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~ 

Let (~2, N, ~ )  be a probability space, that is, f~ is an abstract set, ~ a ~-algebra 
of subsets of •, ~2EN and ~ a probability measure, i.e., a nonnegative countably 
additive set function defined on N, such that ~ ( f2 )=  1. Let A, denote the set of 
all generalized probability distributions involving n events, as defined by R6nyi [6]. 
We will deal with these generalized finite discrete probability distributions 

n 

P={Pl,P2 .... ,p,}, ~pk<--l, Pk>O ( k = l , 2  . . . . .  n), rather than the ordinary 
k=l 

complete ones, among others because not all outcomes of an experiment or market 
situation, for instance, need to be relevant, significant and/or observable. If 

n 

Pk = 1, then the distribution is complete, else incomplete. 
k = l  

Also, observers usually do not observe and even less forecast phenomena 
exactly and their observations and estimations differ from each other. Let A and 
B be two independent observers (estimators) who assert that the probabilities 
associated with the same experiment (system of events), are {ql, q2, " " ,  q n }  = QEA,, 
{rl,rz,...,r,}=ReA,, (n=1,2 ,3 , . . . ) ,  respectively. We discuss the following 
question. 

What is the amount of the directed divergence between the estimations Q 
and R of observers A and B of the (generalized) probability distribution of an 
experiment which actually is P ? 

As an answer, one of us [5] proposed the following two measures of generalized 
directed divergences in information: 

" qk  p , I,(PIIQIR)= Y, Pk l~ k (1) 
k = l  rk k 

I~(PHQIR)=(~-I)  -1 log2 k~pkq~-i 4 -  = Pk (C~4=1). (2) 

Remark. In [5], these were called measures of error. However, Kerridge [2] 
has interpreted 

. . ) 
I(PllQ) = k~=lpk log2 ~ "k=l = 
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as error  made  by the observer in estimating as Q a (complete) probabi l i ty  distribu- 
t ion which really is P (sometimes it is called informat ion gain, for instance 

R6nyi [7]). It is obvious that  for s pk= s qk= ~, rk= 1 we have 
k = l  k = l  k = l  

Ia (PII QIR)= I (PIIR)- I (PIIQ). 

So It(PIIQIR) is the difference of two errors, so rather  a divergence than an error  
itself. Since I(P]]Q)=II(PI[PIQ ) in this case, we could call our  II(PIIQ[R) and 
I~(PIIQIR) also generalized errors. However ,  for P = { p } ,  Q={q} ,  R = { r }  (one- 
event distributions) from (1) and (2) 

I~({p}ll(q}l{r})=log2 q~ both for e = l  and ct=t=l, 
r 

so it does not  even depend on p, and could not  be called therefore an error  in 
estimating p. 

On the other  hand, Kul lback  [3] calls 

) n Pk k~=lqk = 1 
I(PIIQ)=Ia(PflPIQ)=k~=aPR l~ qkk - Pk= = 

a "directed divergence",  one reason more  to call our  quantities generalized 
directed divergences. 

The object of the present paper  is to give some axiomatic  character izat ions 
of the above quantit ies (1) and (2). We will see that  we can give character izat ions 
involving only one-event  distributions and n-event distributions for a fixed n, 
say n = 2. 

. 

We assume the following postulates. 

Postulate 1. I({p} [[{q} [ { r})>0  according as q ~ r  (p, q, re(O, 1]). 

This postulates that  our  measure of divergence be directed, at least for one- 
event distr ibutions:  positive (negative) if q is greater  (smaller) than r, and 0 if q = r. 

Postulate 2. I({ 1} I[{ 1} [ {�89 = 1. 

This postulate  simply determines the unit of  divergence in informat ion as 
the divergence between A estimating (correctly) 1 as the probabil i ty o f  a certain 

1 event, and B estimating it indifferently as ~. 

Postulate 3. 

I((p 1 x , . . . ,  p, x} 1] (ql Y, ---, q, Y} [ {rx z, . . . ,  r, z}) 

= I({Pl , . . . ,  P,} II {ql, ---, q,} ] {q . . . . .  r,}) + I({x} ]1 {Y} ] {z}), 

({P~, . . - ,P,},  {ql, . . . ,  q,}, {ra . . . .  , r ,}ed, ,  x,y,  ze(O, 1]). 

We suppose this only for n = 1 and n = 2. 
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This is an additivity postulate (weaker than the requirement of general addi- 
tivity): If there is an n-event distribution P (in our case n = 2) and an independent 
one-event distribution {x} and observers A and B give the estimations Q, {y} 
and R, {z} respectively, then the direct product of the two distributions (as the 
distribution of the performance of both the n-relevant-outcomes-experiment 
and the one-relevant-outcome-experiment) will be estimated by them with the 
direct products of the original estimations. The postulate states that we get the 
divergence of information for the combined experiment as sum of the divergences 
of the single experiments. 

Postulate 4. If  pl, P 2 , q l , q 2 , q ,  r2 are positive and such that P l + P2 ~ 1, q l + q2 ~ 1, 
q + r  z <  1, then there exists a continuous and strictly monotoni.c real function 0 
such that 

I({Pl, P2} II {ql, q2} [ {rl, rE}) 

= q~- 1 ([pa q5 I({Pa} I] (ql} I {ra})+ P2 4~ I({p2} I[ {qzIl{rzI)3/Epl +P23). 

This is a quasilinearity condition: The divergence of information on the union 
of two (in general, n) one-event incomplete distributions is the quasilinear mean 
of the divergences of information on the single distributions weighted with the 
actual probabilities. 

The fact, that we do not use 0-probabilities in our postulates, makes them 
weaker. 

o 

We will prove the following theorem. 

Theorem 1. Let  I({p} 1] {q} [{r}) and I({pl ,  P2} II {qx, qz}[{q,  r2}) be defined for 
P, Pl, P2, q, ql, q2, r, rl, r 2 , Pl + P2, qa + q2, q + r2 ~(0, 1]. I f  the postulates 1, 2, 3, 4 
are satisfied, then and only then 

I({P} II {q} [ {r}) = log 2 q (3) 
r 

and r in Postulate 4 is either a linear function or a linear function of  an exponential 
function. In the f irst  case 

I ( { p l ' P 2 } l [ { q l ' q 2 } l { r l ' r 2 } ) = ( P l l ~ 1 7 6  (4) 

= I1 ({Pl, P2} [I {ql ,  q2} [ {rl, r2}) 
in the second 

15" 

I({Pl,  P2} 11 {ql, q2}[ {q, r2}) 

= (c~ -- 1) -1 log 2 [(PI q~-2 4 - ~ + P2 q~-i r 1 - ~)/(PI + P2)] 

=I~({pa,pz} l l{ql ,qz} l{r l , rz}  ) (c~+ 1). 

(5) 
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Remarks. While all our  conditions involve only positive probabilities, the 
results can be extended for p = 0 and PI = 0 or P2 = 0 (Pl + P2 > 0): 

I({0} II {q}l {r}) = log2 q =  I({0, p} II {ql, q} ]{rl, r}) 

= I({p, 0} l[ {q, q2}] {r, r2} ). 

There is no finite extension, if one of the q's or r's is 0 without  (for n > 2) also the 
respective p's being 0. 

Proof of Theorem 1. We denote  

f(p,q,r):=I({p}ll{q}l{r}) (p,q, re(O, 1]). (6) 

Postulate  3 gives for n- -1  

f (p  x, q y, r z) =f(p,  q, r) + f (x ,  y, z). (7) 

By applying (7) twice we get 

f(p,  q, r) = g (p) + h (q) + k (r) (8) 

where 
g(p): =f(p,  1, 1), h(q), = f ( 1 ,  q, 1), k(r): = f ( 1 ,  1, r). (9) 

Now, by Postulate  1, f(p,  q, q) = 0, so, from (8) 

g(p)+h(q)+k(q)--O or g ( p ) = c = - h ( q ) - k ( q )  

and (8) goes over into 

f(p,  q, r) = c + h (q) - c - h (r) = h (q) - h (r). (10) 

Also by postulate  1 we have 

h(q) -h(r )=f (p ,q , r )>O if q > r  

that  is, h is an increasing function. But (7) gives with p = x = r = z = 1, by (9), 

h(qy)=h(q)+h(y) for all q, y~(0, 1]. 

So (cf. [1], p. 39), h (q) = c log 2 q and, by (10) and by Postulate  2, 1 = h ( 1 ) -  h(�89 c. 
Thus  (10) goes over into 

f(p,  q, r) = log 2 q~, 
r 

that  is [cf. (6)1, into (3). 

Apply now Postulate  4 (we write log for log2) 

I({Pl, P2} ]l {ql, q2} I {rl, r2}) = 49-1 rl 
P~ + P2 
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and Postulate 3 for n = 2: 

or, with t = log 

plxd? (log ql~Y I +pzx(a  (log q2~Y t ) 
(2-1 rl z ! \ r2 z ! 

Pix+P2 x 

t =(b_l ~ - i  ~-2 + l o g Y  
Pl + Pz z 

ql , u= log  q2 , v=log  Y , 
r 1 r z z 

Pi+P2 Pi+P2 ! (11) 
[t, u, r e ( -  oo, oo)]. 

Thus (by Theorem 3, p. 159 of [-1]) we have 

c~(x)=ax+b or c~(x)=a2(~-l)X+b, a4=0, a * l  [ x e ( - o o ,  oo)]. (12) 

If w e  substitute these back into Postulate 4, we get (4) and (5) respectively. 
Since, on the other hand, (3), (4), (5) satisfy all our postulates, this concludes the 
proof of Theorem 1. 

We can see easily that we have used from Postulate i only the following two 
consequences of this Postulate. 

Postulate 5. I({ 1 } II {q} ] {r})__> 0 / f  q > r. 

Postulate 6. I({p} ll{r} l {r})=O for all p, re(O, 1]. 

So we have the following 

Corollary. Theorem 1 remains true, if the Postulate 1 is replaced by the weaker 
Postulates 5 and 6. 

. 

Let us see now, how Postulate 6 could be further weakened. 
It surely is stronger than the following. 

Postulate 7. 

I({p+q}ll{r}l(r})=I({p}ll{r}l{rI)+I({q}ll{rIl{r}) (p,q,p+q, re(O, 13). 

Indeed, I({p} It {r} ] {r})=0 (Postulate 6) satisfies Postulate 7, but the later may 
also have other solutions. 

Whether Postulate 7 is "natural" is a question of t a s t e . - W e  prove here the 
following. 

Theorem 2. Postulates 2, 3, 4, 5, and 7 already characterize the divergences (3) 
and either (4) or (5). 
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Proof Postulate 7 means in terms of the notation (6) 

f (p+q,r ,r)=f(p,r ,r)+f(q,r ,r)  whenever p,q,p+q, re(O, 1] (13) 

or, with r = 1, by (9) 

g(p+q)=g(p)+q(q) (p,q,p+qE(O, 1] else arbitrary). (14) 

On the other hand, Postulate 3 or (7) with q = r = y = z =  1 gives 

g(px)=g(p)+g(x) (p, xe(O, 1-], else arbitrary). (15) 

By comparing these two equations we get 

g(pq)=g(p+q) whenever p, q, p+qe(O, 1]. (16) 

Let us put q = 1 - p  [pE(0, 1)] into (16): 

g[p(1 - p ) ]  =g(1) = c (constant). 

The function p---,p(l-p) takes every value in (0,�88 as p runs through (0, 1), so 
we have 

g( t )=c  for all te(0,~].  (17) 

Now put q =�88 into (16) in order to get 

g ( p + l ) = g  ( 4 )  for all pe(0, �88 

But, then P s ( 0 ,  1~] ~(0, �88 so, by comparison with (17), 

g ( t ) = e  

and together with (17) they yield 

g (0 = e 

for all te(�88 1] 

for all re(0, 1]. 

If we put this back, for instance into (14), we get c--2c,  c = 0 and 

So, by (8), 
g (p)=0  for all pc(0, 1]. 

f(p, q, r) = h (q) + k (r) 

and, by 
from (18) 

(18) 

substitution into (13), h(r)+k(r)=2[h(r)+k(r)] or k(r)=-h(r)  and 

(lO) 

From here on the proof goes as that of Theorem 1. 

f(p, q, r)=h(q)-h(r). 
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~ 

If we supplement Postulate 5 by 

Postulate 8. I({1} II {r} [ {r})=0, 

then, by a similar but slightly more minutious proof than that of Theorem 2, 
the Postulate 7 can be replaced by 

Postulate 9. 
I({p} I1{1}[ {1})+I({q} I/{1}l {1}) 

I({p+q} II {1}1 {1})= 
2 

whenever p, q,p+q~(O, 1], 

which some people might consider more natural than Postulate 7. 

Theorem 3. Postulates 2, 3, 4, 5, 8, and 9 characterize the divergences (3) and (4) 
o r  (5). 

We leave the easily reconstructable proof aside, since in our opinion anyway 
the following condition seems to be more natural than either of Postulates 7 
and 9. 

Postulate 10. 

I({p+q} I1{1}1 {1})-  pI({p} II{1}[{1})+ql({q} i1{1}1{1}) (p,q,p+q~(O, 1]). 
P+q 

If we use Postulate 10 instead of Postulate 7, then in place of Eq. (14) we have 

(P+q) g(P+q)=Pg(P)+qg(q). 

With the notation 
d(p): =pg(p) (pc(0, 1]) (19) 

this gives 
d(p+q)=d(p)+d(q),  whenever p, q, p+qs(O, 1]. (20) 

On the other hand, Eq. (15) gives with the notation (19) 

d(pq)=pd(q)+qd(p) (p, qE(O, 13). (21) 

Now, all "derivatives" (cf. [8]) satisfy the system of functional Eqs. (20), (21). 
Every continuous derivative is 0, but there do exist noncontinuous derivatives 
(cf. [8]). So it cannot be asserted without any further supposition that d - 0  (that is, 
g = 0). We can postulate for instance this: 

Postulate 11. There exist two values qo,roe(O, iI and an (arbitrarily small) 
interval (Po, Pa) -~ (0, 1] such that I({p} 1[ {qo}[ {to})>0 for all pE(po, Pl) (the interval 
could be replaced by a set of positive measure-or by a set whose translations by 
all rational numbers fill the real line [4], and 0 could be replaced by any other lower 
or upper bound). 

After this preparation we are able to prove the following theorem. 

Theorem 4. Postulates 2, 3, 4, 5, 8, 10, and 11 characterize the divergences (3) 
and (4) or (5). 
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Proof As in the proof of Theorem 1 we have 

f (p, q, r) = g (p) + h (q) + k (r). (8) 

By Postulate 11, 

O<f(p,  qo,ro)=g(p)+h(qo)+k(ro), so g(p)> -h(qo)-k(ro)  in (P0,Pl), 

which means that g and, because of (19), also d is bounded from below on an 
interval. So (cf. [1], pp. 32-35, 48-49), Eq. (20) implies d(p)= c p which satisfies (21) 
only if c=0,  d(p)-O. Thus, by (19), Z--0, (8) reduces to (18)f(p, q, r)=h(q)+k(r) 
and Postulate 8 gives 

h(r)+k(r)=O 
and 

f(p, q, r) = h (q) - h (r). (10) 

From here on everything proceeds as in the proof of Theorem 1 and, since (3) 
satisfies also Postulates 10 and 11, the Theorem 4 is proved. 

, 

We have seen that in Theorem 1 (and all the subsequent theorems) we get I a 
or I~ (~ 4= 1) according to which of the functions q5 in (12) we choose. If we replace 
Postulate 4 in any of these theorems by 

P~ I({pi} II {q~}l {q}) + P2/({P2} [I {q2}[ {r2}) 
I({Pl, P2} II {ql ,  q2}l {q,  r2}) = 

Pl -F P2 

(Pi ,  P2, Pi + P2, q l ,  q2, qi  + q2, I"1, r2, rl -t- r 2 E (0, 1]), 

then we have characterized the divergence 

I({pl, P2} II {ql, q2}[ {q, r2})=I~({P~, P2} It {q,, q2}l {q, r2}). 

Another characteristic property of I~ is that it satisfies a "Sincov-type func- 
tional equation" (cf. F1], p. 223). We formulate it as the following postulate. 

Postulate 12. 

I({pi . . . .  , P,} II {ql, ..., q,}l {q, -.., r,}) + I ({pl , . . . ,  p,} 11 {r 1 . . . .  , r,}l {sl, ..., s,}) 

= I({pi, ..., P,} 11 {ql . . . . .  q,}l{s i , . . . ,  s,}) 

({Pl, . . . ,  P,}, {ql ,  . . . ,  q,}, {rl,.. . ,  rn}, {Sl, . - . ,  Sn} E An, n = 1, 2). 

This postulate means that the divergence between A and C is the sum of the 
divergences between A and B and between B and C. We prove the following 
theorem. 

Theorem 5. Postulates 2, 4, 5, 12 and Postulate 3 for n = 1 characterize the diver- 
gence (3) for n = 1 and the divergence 11 as defined in (4) for n = 2. 

Proof By Postulate 12 for n = 1 and by (6) and (8) (which was derived from 
Postulate 3) 

g (p) + h (q) + k (r) + g (p) + h (r) + k (s)=g (p) + h ( q) + k (s) 
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or  
g (p) = - h ( r ) -  k (r) = c (constant).  

So we have (10). By Postulate 5 again h is non-decreasing and, by Postulate  3, 
h (p q )=  h (p)+ h (q). Thus  we get h(q)= c log 2 q and by Postulate 2 again c = 1 and 

f (p ,  q, r )=  log 2 q or, with (6), 
P 

I({P} I] {q}[ {r}) = log 2 q (3) 
r 

F r o m  Postulates 4 and 12 (for n = 2 )  we have now 

~b_l (PI  (o[log(ql/rl) ] + P2 c~ [log(q2/r2)] ) + (O_1(Pl (~176 +P2 [l~ 
Pl + P2 Pl + P2 

[ Pl 0 [log(ql/sl)] + P2 (o [log(qz/S2) ] .]. r 
] Pl + P2 

If we denote  t = log (ql/q), u = log (q 2/r2), v = log (q/s O, w = log (r2/s2) we get 

Pl +Pa  Pl +P2 ! 
(22) 

+(o-l ( Pl (~ 
Pl + P2 

If we specialize w = v, then (22) goes over into (11) (which shows that in our  case 
Postulate  3 for n = 2 follows from the others) and, as in the proof  of the Theorem 1, 
we have (12). Of the two types of functions in (12), however, the second does not  
satisfy (22) for all real t, u, v, and w, so we have r and Theorem 5 is 
proved. An alternative proo~ is the following. 

Denote  in (22) x =Pl/(Pl +P2), Y=P2/(Pl +P2), and 

F(X, y; t, IA): -~- (9-1 IX ~9 (t) -Jr- y ~ (U)]. (23) 

Then  (22) goes over into 

F(x,y;t+v,u+w)=F(x,y;t,u)+F(x,y;v,w) for all x, ye(0 ,  1); 

t,u,v, we(-o% o~). 

This is a Cauchy equat ion in the last two variables (cf. [1], pp. 214-216). Since 
with q~ also F is cont inuous [cf. (23)], we have necessarily 

F(x, y; t, u)= A(x, y) t + B(x, y) u. (24) 

By compar ing (23) and (24) we get 

~b [A (x, y) t + B (x, y) u] = x r (t) + y q~ (u). 

This and the continui ty of q~ are more  than enough to warrant  the linearity of r 
(see T h e o r e m 2  on p.67 of [1]), so c~(t)=at+b and (4) holds. Since (3) and (4) 
satisfy also Postulate  12, the Theorem 5 is proved. 
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