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Infinitely Divisible Representations of Clifford Algebras 

DANIELA MATHON and R. F. STREATER ~r 

O. Introduction 

In a previous paper [1], a non-commutative generalization of the concept of 
an infinitely divisible random variable was introduced. The objects under discus- 
sion there were the enveloping algebra of a Lie algebra (5, and linear functionals 
on it. The fact that the polynomial algebra of (5 is graded allows a consistent defi- 
nition of generalized moments and cumulants. It is clear that the theory can be 
generalized to a number of other associative algebras. In this paper, we study the 
algebra of anti-commutation relations, and define the notion of infinite divisibility. 
We show that a representation is infinitely divisible if and only if it is quasi-flee, 
that is, the generalized cumulants vanish beyond the second. 

1. Basic  Concepts  

Let 3; be a complex Hilbert space, the "test function space" with scalar product 
(f, g), f, g s 3;. (As is well known, in the case of canonical anti-commutation relations 
(CAR's), the test function space can be assumed to be complete without loss of 
generality [4].) We shall discuss a certain class of representations of the canonical 
anti-commutation relations over 3;, [2]: 

{a ( f ) ,  a (g)} + = a ( f )  a (g) + a (g) a ( f )  = 0 

{a* (f), a(g)}+ =(f ,  g) 11 
(1) 

where ~ is the unit, and f, ge3;. 
We shall construct the CAR algebra 9.1(3;), i.e. the unique C*-algebra generated 

by (1) whose representations are in 1-1 correspondence with representations of (1): 
Let us denote by 3;* the dual space to 3;. By the Riesz theorem, there is a 

canonical bijection C: 3 ; ~ 3 ; *  which is defined by (Cf ,  g )=( f ,g) (g~3; ) .  Let 
3; 0 be the complex linear space 3; G 3;*. We can define on 3; 0 a conjugation, denoted 
by *, as follows: 

f * =  Cf 
(fe3;).  

(C f)* =f 

Let now ~ (3;) denote the polynomial algebra over 3;0 with the property that the 
embedding 3;o---, ~3(3;) is linear. The conjugation * on 3;o extends in a unique way 
to an involution on ~(3;). Let ~1 be the 2-sided *-ideal in ~ generated by 

* N O R D I T A  professor at Lund. On leave of absence from Bedford College, London.  



Infinitely Divisible Representations of Clifford Algebras 309 

{{f, g}+, {f*,  g}+ - ( f * ,  g)  ~; f, ge3;}. The algebra 9.1(3;)= ~ (3;)/(~ inherits the 
*-structure from ~ (3;) and it is a well-known fact that there is a unique norm in 
92 (2;) defining a C*-algebra 92 (2;). We shall denote the canonical map ~ (3;) -+ 92 (3;) 
by a. 

By the Gelfand-Segal theorem, to every state co on 92(Z) there corresponds a 
unique cyclic unitary representation (rco, :(,~, t2~) of 92(3;) (where g?o, Eo"(~o is the 
cyclic vector, and 11~2~11 = 1) such that c0(x)=(f2~, reo~(x)f2~,) for all x~92(3;). 

In what follows, we shall find it more convenient to consider, instead of a state 
co on 92 (3;), the unique linear functional W on ~ (2;) with the property that 

~(3;) w , r  

1 
92(2; )_0  , r  

is a commutative diagram. The linear functional W has the properties: 

(i) W(x* x)>O for all x ~ ( 3 ; )  
(ii) W(1)= 1 

(iii) W ( ~ 0 = 0 .  

Conversely, every linear functional W on ~3 (2;) satisfying (i), (ii) and (iii) defines 
a unique state co on 92(3;) such that W=coo a. We shall call W the expectation 
functional of rEo. 

It will be useful to have a slightly more general concept than representation. 

Definition 1.1. A *-homomorphism 7( of ~3 (3;) into ~3 (X) will be called a 
k-extended representation of the CAR's (k > 0), if it satisfies the relations 

{~z'(f), ~z'(g)} + = 0 

{~' (f*), re' (g)} + = k ( f * ,  g)  
for all f, g ~ Z c ~3 (3;). 

Let Ek now denote the two-sided *-ideal in ~3(3;) generated by { f  g}+ and 
{f*, g}+ - k ( f * ,  g) ~ (f, g~3;c~3(2;)). As above, for each linear functional W' 
on ~3 (2;) satisfying (i), (ii) and 

(iii') W' (~k) = 0, 
there exists a unique k-extended representation of the CAR's over 3;. 

Let ? be the unique *-automorphism of 92(3;) with the property 

7(a(F))--- -a(F), F~3;o~(3;). 

Definition 1.2. A state co of 92 (3;) is said to be even if it is invariant under 7, i.e. 

co (x) = co (? x) for all x~92(3;). 

Let co be an even state of 9/(3;) and let (re, ~ f2) be the corresponding cyclic re- 
presentation. Then, there is a unitary operator U~ on S such that for all xeg.I(3;), 
U~ ~ (x) U, -~ = rE (7 (x)) and U? ~2 = f2. Further, U~ is hermitian [3]. 
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Powers [3] has also shown that if 3;-- L 2 ( ] 1 { 3 ) ,  then a translation invariant state 
is even. 

We shall restrict ourselves to even states, and shall call the corresponding 
expectational functional W even. An even functional has the extra property 

(iv) W vanishes on the homogenous polynomials of odd degree. 

For functionals satisfying (i), (ii), (iii') and (iv), we can define the truncated 
functionals, also called the cumulants, WT, on ~31(3;)-the subalgebra of ~(w) 
consisting of all polynomials with no constant term, by induction: 

WT(F)--O 

W(F1... F,)= ~, ( -  1) ~(I) WT(Fh... F~,,)... WT(Fi,~_ ' +,... Fi,k) (2) 
I 

(F~3;o) 

where the sum is taken over all partitions of(1 ... n) into disjoint subsets (il, ..., ih)... 
(i~_,+1 .. . .  , iz~ ) and the trivial partition (1...n) is included. The indices in each 
cluster appear in their natural order and e(I) is the parity of the permutation 
0 ,  ... ,  ~ ) - '  ( q ,  . . . ,  i~,, . . . ,  i~k). 

W T is well-defined since W r vanishes on the elements x~ ~1 of odd degree and 
hence the permutation of clusters does not alter e(I). Conversely, W is uniquely 
determined by W T on ~1, and W(1)= 1. Moreover, the following lemma holds. 

Lemma 1.3. Let W be an even expectation functional of a k-extended represen- 
tation and let W r denote the corresponding truncated functional. Then W r vanishes 
on the *-ideal .~c ~3 t generated by ({F, G}+ H) with F, G, H~2o ,  and 

wT((f,g}+)=o 
(f,g~3;). 

WT({f*, g} +)=k ( f * ,  g) 

Proof The second part of the statement is obvious; hence it remains to prove 
that W T vanishes on ,~. Clearly, it is sufficient to prove it for the elements of the form 

H~.. .Hm{F,G}+Hm+I.. .H . (n> 1). (3) 

We shall proceed by induction on n. The case n = l  is obvious, since W T 
vanishes on terms of degree 3. In (2), we split the sum into several parts, as follows: 

- -  W T (H1... H,, {F, G} + H,, +1"" Hn) = - W(HI"'" H,. {F, G} + H,, +1... Hn) 

+ ~  ( -  1) ~(r) WT(HI,... {F, G}+... Hi,,)... WT(HI,~_ ' +... Hi. ) 
1 '  

+ E  ( -  1) ~(r) WT( { F, G}+) WT(HI, ... Uh,)... WT(HI,~_,+ ' ... Hi, ) 
I" 

+ Z (--- 1) WT(Hil... F.. .  Hi,,) WT(Hi, ~ +...  G... H%)... WT(Hi,~_ ' +...  Hi, ) 
I" 

+ ~ ( § 1) W T (Hi1. . .  G . . .  Hi,  , ) W T ( H  i q + . . .  F . . .  Hi,  2). . .  W T ( H  i ,~, _ , + . . .  H i.) 
i. 

where I' are all partitions of (1, 2, ..., n) and the sign ( -  1) ~(r) corresponds to the 
permutation (1, ..., n)-~ (il... i,) and the sign --}- in the last two sums corresponds 
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to the permutation 

(1, 2 . . .  m . F ,  G . . . .  n ) - ~  ( i l ,  . . . , F . . . .  ih , ih + l . . . G .  . . iz2 . . .  i , ) .  

The last two sums cancel out because the parity of any permutation is altered by 
exchanging F and G. The first sum vanishes by the induction hypothesis. Hence 

- WT(H1... H m {F, G}+ gm+l. . ,  g , ) :  -- W ( g l . . .  Bin... Fin) W({F,  G } + )  

-~" 2 ( - -  1) 1~('') WT({F , G}_~) WT(Hil... Hill).,. WT(Hilk_ 1 +2( ' ' '  Hin) 
i' 

where we used (iii') and (ii) for W. Using the relation Wr({F , G}+)= W ( { F ,  G}+) 
and (2) we obtain W r ( H  ~ . . .  H m { F ,  G}+ H,,+I . . . /4 , )=0 .  

2. Infinitely Divisible Representations of the CAR's 

Definition 2.1. Let 3; = �9 3;,. A state co of 91(3;) is said to be a p r o d u c t  s t a t e  w i t h  

r e s p e c t  to  t h i s  d e c o m p o s i t i o n  of 3; if for each n, the following condition is satisfied: 
if x ~ 91 (3;,), y e ~--~(-(~,a), then 

co (x y) = co (x) co (y).  

N 
It can be shown [3] that i f3 ;=  @ 3;,, and co, is an even state of 91(3;,), for each n, 

n=l  
then there is a unique product state 

with c o l ~  = co, for each n. In fact, if (n,, ~ ,  (2,) is the cyclic *-representation 
corresponding to co, for each n, then co corresponds to ( A n,, | ~,~f,, | ~2,) where 
A is defined as follows: 

Let f = f l  @f2 ~3;1 | 3;2. We define 

(n 1/x n2) (a ( f ) )=n l (a ( f l )  ) | U~ + 1 | n 2 (a (f2)) . (4) 

It is easy to see that n 1/x n a is a cyclic representation of 91(3;1 �9 3;z) of which the 
state is co = col| coz. Clearly, if 7q and n 2 are k-extended representations of the 
CAR's over 3;1 and 3;z respectively, and if we define n 1/~ n2 by (4), then it is again 
a k-extended representation of the CAR's over 3;1 | 3;2. It is easily checked that 
this product is associative; indeed, n I/x n 2 is the unique cyclic representation cor- 
responding to col | ~ so the associativity follows from that of the corresponding 
product state co = % | co2 |  | con. 

Let m > 0  be an integer, and let Amc3;@3;O .-- |  be the diagonal, i.e. 
m 

Am = { f  @ f 0 " "  | f ;  f ~  3;}; Am is isomorphic to 3; as a linear space. Let us denote 
this isomorphism by ~m, ~ m ( f ) = f o  "'" O f ~ A , , .  Then (~m(f), ~ m ( g ) ) = m ( f g )  

( f  g~3;). Hence, if n '  is a k-extended representation of the CAR's over A m ,  then n 
defined on 3; by 

n ( f ) = n ' ( f |  
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extends to a kin-extended representation of CAR's over 3;. Let us denote this 
representation by ~ (n'). 

Definition 2.2. A cyclic representation (~, X, ~2) of 9/(3;) is said to be infinitely 
divisible if, for each meN,  there exists an extended representation (n ~/m, X t/m, f2 l/m) 
of the CAR's over 3; such that (n, X, f2) is equivalent to 

(,~/~ A ~/~ A... A ~1/~ I~)). 

In what follows we shall find all the infinitely divisible representations (~, X f2) 
of 9.I (3;). We shall need the following lemma. For the proof, see [3]. 

N 

Lemma 2.3. Let ~ = @ ~ ,  and let W, be a functional on 9(3 (Xn) satisfying (i), 
n = l  

(ii), (iii') and (iv) with the same value of k for each n. Then, if W r is the truncated 
functional of W= W 1 |  | WN, the following relation holds: 

N 

WT(F~ ... Fro)= ~ (W,)T((E . F~) (E, F2)... (E, Fro) ), 
n = l  

where E, is the orthogonal projection 3;o--~ 3;n, o (n = 1, 2... N). 

Corollary 2.4. I f  W r is the truncated functional corresponding to the k-extended 
representation n of the CAR's over 3;, and W~. that of the k m-extended representation 

(~ A'.- A ~]*(~m))' then 
W~=mWT. 

Corollary 2.5. A representation Oz, 3if,, f2) of 9.I(3;) is infinitely divisible if and only 
1 

if for every meN,  WT= ~ W T is the truncated functional corresponding to some 

extended cyclic representation 7z' of the CAR's over 3;. 

Proof The necessity follows from Corollary 2.4. To show sufficiency, let m e n  
and define an extended representation n" = ~ (n' A ... A 7C~ I~(a~)). By Corollary 2.4, 

n" has truncated functional W r' = m W r = W r. Hence, the corresponding expecta- 
tion functionals W" and W agree on the whole of ~ (3;). This implies that n - n " ,  
in particular 7c" is a representation. Hence n is oo-divisible. 

Proposition 2.6. I f  (n, X,  f2) is oo-divisible, then the corresponding truncated 
functional W r is positive semi-definite on ~1(3;). 

Proof Let xe  ~31(3;) be an arbitrary fixed element 

N 

x= F r,~ F,:...5~ (Fve3;o) 
i = 1  

1 Wr is the truncated and choose meN.  By Corollary 2.5, the functional W ' T =  ~ 

functional of some extended representation, say n~, of the CAR's over 3;. The cor- 
responding expectation functional, W" say, satisfies (i), (ii), (iii') and (iv); hence 

W2,(x* x)>-_O. 
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Thus N 

o<wt(~*~)= X Wt(VJT..~]8,-..F,) 
i , j = l  

N 
= X X ( - a )  ~ ( ' ~ '  ... ' m, r ( ~ )  W" r (I.) 

i , j = l  I 

where 1=(12 .... , lq)is a partition of ((j j), ( j , j -  1) . . . .  (j, 1)(i, 1). . .( i i))into q=> 1 
parts, 11, ..., Iq, and W', r ( Ia)  denotes the value of W" r on the product of elements 
with indices in I~. Thus 

1 ~ 1)~(1) 1 o<_ --  Wr(Fj~. ~* ~ ..F.)+ ~ ~ ( -  W~(IO... W~(I~). 
- -  "" j l " D , i q  

i , j = l  ?n i , j = l  i,q>=2 

This inequality is valid for all meN.  Thus, letting m ~ oe, we obtain 

N 

Theorem 2.7. An even cyclic representation of 9.I(Z) is oc-divisible if and only if 
it is quasi-free. 

Proof Let (re, ~ ,  f2) be infinitely divisible. By Proposition 2.6 and Lemma 1.3, 
the corresponding truncated functional is a positive semi-definite functional on 
~31 (Z) vanishing on .3. We shall prove that such a functional necessarily vanishes on 
($1) 3, i.e. it vanishes on all homogeneous polynomials whose degree is >3. Let 
y be such a polynomial,  i.e. 

y = x F G, where x ~ ~1, and F, G e Xo- 

By the generalized Schwarz inequality 

] WT(x F G)] 2 < W T (x x*) WT(G* F* F G). (5) 

Now, WT(G*F*FG)>O and the same holds for Wr(G*FF* G). But 

Wr(G* F* F G)+ Wr(G* F F* G)= Wr(G* {F* F} + G)=0. 

Hence W r (G* F* F G) = 0 and the left-hand side of (5) is zero. 
Conversely, let 0z, ~ ,  •) be a quasi-free representation with the truncated 

functional W T and expectation functional W defined by (2). Let m~N and define 
1 

W,, r - - -  W T. The corresponding functional W,, is now defined by 
- m  

w,.(1)= 1, 
(6) 

WIn(F1... Fzu ) = ~ ( -  1) ~<I~) WmT(Fi, Fj,)... WmT(FIN Fj~,) 
[2 

where the summation is taken over all partitions of (1, ..., 2N) into pairs with 
appropriate signs. W,, obviously satisfies (i), (iv) and vanishes on if1/,,. It remains to 
22 Z.Wahrscheinlichkeitstheorie verw. Geb., Bd. 20 
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prove that W m is positive semi-definite and therefore induces a l/m-extended 
representation whose truncated functional is (Win) r. It is easy to see from (6), that 

W,,(F1 ... F2N) =~1~ W(F1 ... F2N). Let now x be an arbitrary element in ~ :  
- i  

P 

x - - , ~  + Y,F,1. . .~, .  
i = 1  

Then 

p , i Z fJ~ .-' f ~  F~I... f~  § [~l a 
i , j=l  

i + j e v e n  

where 

with 

i e v e n  i e v e n  

~ 1 , P 1 
= w  ~ ~ i . . . ~ ] + ~  Z ~-Fi l . . .~ ,+l~h 2 

i = 1  i = l  
i e v e n  i e v e n  

§ p 1 ) 
2 i+j F j ~ . . . F ~ j l F i l . . . F i i  = W ( y * y ) ,  

i , j=l  2 
i+j e v e n  m 

P 
y=o~ll+ ~ Gia...Gil 

i=l 

Gik=m-a/2 Fik (i=1 . . . . .  p k = l . . . i ) .  

3. Faetorizable Representations of Fermion Fields 

We now consider a finite or infinite set of Fermi fields, {a~(f)}r~i where 
I =  {1, 2, . . . ,  N} or I = N ,  and f ~ L  2 (~ ) .  Here, v is the dimension of space, and a s 
means a or a*. These fields satisfy the anti-commutation relations 

{a,(f),a~(g)}+=O, 

{a* (f), a~ (g)} + = 6~ ~ f (x) g (x) dx. 
(7) 

The techniques of continuous tensor products lead to representations of current 
algebras with ultra-local truncated functions [5], expressed by Eq. (4) of [1]. The 
next lemma is the analogue of Theorem 6 of [ l l ,  and is proved in a similar way. 

In fact, (7) are the canonical anti-commutation relations over 3;| 
where 3; is a finite or separable complex Hilbert space with an orthonormal basis 
labeled by I. Product elements of the form (i, f )  (i~I, f e L  2 (IR~)) then form a total 
set in 3;| L 2 (IR~). The elements of form (i, f ) * =  (i*, f*), i*~ I, where I now labels 
the dual basis in 3;* and f*e(L2) * are total in (3; | L2) *. 

Lemma 3.1. I f  the functional 

WT((i~, f~)e*. . . ( i , , f , )*")=~A~(x) . . . f ,~~ T ( i~ . . . i ~  ~) (8) 
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(where f *  in the integral means f )  is the truncated functional of some representation 
of(7), then T(i1%... i2") is the truncated functional of some infinitely divisible repre- 
sentation of g.l (~). 

Representations of (7) with truncated functional (8) are called ultralocal. 

Proof If we choose a fixed f =  Z,, where Zm is the characteristic function of a 
set K,, c IR ~ of measure l/m, the restriction of 7c to this subalgebra gives a 1Ira- 
extended representation of CAR's over 3;, whose truncated functional is, by (8), 
equal to 1/m T. Since m can be chosen to be any positive integer, Tis the truncated 
functional of an infinitely divisible representation of the CAR's over 3;. 

As a corollary to this lemma 

Theorem 3.2. Every ultralocal representation of (7) is quasi-free. 

The next definition is the analogue of Araki's concept of factorisable re- 
presentations [-6]. 

Definition. A cyclic representation (n, ~ ~?) of (7) is said to be factorisable if, 
given any division oflR ~ into a finite number of disjoint measurable sets M1, ..., Mr, 
there exist representations (nl, 3ffl, f21) . . . .  , (nr, 5,~, f2r) of 9.I(3;| ..., 
9.I (3; | L 2 (Mr)) respectively, such that 

7~__-----7E 1 A " *  A ~ r .  

Powers [3] has shown that every state, that is an infinite product of states on 
finite dimensional mutually orthogonal subspaces of 3;, is quasi-free, if it is trans- 
lation invariant. (Powers also considers norm limits of these.) The following 
theorem is rather similar to this (and also to the analysis of Araki [6]). 

Theorem 3.3. Let (n, ~ ,  f2) be a factorisable representation of (7), such that co 
is invariant under translations in ]R ~, i.e. 

co(A)=o)(%(A)), a~lR ~, 

for every AegI(3;| and % is the *-automorphism of 9d(3;| 2) induced by 
a i ( f )  -~ a i (s (i e I) with fa (x) = f ( x  + a). Then n is quasi-free. 

Proof Let fo be the characteristic function of a cube K in IR ~, and divide K 
into m equal disjoint pieces, {M~}, related to each other by translation by k a along 
some direction. We note that the representations nj = n l ~ ( L  (M;) 1 < j<= m, are all 
equivalent; indeed, the unitary equivalence is given by the space translation 
operator, U(a). Since Ej fo is just the translate ofE k fo, for 1 < j, k__< m, each (nj, 3if,, O) 
provides an equivalent cyclic extended representation of the CAR's over 3;. Hence 
n, restricted to the subalgebra generated by a i (fo) ( i t  I), is infinitely divisible, and 
so is quasi-free. 

Now, a representation of (7) is uniquely determined by its restriction to the 
subalgebra generated by the characteristic functions of cubes. Hence ~ is quasifree. 
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