
Z. Wahrscheinlichkeitstheorie verw. Geb. 21, 233-240 (1972) 
�9 by Springer-Verlag 1972 

Independent Conditional Expectations and ~ log 5P 

J. a .  BASTERFIELD 

1. Introduction 

Let (s o~, p) denote a probability triple, and {o~} an independent sequence 
of sub-G-algebras of ~ i.e., for k=  1, 2, ... and Fj.6~ (l ___<j < k), 

P(F 1 n F2 n . . .  n Fk) = P(F1) P(F2) .. �9 P(Fk). 

We shall use X to denote a random variable on (g2, if, P) and X,  to denote 
E(XI~,), its conditional expectation w.r.t. ~, .  All the X we shall consider will 
belong to ~q~l, and we denote E(X) by #. Our principal result is the following 

Theorem 1. I f  E(IXI log + IXl) < oo then 

P [ X ,  --* # as n - ~ o o ] = l .  

We also give an example (due to David Williams) which shows that the 
theorem becomes false if E([X[log+[X[)<oo is replaced by E([X[)<oo. We 
conjecture but are unable to prove that the condition E([X[log+lX])<oo is 
best possible. 

These results appear to contrast with the characterisations of 5r162 
discussed in Gundy [-2] where the sequence of a-algebras considered is essentially 
monotone, and the method of proof an application of martingale theory. We 
use the theory of Orlicz spaces to establish Theorem 1. 

What does follow from the Martingale Convergence Theorem is that /f 
E([X[)<o% then X , ~ #  in ~_~1 n o r m  and therefore in probability. For let 
Y, =E(X[~,)  where 

~r v ~ .  

Then, by the martingale theorem, Y, ---, Y~o with probability one. By Kolmogorov's 
Zero-One Law, Yoo is constant with probability one. Since also II, ~ Yoo in 5r 1 
norm, we see that Yoo = #  with probability one. However 

X,  - #= E ([ Y , -  ~t] I~) 
so that 

E(IX,-#[)_-< E([ Y~-#1)40.  

2. Some Orlicz Space Results 

Proof of Theorem 1. We shall need some results from the theory of Orlicz 
spaces. The function 

r  for 0 < u < l  
l ogu+  1 for l < u < o o  

16" 
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has inverse (if we observe the appropriate convention where the inverse in the 
strict sense is not defined) 

~ (v)= /O 1 for 
for 

e x p ( v -  1) for 
Hence the functions 

{ �9 (u)= I q~(t) dt= 0 for 
o u log u for 

and 
v {v for 

~(v) = ~ qJ(t) dt= e x p ( v -  1) for 
o 

are complementary functions in the sense of Young, 
of Zaanen [3]): 

Young' s Inequality 
uv<~(u)+7~(v) for all u, v>O. 

v = 0  
0 < v ~ l  
l < v <  ~ .  

0 ~ u ~ l  
l ~ u <  

0 ~ v ~ l  
l < v <  

so wehave(Theorem5.4 .1  

and 

then 

II UIIo=sup { I IUVIdP: S ~([VI) dP<= 1} < oo 
/2 ~2 

and (interchanging �9 and ~) similarly for ~ , .  Then (Theorems 5.5.1 and 5.6.1 
of Zaanen [ 3 ] ) ~ e a n d  ~ ,  are Banach spaces, and if Ue~*,  U e ~  and 

II Ul lo -  -< I ~(]U[) de+ 1 

with a corresponding result for ~ , .  
Also (Corollary to Theorem 5.5.2 of Zaanen [-3]) the functions which belong 

to 5e, are precisely those which belong to ~ g .  (Note: the corresponding result 
for 5~, and 5e~, is false.) 

Lemma 1. The bounded functions are dense in ~ .  

Proof If UE~q~, then U ~ g  i.e. S[U[log+]U[dP<~. Choose K > 2  such 
that a 

IU[log+IUIdP<4 -r. 
IVI>K 

Let U = U 1 + U2, where U1 = 0 if ]U[ < K and U2 = 0 if [U] > K. Then it is sufficient 
to show that we can make [] U1 [[, small by a suitable choice of r. 

Since 
O(0)=0 

~(2u)=2u(logu+log2)<4~(u) if u > 2 ,  

~(2*lUll)~4*~(lu,[) for all ~o. 

We shall sometimes denote ~(u) by u log + u, as is usual. 
Let ~ denote the set of all measurable functions U on (2 such that 

~eb([U[)dP<oo, and similarly for ~ , .  Let ~ = ~ , ( f 2 ,  W; P) be the set of all 
a 
measurable functions U on ~2 such that 
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Now, by Young's inequality, for any V 

2qU1 gl < ~(2q gd)+  ~(I Vl) 

<4r~(IUtl)+ ~(Igl). 
Thus 

S 17 U~ Vl dP_-__4~ S e(I Ull) d P +  S ~(I r l )dP  
f2 f2 

__<1+1 if ~'(Igl)de<l. 

Therefore 117 Ul11~<2, so II gill, < 2 - ~  which completes the proof of the lemma. 

3. Application of a Theorem of Banach 

We shall require the following theorem of Banach (Theorem IV.11.2 of 
Dunford and Schwartz [13): 

Let {T~} be a sequence of continuous linear maps from a Banach space ~ into 
the space M(f2) of all measurable functions on f2 with the topology of convergence 
in probability. Suppose that for each x e X  we have suplT,(x, co)l < Go a.s. Suppose 

n 

also that for each x in a dense set in ~ the limit lim T~(x, co) exists a.s. Then for 
every x e ~ ,  lim T~(x, co) exists a.s. ,+ o~ 

n---~ o o  

We now establish that E( . ]~) :  ~e,(f2)--.M(f2) is a continuous linear map. 
The linearity is obvious, so it suffices to prove continuity at 0. Since the constant 
function 1 has ~ 7/(1)dP = 1, it follows that 

f2 

1[ UI[~> ~ [U. 11 dP= 11U[[ a. 
f~ 

But g(.[~,~): ~ 1 _ ~ 1  is of norm 1, so Ilsll.>__llE(Ul~)lh. Hence tlull.--'0 
implies that [[g(g[~)[[1 ~ 0 and afortiori  that g (g[~) - -*0  in probability. 

Lemma 2 (J. Galambos) 1. I f  E (X 2) < oo then 

P [X, ~ #] = 1. 

Proof of Lemma 2. We may as well suppose #=0 ,  or else replace X by X-/~ .  
Thus X belongs to the Hilbert space ~o  2 = ~o 2 (f2, ~,  P) consisting of those elements 
of ~ 2  which have mean zero. Now X , = E [ X [ ~ ]  is the orthogonal projection 
of X onto the space s176 ~ ,  P )o f  E-measurable functions in 582. Because 
{o~} is independent, the projections E [ . l ~ ]  are orthogonal one to another. By 
Bessel's inequality, 

E(X2) = IIXIIN _-__~ flX, I[N =F,E(X~)=EF~X~. 
Thus ~, Xff converges with probability 1. Hence 

P [x~ --, 03  = 1. 

which completes the proof of the lemma. 

i Sieve methods in the theory of probability and in the theory of numbers. Doctoral thesis, 
L. E6tv~is University, Budapest 1963. 
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s contains all the bounded functions and so (Lemma 1) is dense in L*~ 
Hence, applying the theorem of Banach quoted above, it follows that either 
limXn exists a.s. for all Xe~r  or there exists an X in ~ee(Q) with 

P [ s u p  IX.(~o)l = oo] > 0 .  (1) 
n 

If the first alternative obtains then lim Xn = # with probability one because, 
as we saw in the Introduction, Xn--~ # in probability. Thus the first alternative 
implies Theorem 1. 

We shall show that the second alternative leads to a contradiction. 
If (1) holds for X it must hold for X + or X -  (or both) so we may assume it 

to hold for a positive X (when the X, may be taken positive also). 

Since Xn(co)< oe a.s. we must have 

However 

for any constant c, where 

P[ l im sup Xn (o9) = oo]  > 0 ,  
n ~ 3  

{o~ : ~irn sup Xn (~o) > c} ~ 

is the tail o--algebra of the sequence {4}. By Kolmogorov's Zero-One Law all 
sets in ~o have probability either zero or one so 

P[-lim supX. (co)= oo] = 1. 
n---r oo 

Let us consider first the special case in which each o~ has the form 
o~={0, An, An, O} (where A , ~  and A n denotes f2\An), and for notational 
convenience (interchanging A, and An if necessary) take E (XIAn)> E (X[ An). Then, 
since E(X,)=E(X), E(XIAn)<E(X). Denote P(An) by c~,. 

Lemma 3. A subsequence {nr: r =  1, 2, 3, ...} may be selected such that 

r = l  

(i) 

and 

(ii) 

These imply 

E ( X I A n r ) ~  as r ~ .  

P [li rn sup X.. = oo] = 1. 

Proof For c>E(X) let N(c)= {n: E(X[An)>c}. Note that E(X[A,,)<=E(X)<c, 
so X n (r c implies (with the possible exception of a set of probability zero) that 
coEA, and E(X[An)>c. Since 

P [ l im sup X,(co) = oo] = 1 
n ~ c o  

it follows from one of the Borel-Cantelli Lemmas that 

Z O~n = 00" 
neN(c) 
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Put c = 2 #  and take nl<nz< ... <nk, the first k members of N(2#), where k 
is the least integer such that 

c% + 5.a + -.. + 5.~ > 1. 

Now put c = 3/~. Since 

Z 5 n =  GO 
nEN(3 IX), n > nk 

it is possible to take nk+ 1 < . . .  < n~, the first l - k  members of N(3 ~t) which exceed 
nk, where 1 is the least integer such that 

5nk +1 + "'" + 5nz > 1. 

Now take c = 4 #  etcetera. The sequence 

r/l~ " "  ~ g/k~ /"/k+ 1~ " "  ~ /'/l~ / '//+1~ " ' "  

has the properties 

(i) Z 5,r = 0o 
r = l  

and 

(ii) E(XlA,r)~oo as r ~ o o .  

By virtue of (i) and the independence of the A,r, almost all ~o belong to an 
infinite number  of A., (Borel-Cantelli), so (ii) ensures 

lim sup X, r = oo a.s. 

as required to complete the proof  of the lemma. 

Thus it is sufficient to consider the case 

E(XlA,)~ov as n ~ o v ,  ~ 5 , = o o .  

Trivially, we may demand that 5, > 0 for all n. Now, 

So (since ~ 5, = oo) 

i.e., 

E(XIA.)= 1~ ~ XdP. 
5n An 

n = l  An 
* 0 0  a s  m ----~ oo  ~ 

m 

n = l  

,s Z 5n 

a s  m ----~ 09  

(where Y~ is the characteristic function of A,). 
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Thus, as m ~ o o ,  IIZmXlll--+oo, where 

Z m  = n n O~n" 

We now need the following result. 

Lemma 4. I I Zmll~V < L < oo for all m, where the value of the constant L need only 
depend on ~1. 

We now complete the proof of Theorem 1 assuming Lemma 4, deferring the 
proof of Lemma 4 until later. 

By Theorem 5.5.3 of Zaanen [-3] 

IIx/,~lh_- < IIXIl~ II/mll~', 

So Itxz,~lll_-< IlXll~ L which contradicts the previous statement that ]]XZ,,lll -* oo 
a s  m --~ o 0 .  

This contradiction completes the proof of Theorem 1 in the case when ~ has 
the form {0, A,, .4., s 

Now suppose only that the ~ are independent and that X e ~ .  Put 

A,,(e)= {co: X,(co)=>/2 + e}. 
Then 

because A,(e)EJ~. Hence 

E [-XIA, (e)-I = E  FX, IA, (e)-I 

E [XIA, (e)] >/2 + e. 

But now, by the special case of the Theorem already proved, 

P [coeA,(e) i.o.] =0 .  
Hence 

P[ l im sup X . < # + e ]  = 1 
n ~ o o  

and similarly 
P [ l im i n f X , > # - e ]  = 1. 

n ~ o o  

This proves the Theorem in the case of general independent ~ ,  except that it 
remains to prove Lemma 4. 

4. Proof of Lemma 4 

Proof of Lemma4. Since Z,,=>0, IZ,,] =Zm. We have 

[[Zmll~ "< S ~(Zm) dP + 1 

if the R.H.S. is finite, so it suffices to show that E[ku(Zm)] is bounded. 

Since !P(v)<expv for all v, it further suffices to show that E[exp(Zm)] is 
bounded. 

Denote ~ ~, by sin. 
n = l  
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Then 

So 

Now 

SO 

] 
= E ex s m 

n = l  _1 

= f i  E [exp (Y./s,,,)] 
n = l  

= f i  [1 +c~. {exp(1/s,.)-- 1}]. 
n = l  

log E [exp (Zm) ] = ~, log [1 + c~, {exp (1/sin)- 1 }3. 
. = 1  

log(1 +x)_-<x for x>O,  

log E [exp(Z,.)] < ~ ~. {exp(1/Sm)- 1}. 
n = l  

But we may choose a constant K depending only on ~1 so that 

Hence 

Therefore 

as required. 

e X - l < K x  for O<x<-l/el .  

log E [exp (Z,.)] < ~ c~. K/s,,, 
n = l  

= K .  

E [exp (Zm)] < L = e r 

5. A Counterexample 
We now give an example to show that if we replace the condition 

e(IXllog + [Xl)<oo by e( IXl)<oe  

the conclusion of Theorem 1 does not hold. 
Throughout the remainder of the paper let (f2, ~ P) be a triple supporting a 

sequence {A,: n =  1, 2, 3, ...} of independent events A, with P(A,)= 1/n. 

Let 4 = { 0 ,  A., A., f2} and put X =  ~ m! I41,,.+2 where W,. is the characteristic 
m m ~ l  

function of (-] Ak. Then 

E(Wm)=P & = P ( & ) =  1/m!. 
- -  k = l  

So 
E(X)=  m!/(m+ 2)!= 1 1 

m=l =1 m + l  m + 2  =�89 
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Now 

So 

Hence 

1 
E(XIA,) = P(A,) ~ X dP. 

=n ~ XdP.  
An 

1 
- -  E(XIA,)= ~ X dP 
Yl An 

If--3 

= ~ ~m!Wm+EdP+ ~ ~ m!Wm+2dP 
An m = l  An m = n - - 2  

1 , -3  ~ my 
= - -  ~ m!E(W,.+2)+ 2. 

n m=l . . . .  2 (m+2)! 

1 "-3 1 o0 1 

=nm~__l (m+ l)(m+2)q-,.=~_ 2 (m+ 1)(m+ 2) 

1(1 1) 1 
n 2 n - 1  + - -  n - 1  

1 1 n 
E(XIA')= 2 n - 1  ~ n - 1  

3 

almost all m belong to an Since ~ P(A,)= ~ ,  
n = l  

Cantelli). Hence 
lira sup X. = ~ + #, 
n ~ o o  

which is the required result. 

infinite number of A, (Borel- 
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