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Non-Linear Equivalence Transformations 
of Brownian Motion 

R. M. DUDLEY 

1. Introduction 

Let/3 ( ' , . )  be a continuous real function of two real variables. Let (x t (co), t => O, 
coE •) be a standard Brownian motion process with x o -= O. The main result of this 
paper (Theorem 5)is that for any T > 0 the process (fl (x t (co), t), 0 <t____ T, co ~ f2) has 
a probability law in function space absolutely continuous with respect to that of 
x t (co), 0 -< t _< T (in symbols: A ~ (fl (xt, t)o r)-K s ((xt)0r)) if and only if either 

f l ( x , t ) = x + ~ ( t )  or f l ( x , t ) = - x + ~ o ( t )  

t 

for 0 < t <  T and all x e R, where cp (t)= S ~ (s)ds for some ~ eL  2 ([0, T], 2). (In this 
o 

paper, 2 will always denote Lebesgue measure.) 

It is well known [10, pp. 22-23] that if fl has the particular forms just stated, 
then ~e(fl(x,, t)r)<~((X~)or). What is new is that to allow functions/3(x, t) which 
may not be affine in x, for fixed t, does not actually lead to any new cases of absolute 
continuity. 

If/3 does not depend on t, then/3 (x)= x or/3(x) = - x .  This was conjectured by 
Segal, who also proposed the problem answered by Theorem 5. This special case 
is relatively easy to treat, yet it illustrates the methods used in the general case. 
Therefore we prove it separately as Theorem 1. 

The other results in the paper are all used in the proof of Theorem 5. Although 
they may well be of independent interest, I am not so sure that they are all new. 
We use the known fact (Denjoy-Young-Saks) that for any f :  R ~ R, 

2 {x: lira ( f ( x  + h ) -  f (x)) /h = + oo } = O. 
h,t O 

Theorems 2 and 3 are laws of the (iterated) logarithm for Brownian motion along 
suitable sequences converging to 0. Theorem 4 states that Brownian motion hits 
with positive probability the graph of any finite measurable function (even if 
there are absorbing barriers above and below the graph). This result indicates 
the possibility of developing the "local t ime" spent in a graph, although we shall 
not do so. 

A priori, the process fl(xt, t) need not be Gaussian nor Markov. Thus we are 
forced to rely on general properties of continuous or measurable functions and 
on properties of Brownian motion x, (e. g. Theorems2-5). The proof of Theorem 5 
has a more probabilistic flavor than the known proofs of the Segal-Feldman- 
18 Z.Wahrscheinlichkeitstheorie verw. Geb., Bd. 20 
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Hajek theorem on affine equivalence transformations of Gaussian processes [10, 
Theorem 3, pp. 22-23]; [3, 4]. The latter theorem reduces the problem in question 
to determining what operators between given Hilbert spaces are Hilbert-Schmidt 
operators. Such determinations, of course, belong more to functional analysis than 
to probability. 

2. The Case fl (x) 
The proof of this first theorem is not given in the fullest detail, since it also is a 

corollary of Theorem 5. 

Theorem 1. Let fl be a continuous real function of a real variable, and T> O. 
Then ~-~ (fl (xt)~)~ ~ ((x~)~) iff either fl ( x ) -  x or fl ( x ) -  - x. 

Proof. "I f"  is clear; we prove "only if". Clearly fl(O)=O. We first claim that fl 
must be monotone. If not, then we can assume there exist b, c with 0 < b < c and 
fl(b)>max(O, fl(c)). (Note that ~ ( - f l ( x t ) ) ~ ( - x t ) = ~ ( x t )  and ~ ( f l ( - x t ) ) =  

(fl (x~)).) We can also assume 

/3(b) = max(/3(x): O<x<c).  

The first passage time z for x t through/3(b) is a Markov time [5, pp. 22-25]. Then 
by the strong Markov property of x t at z and the properties of x t at 0 we know that 

Pr(for some t>0,  xt=/3(b) and for some 6>0,  x~</3(b) 

whenever t < s < t + ~) = 0. 

Yet if we replace x, by/3(xt), the probability becomes positive. This contradiction 
proves that/3 is monotone. 

Now/3 must be strictly monotone, since otherwise/3(xt) spends positive time 
at some point with positive probability. (Only now can we assert that/3 (xt) is a 
Markov process.) 

Replacing/3 by -/3 if necessary, we can assume/3 is strictly increasing./3 is 
differentiable almost everywhere. If it is not absolutely continuous, i.e. not the 
indefinite integral of/3', then ff (x) = + ~ for some x. 

[Proof. For some compact K, 

2 (K)=O< ~ dfl(x)=~.(fl(K)). 
K 

Now if ? is the inverse of/3, then ? ' (y)=0 for almost all yEfl(K), and then fl'(7(Y)) 
---- + o O . ]  

Thus it suffices to show that whenever/3' (x) is defined (finite or infinite), then 
/3' (x) = 1. If/?' (x) :I: 1, let z be the first passage time through x. By the strong Markov 
property at z, we have the iterated logarithm law [7, p. 73]: with probability 1, 

lim (x,+ h-x~)/(2h log tlog hi) ~= 1. 
hlO 

This implies that with probability 1, 

l!m ~ (fl(x,+h)--fl(x~))/(2h log ]log hi) ~ = i f ( x ) +  1. 
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Thus if o- is the first passage time of x t through fl (x), 5q (fl (x~))-<5r (x,) implies that  
with positive probabili ty,  

lim(x,,+h--x,,)/(2h log [log h[)~4 = 1. 
h;O 

This contradict ion completes the proof. 

3. Logarithm Laws for Brownian Motion 

The two theorems in this section are laws of the (iterated) logari thm along 
suitable sequences converging to 0, for s tandard Brownian mot ion  xt with x o = 0. 
The simplest sequences in quest ion are the geometric ones t.--c~", 0 < c~ < 1. For  
this case, the results are implicit in Khinchin 's  original p roof  of the local law of the 
i terated logari thm [7, pp. 73-75]. 

We abbreviate " log ]log t[" by "lg 2 t". Note  that  lg 2 a n is asymptot ic  to log n. 

Theorem 2. Let t. ~ 0 where for some ~, 0 < ~ < 1, t. + 1 < ~ t. for all n. Then the 
following are equivalent: 

(a) For all 7 with 0 < ~ < 1, 

(lg 2 t.) -~  e x p ( - y  lg 2 t . )=  + 0o. 

(b) lira xt. (2 t. lg 2 t . )-  & = 1 almost surely, and lira inf xt. (2 t. lg2 t . ) -  ~ = - 1 

almost surely. 

Proof  In any case the lira in (b) is < 1 and the lira in f>  - 1 by the usual i terated 
logari thm law. Pr (x t > e) is asymptot ic  to (t/2 ~ c2) ~ exp ( -  c2/2 t) as c t -  {--~ 0o. 
Thus if the sum in (a) is finite for some 7, 0 < 7 < 1, then 

~ Pr(xt  > 7 ( 2 t .  lg 2 t.)-) < co, 

SO the lira in (b) is < ~ a.s. Hence (b) implies (a). 

Fo r  the converse, given a positive integer k, let Z . - x t .  ~ -  xt~.+. .  Then the Z .  
are independent  Gaussian, EZ.=-O, and o -z Z .  = t.k--t(.+l)a > tnk(1 _ak). For  any 
C > O, Pr (Z .  > C(t.k lg 2 t.k)} ) is asymptot ic  to 

( t . k -  t.k +k) ~ C-1(2~z t,, k lg 2 t.k) - }  exp [ - -  C 2 t.k(lg z t.k)/2(t.k-- t.k +k)] 

> (I -- C~ k) C -  1(2 zt lg 2 t. k) - ~ exp [ -- C 2 (lg 2 t. k)/2 (1 -- ek)]. 

Now }-~ (lg 2 t . k ) -~exp( - -7  lg 2 tnk)= + O0 for all 7 < 1  by (a) since the t.k are de- 
n 

creasing. Thus Z P r ( Z . >  C(t.k 182 t.k) ~) = oO 
tl 

whenever 0 < C < [ 2 ( 1 -  ek)],. Now x t . . . .  is centered Gaussian and independent  
of Z . ,  so 

Pr(xt .  > C(t.k lg 2 t.k)2)>=~ P r ( Z . >  C(t.k lg 2 t.k)+). 
18" 
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Hence with positive probabili ty,  x t , >  C(tnk lg 2 tnk) x~ for infinitely many  values of 
n [1, L e m m a  1]. This positive probabil i ty  must  be 1 by the zero-one law. Now 
letting k ~  we obtain this for every C < 2  4, and hence (b) holds, Q.E.D. 

Theorem 3. Let t,~O and for some ~, 0<c~<1,  t,+~ <~t ,  for alln. Then with 
probability 1, 

!ina x,, (2 t, log n ) - ~ =  1 

and the lim inf of the same sequence is - 1. 

Proof. For  any C > 0, P r  (xt, > C (t, log n) �89 is asymptot ic  to C -  1(2 n log n)- ~. 
n -c2/2. The sum of these probabilit ies converges if C > 2 -~, so the lim is _< 1 and the 
lim inf is > - 1. 

To prove the lira is->_ 1, again take a positive integer k and let Z ,  = xt, k -  x,.~.k. 
By the previous p roof  with log (n k) in place of lg 2 tnk , we obtain the desired result. 
The  proof  for the lim inf is of course symmetrical.  Q.E.D. 

4. Hitting Graphs 
Let  b t be a Brownian mot ion  process (not necessarily starting at 0), with c < b o < d 

for some real c and d. Let  T=T~d(bt) be the least t ime such that b~=c or d (or 
T =  + oo if there is no such t). Let  Yt = bt for 0 -  t < T and let y, -- b T for t ___- T. Then  
one calls Yt a Brownian mot ion  with absorbing barriers at c and d. 

Theorem 4. Let {Yt, t > 0 }  be a Brownian motion with absorbing barriers at c 
and d, c<d. Let K be a compact set of positive numbers with 2 ( K ) > 0 .  Let f be 
continuous: K ~ R with c < rain f_<_ sup f <  d. Then Pr (y, = f( t)  for some t ~ K) > O. 

K K 

Proof. Let inf K = m > 0, sup K = M < oo. We can assume a__ Yo --< b where 

c <a<=min f <__sup f <=b<d. 

y~ is Markov  with s ta t ionary transit ion probabilities. Fo r  each x with c _  x <_ d 
let y}*) be an absorbing barrier process with y~0 x ) -  x. The distribution of yl ~) is a 
probabil i ty measure P, on cont inuous paths with range in [c, d]. If x - -  c or d then 
P~ is concentra ted in the constant  function c or d. Let  

P~(s, B) -P~  {g: g(s)~B}. 

For  0 < s < t, and any measurable  set A c [c, d], we have the Markov  composi t ion 
law (Chapman-Kolmogorov  equation) 

d 

P~(t, A)= ~ Py(t~- s, A) P~(s, dy). 
r 

N o w  if A c (c, d) we have P~ (t, A) ~ Pr (x + x t ~ A) where x t is s tandard Brownian 
motion.  Hence the measure P~(t, .) restricted to (c, d) has a density p~(t, u), 

P~(t, A)= ~ p~(t, u) du. 
A 
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We can take 
ONpx(t , y) N gx(t , y)---- (2n t) -~ exp [--(x--y)2/2t]  

everywhere (the inequality must hold for almost all y in any case). We shall need 
the following: 

Lemma 4A. p~ can be chosen so that 

inf{px(t,y): O<t<<-M, a<=x<b, a < y < b } > O .  

Proof Given t, 0 < t < M, let (z~, 0 < s < t) be a Brownian motion tied down at 
0 and t. z~ is Gaussian with zo-zt=-Ez~=-O, Ez,  z s=r( t - s ) / t ,  O<r<s<-t. If 
(x~, 0 < s___< t) is standard Brownian and we set z~ = xs - s xt/t, then z~ will be Brown- 
ian tied down at 0 and t, as one sees from the covariances. Thus for any e >0, we 
have 

Pr([z~[ < ~, O< s<= t)>-_Pr(lx~[ <e/2, 0_-< s_-< t )>0 ,  

a proof of the latter known fact being omitted. 

Now let e = m i n ( a - c ,  d - b ) .  

Let x be a random variable with the distribution of Yo and let G be a Gaussian 
random variable with EG = O, EG 2= t. Let x, G, and (Zs, 0 < s< t) be independent. 
Then we have a version of bs: 

bs = x + s G/t + z~. 

Then if [ zs[ < e/2 for 0_< s _< t, and [ G] < e/2, we have c < bs < d for 0_< s N t, and thus 
ys coincides with bs. Then we have 

px(t, y)> Pr(lzs[ <el2, 0_< s N M ) >  0 

under the given conditions, proving the Lemma. 

Now by Fubini's theorem, 

lira inf E2 { t eK:  f ( t )<  yt < f ( t )+  h}/h=-~c>O, 
hl, O 

and since Px < gx, 

lira sup E2 2 { teK:  f ( t )<  yt< f (O+h} /h  z =-L< oc. 
hJ, o 

By the Schwartz inequality for any random variable X, 

E (x)  ~ < E ( x  ~) Pr ( x  4= o), 

lim inf P~ (f(t)  < Yt < f( t)  + h for some t e K) > tc2/L > O, 
h$0 

and 
Pr(for all n,f(tn)< yt.< f ( t , )+  1/n for some t, EK)>~cZ/L. 

On this event, y t=f( t )  for some t eK,  namely any accumulation point of the t,, 
Q.E.D. 
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5. The Main Theorem 
We are now ready to state 

Theo rem5 .  Let T > 0  and let fl be continuous: R•  T ] ~ R .  Then 
~ (fl (x,, t)r)<~_~ ( ~  ((Xt) T) iff either fl (x, t)=-- x + 9(t) or fl (x, t) =- -- x + qg(t) where 

t 

~o(t)= I 0 ( s ) d s ,  0eL2  ([0, T],  2). 
0 

Proof It is well known that  " i f "  holds [10, p. 22]. For  the converse we first 
prove:  

Lemm a  5A. I f  fl is continuous and ~( f i (x t ,  t )T) '~((Xt)  T) then for 0 < t < T ,  
fl( ' ,  t) is a monotone function. 

Proof If not,  then by symmetry  we may assume there is a te(0,  T]  and c, y, d~R 
such that  c < y < d, fl (y, t) > max (fl (c, t), fl (d, t)). Then for some u and v, 0 < u < t < v, 
and whenever u-< s <_ v, there are f(s) and g (s) such that  c < f(s) < d and 

max fl (x, s) = g (s) = fl ( f ( s ) ,  s)) > max (fl (c, s), fi (d, s)). 
c < x < _ d  

g is cont inuous and we can take f to be measurable. Then  by Lusin's theorem 
there is a compact  K c [u, v] with 2 (K) > 0 such that  f restricted to K is continuous.  
F r o m  now on, we shall use only that  restriction o f f  

By the Denjoy-Young-Saks  theorem [8, p. 18], there is a compact  M c K  with 
2 (M) > 0 such that  for all t e M, 

L ( t ) -  lim inf (g (t + h) - g (t))/h < oo. 
h;O 

L is measurable,  and the lim inf can be taken through positive rational values of h 
only. We may assume sup {x: x e M }  <v. 

There is positive probabil i ty  that  c < x,  < d. Then, we apply Theorem 4 to the 
process starting at t ime u and obtain that  the following event has positive proba-  
bility: c < x t < d  and hence fi(xt, t)__<g(t) whenever u<_t<_v and for some seM,  
x~=f(s) and hence fl(xs, s)=g(s).  

Let  s be the first t ime t in M such that  xt--g(t), or + oo if there is no such t. 
Then  s is a Markov  time, and Pr  (Ms) > 0, where Ms = {co: s(co) < oo}, by Theorem 4. 
Probabili t ies of events A depending on s below signify normalized probabili t ies 
Pr (A c~ Ms)/Pr (Ms). 

There exist rat ional h, = h,(s)~O such that g(s + h , ) -g (s )< [L(s )+  1] h,. (For  
more  details on the choice of h, (s), see below.) We can assume h, + 1 < h,/2 for all n. 
Then by Theorem 3, almost  surely 

lim (x~+h.-  x~)/(2 h, log n) -~ = 1, 

which implies Xs+h.>g(s+h,) for some n (recall xs=g(s)). Thus Pr(x,___g(t) for 
u_< t <_ v and x~ = g (s) for some s s [u, v]) = 0. But we saw earlier that  the same event 
has positive probabil i ty for fl (xt, t), contradict ing ca (fi (xt, t)or)ML.e ((Xt)or). 

To  apply the strong Markov  proper ty  at the r andom time s, we must  make h, 
depend on s in a suitably measurable  way. The function L is measurable and could 
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be taken to be cont inuous,  if we like, on M. Let  

e = d - s u p  {x" x e M } > 0 .  

Let {rm}~= ~ be an enumera t ion  of the positive rat ional  numbers  < e. Given  n > 0 
and h~(s),..., h, (s), let h, + ~(s)= r,, for the least m such tha t  

g(s+ rm)-g(s)<(L(s)+ 1) rm 

and (if n >  1) r~<h,(s)/2. Then the h, are measurable  functions of s and we can 
apply  the s t rong M a r k o v  p roper ty  ([2, Satz 5.1, p. 94, Folgerung p. 96]; set 
17, - s + h,). Thus  the p roo f  of  L e m m a  5 A is complete.  

N o w  that  we know fl(. ,  t) is m o n o t o n e  for each re(0, T],  we can say that  it is 
strictly monotone ,  else fi(xt, t) takes some value with positive probabil i ty .  N o w  
we know tha t  fl(xt, t) is a (strong) M a r k o v  process. 

It  is easily seen that  fl( . ,  t) is always m o n o t o n e  in the same sense. So we can 
assume fl(x, t) increases as x increases, for each te(0,  T].  Thus  the derivat ive 
Off(x, t)/Ox exists and is finite for a lmost  all x and t. Ofl/ax is measurable .  

L e m m a  5B. Off(x, t)/Ox = 1 for almost all re(O, T] and xeR .  

Proof. If  the L e m m a  were false, then by Fubini ' s  t heorem there exists an x such 
that  ~fi(x, t)/Ox exists but  is 4= 1 for t in a set of  positive measure.  Fo r  some 6 > 0 
and compac t  set K, ), ( K ) >  0, we have either 

(I) Off(x, t)/Ox< 1 - 6  for all t eK ,  or 

(1I) Off(x, t)/Ox> 1 +6 for all t eK .  
Taking  a smaller  6 and K if necessary, we can assume that  [fl (y, t ) -  fl (x, t )] / (y-  x) < 
1 - 6  in case (I), or  > 1 + 6  in case (II), whenever  0 <  ] y - x ]  < 6  and t eK .  There  is a 
compac t  set M c K, with 2 ( M ) >  0, all of whose points  are density points  of  K, i.e. 
for all t e M ,  

tim 2 (K c~ [ t -  h, t + h])/2 h = 1. 
h,~0 

Given~seM,  there exist h,(s) such that  2 - 2 " - 1  < h , < 2  -2"  and s+h,  e K  for all 
sufficiently large n. Fo r  definiteness, we take h, as small as possible. Then the i terated 
logar i thm law of Theo rem 2 holds for the sequence h,~0. 

Let A = {n: fi(x, s+h,)>fi(x ,  s)}. Then either 

(lg~ h,) -~  e x p ( - - 7  2 2 -1 lg2 h , )=  + ~2 
?tEA 

whenever  0 < 7 < 1, or  else the sum diverges for all such 7 with "n e A "  replaced by 
" n(~ A". 

The functions h, (s) are measurable ,  so we can assume either that  the sum for 
neA  diverges for all seM,  or else that  the sum over  nCA converges for all seM.  

We have now four essentially symmetr ica l  cases to consider. Suppose  first 
that  we are in case (I) and that  the sum for neA  is divergent for all seM.  Let 
tr-h,~r) where n(r)'F as rT and {n(r): r =  1, 2, ...} = A .  Let  s be the least t in M such 
that  xt = x ,  or + ov if there is no such t. s is finite with posit ive probabil i ty.  We have 
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~ r x - a < y < x ,  
ff(x, s + t , ) - f l ( y ,  s +  t.) <(1 - b ) ( x - -  y), 

~(x,s+t.)>Nx,  s), 

ff(y, s + t,)> fl(x, s ) - O - a )  ( x -  y). 

By Theo rem 2 we have, a lmos t  surely where s < 0% 

lim i n f ( x ~ + , . -  x~) (2 t.  lg2 t.) - ~  = - 1, 
n ~ o o  

lira inf(fl (x, + ~~ s + t.) - fl (x~, s)) (2 t. lg2 t . ) -  -~ >= - 1 + c5. 

N o w  for any function f f rom [0, T]  into R, let a ( f )  be the least t such that  
f ( t )= f f ( x ,  t), or + oe if there is no such t. Then a defines a M a r k o v  t ime for the 
Brownian  mot ion  (xt, 0 < t <= T). We thus have a lmost  surely for a finite, 

lira ioonf (x,  + t.(,) - x~) (2 t. (a) lg2 t, (o-))- *~ = - 1. 

But a (t --+ fl (xt, t)) = s (t ~ xt), since ff (xt, t) = ff (x, t) iff x, = x. Thus  we have contra-  
dicted the absolute  cont inui ty  assumpt ion.  The  other  three possible cases can be 
t reated similarly, so L e m m a  5 B is proved.  

Thus  by Fubini ' s  theorem,  for a lmost  all te(0,  T ]  we have aft(x, t)/Ox= 1 for 
a lmost  all x, and hence 

]ff(x, t ) - f l ( y ,  t ) l > i x - y [  

for all x and y. Then  by continuity,  the last inequali ty holds for all t e [0, T] ,  and 
fl(. ,  t) maps  R onto R. 

L e m m a  5C.  For each t~(O, T], ff(x, t ) - x  +(p(t) for  some function (p. 

Proof  If not, the only remaining  possibil i ty to el iminate is that  fl (x, t ) -  fl (y, t) > 
x - y > 0 for some x and y. This also holds for all t in a suitable open interval  I abou t  
the original t. Fo r  a lmost  all such t, since Off(x, t)/Ox = 1 a.e., there must  be some 
x with Off (x, t)/3 x =-- + 0% as in the p roof  of T h e o r e m  t. 

Fo r  each m = 1, 2 . . . .  , let 

Bm= {(x, t): ff(y, t ) - f l ( z ,  t ) ~ 2 ( y -  z) 

whenever  y > z, ] y -  x] < 1/m, and ] z -  x[ < 1/m}. 

Then  Bm is a closed set. Let  T, ,={ t~I :  (x, t)~B,, for some x}. Then each Tm is a 
countable  union of compac t  sets. (Almost)  every t e l  belongs to some Tin. Hence  
for some m, ~.(Tm) > 0. We fix such an m. Fo r  each t e T,, let y (t) be the least nonnega-  
tive x such that  (x, t)~T,,, or if there is no such x, then the greatest  negative x. 
Then  y is a measurab le  function. (In fact, whenever  O<a<b ,  or a<b<O,  {t~T,n: 
a < y (t) < b} is compact . )  

Thus  there is a compac t  C c  Tm with )~(C)>0 such that  y [ C is continuous.  
Let  K be a compac t  set of density points  of C with 2 (K) > 0. 
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By Theorem 1,,we can assume that  for each t e K  there is L( t )<  Go and h.{0 
with t + h. e C such that  for all n, 

[y( t+ h . ) -  y(t)l _-< L(t) h.. 

By Theorem 4, there is positive probabili ty that  xt=y(t)  for some t~K. Let s be 
the least such t, or + oe if there is none. s is a Markov  time for xt. 

As above in the proof of Lemma 5A, we can choose rational numbers hn{0 
with h.+l <h./2 for all n, and h. depending only and measurably on s, such that  

]y(s + h , ) - y  (s) l _-< L(s) h,, 

for all n, where L is a measurable function. Passing to a subsequence, we can assume 
by symmetry that fl (y (s + h,), s + h,) => fl (y (s), s) for all n. 

By Theorem 3, we have almost surely 

lira Ixs+,,.-xsl (2h,, log n ) - ~ =  1. 
n ~ o o  

For any C > 0 and n large enough, 

fl (y (s) + C (h. log n) ~, s + h.) - fl (y (s), s) 

> fl (y(s) + C (h. log n) ~, s+ h . ) -  fl (y(s + h.), s + h.) 

>2(C (h ,  log n)~-  L(s) h,) 

> 2 } C (h, log n) ~, 

because L(s) h. = o(C [h, log n] -~) and C (h, log n) ~- < 1/m for n large enough. Thus 
almost surely where s < o% letting CT2 }, we have 

!i~n (fi (xs + h,, S + h,) -- fi (xs, s)) (2 h, log n)- ~ > 2 +. 

Now, as in the proof  of Lemma 5 B, for any function f :  [0, T] ~ R, let a ( f )  be the 
least t e K such that  f ( t )  = fi (y (t), t), or + oo if there is no such t. Then a (t --* fl (xr, t)) = 
s (t ---, x0, and a (t --* xt) is a Markov  time for x~. So Theorem 3 applied to x~ + h.(~)-- X~ 
yields a contradict ion to the absolute continuity assumption, and Lemma 5 C is 
proved. t 

Now it is well known [10, p. 22] that  we must have (p(t)= ~ 0(s )ds  for some 
s L 2 ([0, T], 2), and the proof  of Theorem 5 is completed, o 

Acknowledgement. I am indebted to Daniel Ray for some useful discussions connected with 
Theorem 4. 
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