then [P,(x)l < P~(b) almost everywhere with respect to e. 

Proof Recall that ~p2 de=  cO, so that imitating an argument in the proof of 
Theorem 1 

ylu-] 2 de = ~ (u") a C~ n = 7r~ u)<_ Ilu, ull b. 

Thus 

lu'l 2 de < I/u/I 2. (3) 

Now E2= q.Q. so that (E*k)'=(q.Q.)k whence from (3) and (2) 

= liE.rib = q .  ~[qnQ,,)k] 2 dc~< [IE*kll 2 2k 2k 

SO that 

{~ ]QnJ 2k de} <= 1 

which implies that 

IQ,(x)[ < 1 a.e. (de), (4) 

The polynomials {Q,},~zv form a complete orthogonal system in L2(de) with 

yQZde = o -2 C. , .q .  , (5) 

so that if qo ~L2(de) and ~o~n)=~cpQ.de 

2 2 0 ~[(p (n)] q. /C. , .=~cpade.  (6) 

But (4) and (5) imply 2 o q./C.,  . >  1 so that (6) leads to 

lira opt(n) =0.  (7) 
n ~ o o  

Now let m be fixed and let 

A = {x: Qm(x)= 1}. 
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Then if x~_A c~ S, the relation (14) in Section 2 implies 

1 ---Q2(x)= ~ qkq~ 2 C~,mQk(X) 
k = 0  

qkqm2 Cra, m= l 
k = 0  

because of (4). Thus ckm, rnQk(X) = k 2m C . . . .  but Cm,,~40 so that Q2~(x)=l .  The 
argument can be iterated to show 

Q2~(x)--- 1 (kEN' ,x~Ac~S) .  

Thus if X is the characteristic function of A, 

i ( 2  k m) = ~ z O.2~(x) de = e(A) (k ~ N') 

so that e (A)=0 by (7), whence IQm(X)l<l almost everywhere (de) and the 
Theorem follows. 

Corollary. I f  C~,m>=O then e({b})=0 and b is a limit point of S. 

Proof. Q.(b)= 1. 

Remark 1. The methods of Theorem 5 can be used to obtain a result in more 
general cases; for example, if 2, C,,,>O (neN) then [P,(x)l < 1 a.e. (de). 

Remark 2. Because P, is a polynomial the set of x for which [P,(x)[---P,(b) or 
[P,(x)l -- 1 is finite so the strong inequality is a restriction on the location of point 
masses of e. 

Theorem 5 can also be used to obtain some results on the positivity of 
linearization constants of orthogonal polynomials: 

Theorem 6. Let {Rn},~N be a sequence of polynomials orthogonal with respect to a 
measure fl, define k bn, m by 

R, Rm= ~ bki,,Rk. (S) 
k = 0  

k (i) I f  fi has unbounded support then s u p ~  Ibm, n[ = oo. 
tl, m 

(ii) I f  fl has unbounded support and R,(1) = 1 then k b~,, is sometimes negative. 
(iii) Suppose fi is supported in [ - 1 ,  1] and R~(1)>0; let c be the least upper 

bound of the support of ft. Then fl({c})>0 implies that k bm,~ is sometimes negative. 

Proof. (i) Assume, by way of contradiction, that sup ~ [bk ml- -M< oe. Let r~ 
n , m  k ~  1 

= M - 1 R n  and C~,,,=M-lbk,,m so that rnr~=~Ck,,mrk and C~,~ defines an P- 
convolution which satisfies the conditions of Theorem 1. Then if {P,},~N and 
are as in Theorem 1, it follows from Remark 2 after Theorem 1 that r,=P,(rl) so 
that {r,},~ N is a family of polynomials orthogonal with respect to a compactly 
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supported measure 7. This implies (cf. [16], Theorems 3.1.1 and 6.1.1) that fl has 
compact support. 

c o  

(ii) If R, (1)=I ,  evaluation of (8) at x = l  leads to b, ,m=l which con- k 

k tradicts (i) unless some b.,., are negative, k= 
(iii) Assume, by way of contradiction, that k bn,,. is always non-negative. Let 

r.(x)=R.(x)/R.(1), k =bk.,~Rk(1)/R.(1)Rm(1) and observe as in part (i) that Ctl, m 
c.k,m defines an /Z-convolution which, in this case, is positive. If now P., ~ and 
have the same meaning as in part (i), then ~ has compact support and ~r. d7 
=~r.dfl=O for all n > l .  Thus the Stone-Weierstrass Theorem and the Riesz 
Representation Theorem imply that fl is a multiple of 7- It now follows from the 
Corollary to Theorem 5 and Remark 2 following Theorem 1 that Rl(b)=c  and 
fi({c})=c~({b})=O. 

V. Characteristic Functions 

Assume �9 is a positive convolution (that is u .  v__>0 if u > 0  and v>0)  which 
satisfies the hypotheses of Theorem 1. Let 

~ = { u ' u ~ l ~ ,  u>O, and HUllb=l}. 

In analogy with [12] and [14] the members of ~ will be called distribution 
sequences or simply distributions, and the function u ' (x )=~u"q .Q. (x )  (which 
converges uniformly on S) is called the characteristic function of u. Write ~" for 
the class of characteristic functions. 

The structure of distribution sequences and characteristic functions pre- 
sented here has most of the features of that contained in [14] with the exception 
that the interval of orthogonality, I, is replaced by the support set S. One has (cf. 
[14]) 

Theorem 7. Let {Uj}j6 N be a sequence of distributions. 
(a) Suppose u is a distribution and 7~kuj~Tzku for each k, then u~. converges 

uniformly on S to u.  

(b) Suppose u~ converges in S to a function f which is continuous at b, then uj 
converges pointwise to a distribution u, u = f ,  and thus the convergence of uj to f is 
uniform on S. 

(c) I f  u ~  and ~({x: u ' (x)=  1})>0, then u=Eo;  equivalently, if f ~  9~-and 
~({x: f ( x )  = 1 }) > 0 then f ( x )  --- 1 for all x ~ S. 

Proof Parts (a) and (b) can be established by modifying the corresponding 
proofs in [14]. Part (c) follows from Theorem 5 because if u~ ~3 and u ' (x)=  1, 
then ~ u"q, Qn(x)= 1 = ~  unq, so ~ '  u" q , (1 -Q, (x ) )=  0 for x belonging to a set of 
positive a-measure. But 1 - Q , ( x ) > 0  almost everywhere with respect to ~ by 
Theorem 5 so u" qn = 0 if n => 1, whence u = E o. 

A characteristic function f is said to be infinitely divisible if corresponding to 
each n E N' is ~ ~ ~3 such that f = (f,)n. 

Theorem 8. (a) Infinitely divisible characteristic functions have no zeros in S. 



172 A.L. Schwartz 

(b) Products of infinitely divisible characteristic functions are infinitely 
divisible. 

(c) I f  {f~}~N is a sequence of infinitely divisible characteristic functions which 
converges pointwise to a characteristic function f then f is infinitely divisible. 

(d) Suppose u">O and ~'  unq, < oo then 

f = exp [~ '  u"q,(Q,- 1)] (1) 

is an infinitely divisible characteristic funetion; conversely, every infinitely divis- 
ible characteristic function can be expressed in the form (1). 

Proof. Let f be an infinitely divisible characteristic function, and choose charac- 
teristic functions f ,  so that (f,)" = f. Then f = (f2) 2 SO f > 0, and f = [(f2n)2] n SO it 
may be assumed that f , > 0  and f = f l / , .  It then follows that g(x)= lira fl/"(x) 

n ~ o o  

exists in S. The Corollary to Theorem 5 states that b is a limit point of S; since 
f ( b ) = l  and since f is continuous on S, there is c<b such that f ( x ) > 0  if 
x e S c~ [c, bJ, whence 

g(x) = 1 if x e S c~ [c, b]. (2) 

Thus g is continuous at b so that Theorem 7(b) implies g is a characteristic 
function. Finally (2) and Theorem 7(c) imply g(x) = 1 which yields (a). 

The proofs of (b)-(d) can be obtained by modifying arguments in [12] and 
[14]. 

VI. Factorization Theorems 

The purpose of this section is to prove analogs of Hin~in's factorization 
theorems (cf. [11], Theorems 5.4.2 and 5.5.4 or [12], Theorems 6.2.1 and 6.2.2) 
which give decompositions of (l~+, *) much like the prime factorization of 
positive integers. Thus if G is a Hausdorff topological abelian semigroup with 
identity e and if f ~  G, then f is decomposable if there are noninvertible elements g 
and h of G such that f =  gh, and f is infinitely divisible if corresponding to each 
n e N there is f ,  ~ G such that f =  (f,)'. The semigroup G will be said to have 
property H if it satisfies the two conditions. 

H1. If f e G  is decomposable with no indecomposable factor, then f is 
infinitely divisible. 

H2. I f f ~ G  then f = g h  where g is infinitely divisible and h is a convergent 
product  of a finite or denumerable sequence of indecomposable factors. 

Hin~in's results are that H1 and H2  hold when G is the classical semigroup 
of probability measures on the line. 

The aim of this section is to establish property H for two semigroups of 
positive sequences. Let * be a convolution which satisfies the hypotheses of 
Theorem 1. 

Assume further that k C,,m>O for all k, n, meN.  The two factorization theo- 
rems promised are: 

Theorem 9. (~, *) has property H. 
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Theorem 10. (l 1, .) has property H provided any of the following conditions hold: 
(1) There is e>O such that 

Ilu*vH>=~Hull.llvll (u, vel~+). 

(2) {P,(1)},~N is bounded. 
(3) l e s .  

Proof of Theorem 9. The method, which draws upon [2] and [10], is to show 
that ~3 is a union of sub-semigroups which have property H by virtue of being 
delphic (see Kendall [9]). The proof is contained in the following three lemmas 
and the fact that ~ and ~ are isomorphic. 

Let H ~ = { f ~ ' : f ( x ) > O  if x~Sc~[c,b]} have the topology of uniform 
convergence on S and let 

b 

A~(f) = - ~ l o g f d e .  
c 

Lemma 1. To each e>O there corresponds 3 > 0  such that if f ~H c and Ac(f)<6, 
then 1 - f ( x ) < e  for all xeS .  

Proof Let cn=~Qnde de, then (cf. Eq. (7) of Section IV) lira cn=0, and by 
n ~ o o  

Theorem 5 c " < l  if n > 0  so that Co=ra in{ i -c" :  n > 0 }> 0 .  Now let e>0, choose 
b 

6<�89 and assume At(f) <c5 for some f e H c .  Since 1 -u__< - l o g  u it follows 
b c 

that ~ (1 - f )  de < 6, so if f = ~ u ~ q, Q,, then 
c 

~ , ' u " q . < c o * ~ ' u " q . [ 1 - c " ] : e o * [ ! ( 1 - f ) d e  da<�89 

so 1 - f = ~ ' u " q , [ 1  - Q , ]  <e. 

Lemma 2. Assume fir is a characteristic function for 1 <=j <= k(i), i = 1, 2, 3 .... and 
suppose that there is a characteristic function f such that 

k(i) 
f(x)  = lira l-~ f~j(x) 

i ~ o ~  j = l  

for each x ~ S. Then f is infinitely divisible provided that 

lira max [1-fij(x)]=O 
i~oo l <=j<k(i) 

for each x e S. 
Proof If (k(i) ) 

x~S,  f ( x )=l im  exp~ ~l[logf~(x)] J 

(k(1) } 
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The Lemma now follows from Theorem 8(d) and (c) because f is a limit of 
infinitely divisible characteristic functions. 

Lemma 3. ~3 ~ is a union of the subsemigroups H c each of which is delphic under 
A~, and each of which has the property that if r e  Hc, then F ( f )  c He. 

Proof If f ~  ~3 ~ then f ( b ) =  1 and since f is continuous on S, f e Hc for some c < b 
because b is a limit point of S by the Corollary to Theorem 5. 

That H~ satisfies most of the axioms for a delphic semigroup is obvious from 
the definition of A~ and the first two lemmas. The proof is completed by 
showing 

F ( f ) = { g e H ~ :  f =gh for some hEH~} 

is compact for each f ~  H~. 
Let {gj}j~ be any sequence from H~. For  each j there is ujs  ~ such that g~ 

= @  so if {gj}~N is replaced by an appropriate subsequence n k uj will converge 
for each k as j - - , ~ .  Let u be the limiting sequence, then Ilullb<l. Define g 
= ~ u n q ,  Q,, then gj converges weakly to g in the sense that 

~g/pd~-~g~od~ (q~eLJ(d~)). (4) 

Now for each j there is h~eH c such that gjh~=f, but if xeSc'~[c,b~ 
0 < hj(x) < 1 so that 

f ( x )  < gj(x) < 1 (x e S c~ [c, b]). (5) 

It is easily seen from (4) and (5) that f ( x ) < g ( x ) <  1 for almost all x e S n [c, b]. 
The continuity of g, the fact that f (b)  = 1, and the Corollary to Theorem 5 imply 
that g(b)= 1, whence u e ~3, g e H~, and (from Theorem 7) g j - ,  g uniformly. 

This shows every sequence from F ( f )  has a subsequence which converges 
uniformly in F(f) ,  hence F ( f )  is compact and Hc is delphic. 

The proof of Theorem 10 is easily obtained by using Theorem 9 together with 
Lemma 4 and Lemma 6 which are proved below. 

The sums ~ C~,~,u~v ~ may converge even if u and v do not belong to t ~ or 
even l~, when they do the result will be denoted u ,  v. 

Lemma 4. Assume the hypotheses of Theorem 10 to be satisfied and let ue  lt+. 
(a) t f  u = v *  w with v>O and w > 0  then v and w belong to l~+. 

(b) u is decomposable in l~+ if and only if u/llullb is decomposable in ~3. 

(c) u is divisible in l~+ if and only if u/llullb is divisible in ~3. 

Proof  By Theorem 1, (3) implies (2); we show below that (2) implies (1), and so 
we may assume that condition (1) of Theorem 9 holds. 

If (2) holds {t follows from the Corollary to Theorem 2 that IP.(1)[ < 1 for all 
n. In fact, P,(1)-  1 for all n; this is true for n = 0  and n = l .  Assume Pk(1)=l for 
k < n  thm~ evaluation of P~P,_, = ~  C~_k ~. ~Pk at 1 yields 

1 , , -u  . - 1  C" 1 / ' . (1 )  "~- Cn-  l,1-}- Cn-  l, I -]- n--l, 

, - 2  C "-1 +C"._ 1<1, ~ C n - l , l - } -  n - - l , 1  1, 
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so < can be replaced by = and P , (1)=I  because Cn_l,l=~0. Now, evaluating 
p . p = Z  C.,mPk,at 1 yields ~ k C,,m=l (n, mEN) so that if u = 0  and v>0 ,  Ilu* vii 

kEN 
= I/ull IIv[I, and (1) holds with z =  1. 

Conclusion (a) of the Lemma  is a simple consequence of (1). To  prove (b) 
assume first that  u = v , w  with u, v, and w in l~+, then u, v, and w are in l~, IluJIb 
= Itv[l~ Ilwllb (see Eq. (2) of Section IV) so that 

u v w 

I[ullb IIvJIb Ilwllb 

is as required. The  other  implication in (b) follows from (a). Finally (c) is readily 
obtained from (a) and (b). 

Lem ma  5. Suppose {fk}k~N is a sequence of characteristic functions, then ffI fk 
k=l 

converges to a characteristic function if and only if there is nor such that 

n --1 
k~_ fk(X) <e if x r  and no <m<n.  (6) 

Proof Suppose I~I fk converges to the characteristic function f ,  then by Lemma 3 
k=l 

f ~  H c for some c < b. Let  ~ > 0 be given and let ~ be as in Lemma 1. Then  it is 
possible to choose n o so large that  

Ae "k=l (Is fk)--Ac(f)" <8 /2  if p>_n o. (7) 

Now if n o < m < n, then (7) implies 

Ac (k~_mfk) :Z~c ~H=lfk) --'~c (~___llfk) ~(~' 

so that  (6) follows by Lemma  1. The converse is merely Cauchy's  criterion for 
uniformly convergent  infinite products.  

Lem ma  6. Suppose {Wr},~N is a sequence of distributions and ~ �9 w~ converges 
to a distribution w. Assume w~l  1, then wr~l 1 for each r. ~=1 

oo 

Proof Let j eN' ,  then the product  ~[ �9 w r converges in ~3 to some distribu- 
r = l , r : ~ j  

t ion w~ because of L e m m a  5, and since , is commuta t ive  w~, w~=w so that  
L e m m a  4 implies that wield+. 
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