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1. Main Result 

Let T be a piecewise m o n o t o n i c  t r ans fo rmat ion  of the unit interval  I = [0, 1) onto  
itself satisfying some addi t ional  condit ions to be specified later. Then  T splits into a 
finite n u m b e r  of  ergodic componen t s  in the following sense: There  is a 
decompos i t ion  of  I into finitely m a n y  disjoint measurab le  sets A 1 . . . . .  A s and B 
such that  

(a) the Ap's are invar iant  (TAp =Ap m o d  0) and the restrictions TIA ~ = rp are 
ergodic with respect  to Lebesgue measure  m, 

(b) on each A o there exists an invar iant  measure  #p which is equivalent  to the 
restr ict ion of m to Ap, 

(c) the set B satisfies the relat ions T - 1 B  c B and lim m(T -nB) = O. 
n~co  

(d) to each c o m p o n e n t  Ap there cor responds  a power  Tp* = T~ ~p) of the 
t rans format ion  Tp and a disjoint decompos i t ion  Ap =Aplu...wAp,,,(p ) such that  
T*(Ap~)=Ao~ m o d  0 ( a =  1, . . . ,  re(p)) and T* is an exact e n d o m o r p h i s m  on each 
Ap~. The t rans format ion  T o permutes  the Ap,~ cyclically. 

(The set B m a y  have  measure  0.) 

2. Preliminaries 

Let  ~ = {P1, .-., PL} be a par t i t ion  of I into intervals. With  every Pj we associate a 
strictly monotone ,  absolutely  cont inuous  function Vj which maps  Pj onto  an interval  
(2i c I .  Wi thou t  loss of  general i ty we m a y  assume that  for i =t=j we have either Qic~Q~ 
= g  or Qi = (2i. This can be achieved by choosing an appropr ia t e  ref inement  ~ '  of  
the par t i t ion  ~ ,  if necessary. The  t rans format ion  T is defined by Tx = Vj(x) for x ePj. 
We further assume TI  =I  m o d  0. Set- theoret ic  relat ions are always mean t  to be 
modu lo  a set of  Lebesgue measure  0 unless indicated otherwise. We point  out  the 
different use of the not ion of an " invar ian t  set". A set M c I is called invar iant  with 
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respect to a transformation T, if T M  = M rood 0, and strictly invariant, if T 1 M 
= M m o d  0. Let the functions Vj be such that the inverses Vj -1 = f j  satisfy the 
following conditions: 

(C1) 0 < c 1 < Ifj(x)[ < c 2 < 1 for all x~Qj  and some positive constants c 1 and c 2. 

(C2) [ f j ' (x ) [<K for all xeQj  and some K > 0 .  

Note. As I learnt from Li, the results (a) to (c) are contained in a paper by Li and 
Yorke, Trans. Amer. Math. Soc. 235 (1978), 183-192. These authors use a quite 
different method. However, the proofs of Lemma 2.5. and 2.7. are not satisfactory, 
using relations (2.6.) (a) and (c) which are false. 

Using an ingenious method, Lasota and Yorke [1] proved for such .transfor- 
mations the existence of a T-invariant measure / ,  ~ m on I. Similar results were 
obtained by the author in this thesis [4], using a short of renewal argument, the 
basic idea of which is taken from Fischer's paper [-2]. In the author's investigation a 
major role is played by cylinders (a 1 . . . .  , a,) with the property that the domain of 
definition of the corresponding function fal . . . . .  f~s is just the interval Qas. A 
cylinder of this type will be called a Qas-cylinder. In the following we make the 

< 6  for some 6e(0, 1). We will return to the additional assumption suplf j (x)[= 2 

general case later on. As proved in [4], the transformation T and its iterates T k can 
be described essentially in terms of Qicylinders. Denote by Era,, (0 < m < n) the 
union of all Q j-cylinders (j = 1 . . . . .  L) of rank s satisfying m _< s _< 17. The following 
lemma is an immediate consequence of Lemma 5.1. in [4]. For  sake of complete- 
ness, however, a separate proof will given below. 

Lemma2.1.  Let  ~>0 and n ~ N .  Then there is an integer n z ~ N  such that 
m ( I \ E  ..... 2)<e. 

Proof. Let ~(nl)  be the class of all cylinders of rank nl which are not Qicylinders for 
any je{1, ..., L}. Let R(n,)  be their union, and denote their number by z(nl). 

Consider an arbitrary cylinder (al, . . . ,  a , ~ ) ~ ( n l ) ,  and let ( i )=P  i (ie{1, ..., L}) 
be a cylinder of rank 1. 

Three cases are possible: 

(1) If(i) is contained in the interval T"~(al, . . . ,  a,,), then (al, . . . ,  a,1, i) is a Qi- 
cylinder of rank (n, + 1). 

(2) If we have m((i)c~T"*(al, ..., a,,))=Ja, the cylinder (al, ..., a,1, i) is not 
defined at all. 

(3) If we have O<m((i)c~T"*(al . . . .  , a,~))<m(i), the cylinder (a 1 . . . . .  a,,, i) is 
defined but is not a Q~-cylinder. 

The latter case can occur for at most two different values of i. 
Now let ~(n  I + 1) be the class of all cylinders of rank (n I + 1) which are 

contained in R(n~), and which are not Qicylinders. Let R(n 1 + 1) be again their 
union, and let z(n~ + 1) be their number. By the argument above we have "c(n, 
+ 1)<2z(nl) .  

Defining N(n I + s), R(n I + s) and z (n 1 + s) (s = 1, 2, ...) inductively, and repeat- 
ing the argument, we get z (n 1 + s) < 2 s z (n 1). 
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We shall estimate m(R(n 1 + s)). By our additional assumption, the measure of a 
1 nl + s  cylinder of rank (n 1 +s) is at most (36) . 

This implies m(Rl (n  + s)) < 2 ~ z(nl) (�89 "1 +s < 6~1 +~. z(nl). 
We thus have m(I \ E ...... +~) <__ m(R(n 1 + s)) < bnl +~. z(nO" 
Now choose s in accordance with e > 0, and set n 2 = n a + s. This completes the 

proof. 

It turns out to be convenient in many cases to restrict oneself to points in I 
which are not endpoints of any cylinder interval. Throughout  this article they will 
be called "interior points". Note  that i fx is interior, the same is true for Tx. The set 
of points which are not interior is, of course, countable.. 

By the next definition we introduce an essential concept. 

Definition 2.1. A point x E !  is said to be a Q~-point ifx is interior and is contained in 
infinitely many Qicylinders. A set M of positive measure is said to be a Qise t  if 
almost all points x ~ M  are Qfpoints.  
(Note that a Q j-cylinder, if considered as a subset of I, need not be a Qs 

Using Lemma 2.1. we can prove the following assertion: 

Lemma 2.2. For almost all x~  I there exists at least one interval Qj (depending on x )  
such that x is a Qd-point. 

Proof. Choose an arbitrary sequence e~, e2, ... of positive real numbers satisfying 

~ e ~  < os. Lemma 2.1, we can find a sequence 0 < n o < nl < nz < . . .  of integers such 
v = l  

that m ( I \ E  . . . . . . .  )<e~ (v= 1, 2, ...). 
Since there is only a finite number  of different intervals Q j, the Borel-Cantelli 

lemma implies for almost all x ~ I  the existence of a sequence of cylinders 
c~ = c 2 ~ . . .  which contain the point x ~ I  and which are Qicylinders for a certain 
index j. This completes the proof. 

We now prove three more lemmata which will be of use later on. 

Lemma 2.3. I f  x ~ I  is a Q4-point then the same is true for  Tx.  

Proof  Let c 1 ~ c 2 = . . .  be a sequence of Qicylinders with ranks 1< r~ < r 2 < . . .  

such that x s  (~ %. 

It is true that the image of a cylinder need not be a cylinder again, but the image 
of Qicylinder of rank r >  2 is always a QFcylinder. Therefore, Tc 2 ~ Tc 3 ~ ... is a 

sequence of Qj-cylinders with T x ~  ~ Tc m. Moreover, the point T x  is interior. 
m = 2  

This completes the proof. 

Lemma 2.4. I f  some set A ~ I  o f  positive measure is a Qise t  then lira sup T" A ~ Qj. 

Proo f  It will be sufficient to show ~) T p A = Qj for every n = 1, 2 . . . . .  By Lebesgue's 
p = t l  

density theorem and our assumption, there exists a point z e A  with the following 
two properties: 
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(1) z~A is a point of density 1 and 

(2) z~A is a Qipoint.  

Let c1~c2~ . . ,  be ~ ~equence of Qfcylinders with ranks l < r l < r 2 < . . .  
containing the point _-r Fix neN.  For  every e > 0  there is a cylinder c k 
=(al ,  ...,a~k ) satisf}Ing rk>n and m(ckc~A)>(1--e).m(ck). For an arbitrary 
measurable set B c c k we shall estimate m (T k(*) B). We note that conditions (C 1) and 
(C2) imply Renyi's condition. That is, for some constant K >0  depending only on 
the transformation T, we have 

suP d~ f ~  o . . . .  f~ <__K.inf j ~ s  o . . . .  f ~  

for every cylinder (a 1 . . . .  , ak). 
This implies m(T~ B) < K . m(Qj) �9 re(B). (m(Ck)) 1 for every BeCk. 
For B - - c k \ A  we get m(T~(Ck\A))<Ke.m(Q~),  hence m(r~(ckC~A))>(1 

- K ~). m (Q~), the sets r~(Ck \ A) and T'~(Ck c~A) being disjoint. 

By choice of k we have T'~(ckc~A)~ U TPA. 
p = n  

( )  This implies m Qi \ T ~ A < K ~ . m(Q~), which proves the assertion. 
tl 

Lemma 2.5. I f  some set A ~ I of positive measure is a Q f set then the interval Qj itself 
is a Q j-set 

Proof. By Lemma 2.3., the set ~J T~A is a Qiset  which contains the interval Qj by 
n : 0  

Lemma 2.4. 

3. Construction of the Ergodic Components 

For a fixed Qj consider the set F(Q~) of all Qfpoints in I. Lemma 2.5. implies that 
either the set F(Qj) has measure 0 or that it contains the interval Qj. We can 
disregard the Qfs for which m(F(Q~))=O holds, thus assuming m(F(Qj))>0 in the 
sequel. It is clear from Lemma 2.3. that T(F(Qj))cF(Qj) holds. For any invariant 
subset H cF(Qj) we can easily prove that H is ergodic with respect to m, but there 
still remains the possibility that there may exist a proper subset G ~ H  satisfying 
0 <re(G)<re(H) and TG = G. This would imply that any invariant measure # ~m  
on H must vanish on H \ G. So we are looking for a minimal invariant subset of 
F(Q~) which we can find as follows: 

Let F'~F(Qj) be an arbitrary subset such that m(F ' )>0 and TF'=F' .  

Lemma 2.4., the set F' contains the interval Q~ and hence the set M~ = ~) T ~ Qj. We 
v = 0  

shall prove that the sets Mj possess the required properties. 

Theorem 3.1. The following statements are true: 

(a) TM~=Mfi 
(b) /f i ~ j  then the sets M~ and Mj are either disjoint or identical. 
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Proof. (a) We have TMj= @ T v Qj cMj.  Thus the sequence Mr, TMj, T2 Mi .. . .  is 
~'=1 

descending. By Lemma 2,4., we have lim T" M r ~ (2i and hence afortiori TMj ~ Q4" 
n~oo 

This proves TMj = M r. (Note that, in general, we do not have T-1 Mr = Mr !) 

(b) Let D = M~ c~Mj and assume that 0 < re(D) < m (Mi). As proved in (a), the sets 
M i and Mj are invariant. Thus the sequence D, TD, T2D ....  is descending. By 
Lemma 2.4., the set D contains the interval Q~ and hence the set M~. This contradicts 
the assumption m (D) < m (Mi). 

In order to complete the construction, it now suffices to denote by 
A1, A 2 . . . . .  A s the different ones among the sets M r and to let Tp (p = 1, 2 . . . .  , s) be 
the restriction of T to Ap. It remains to prove ergodicity and existence of an 
invariant measure. 

Theorem 3.2. (a) Each transformation Tp is ergodic on Ap with respect to the 
restriction mlap = me. 

(b) There exists a (unique) Tp-invariant measure #p on Ap which is equivalent 
to rap. 

Proof (a) This follows from the minimality property of the sets  At). The statement 
may also be proved along the lines of part (b) of Theorem 3.1. 

(b) The existence of an invariant measure #p~m was proved in [1] and, by 
another method, in [-4]. 

Let gp(X) be the Radon-Nikodym derivative of #p with respect to m. We shall 
prove that go(X)>0 for m-almost all x E A p .  

Let Gp ={xffAp]go(x ) >0}. Then the relation Tp Gp = TG, c Gp holds, which 
again implies Gp =Ap. This proves part (b). 

Since the measures mp and #p are equivalent, the transformation T is also 
ergodic with respect to #,. As is well-known from ergodic theory, this implies that 
the measure #p is the only one which is invariant and absolutely continuous with 
respect to mo. We are going to study the complement of the union of the Ao's. 

Theorem 3.3. Let B = I \  @ Ap. Then the set B satisfies the relation lim m(T "B) 
= 0 .  p = l  n ~  

Proof We proved in Theorem3.1. that TAp=Ap and hence T - I A p = A p  (p 
=1, ...,s). This implies that the sequence B, T-~B, T - 2 B  ... .  is descending. 
Denote its limit by C and assume re(C) >0. We know by Lemma 2.2. that C has a 
Qisubset of positive measure for some index je{1, ..., s}. Since the set C is strictly 
invariant, it must contain the interval (2i and, hence, the set Ap for some 
pe{ 1, ..., s}. This contradicts the definition of B. 

We can describe the sets Ap as follows: Each Ap contains those intervals (2i for 
which m(A/~F(Qj))>O holds. Furthermore, the set Ap may contain measurable 
subsets of intervals Qa for which m(F(Qj))=O is valid, 
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The Theorems 3.1. through 3.3. were proved under the additional assumption 
that sup If/(x)l <�89 In the general case, choose a suitable power S = T g such that S 
will satisfy this assumption. Let C1, ..., C,, D be the components orS. We let B =D  
and prove that lim m(T-"B)=O.  

n ~ o o  

Let n = p . g + q  (0<q<g) .  We have the obious inequality 
m ( T - " B ) < L q . m ( S  PD), L being the number of cylinders of rank 1. So 
lim m(T "B)=0.  
n ~ c o  g - 1  

We define sets A'~ by A'~ = ~) T v C~. Clearly, one has TA'~ = A'o. 
v = 0  

By arguments very similar to those used in the proofs of Theorems 3.1. and 3.2., 
we can establish the following properties: 

(a) For  a + z the sets A'~ and A'~ are either identical or disjoint. (In fact, each set 
A'~ is the union of sets Cx but we do not use this.) 

(b) If U~ is a subset of A'o of positive measure satisfying TU~ ~ Uo then U~ =A'o. 

Denoting the different ones among the sets A'~ by A I ,  . . . ,  As, we obtain the 
desired decomposition I =A~ u. . .  u A s u B  for which the Theorems 3.1. through 3.3. 
remain valid. This settles the general case. 

A special case. Let T be an F-expansion (that is, let F: [0, 1)~IR be a strictly 
monotone, absolutely continuous function; define T by T x = F ( x ) m o d  1). The 
corresponding f/'s are assume to satisfy conditions (C1) and (C2). 

Theorem 3.4. I f  T is an F-expansion then there is only a single component A 1. 

Proof. For an arbitrary interval J c I consider the sequence J, T J, T 2 J, .... Since 
we have assumed sup If/(x)l < l, there is an integer k~N such that T k j  contains an 
interval which intersects two cylinders of rank 1. In case of an F-expansion this 
means that T k + l j contains, for some e > 0, a set of the form (0, e) w (1 - e, 1). By the 
definition of the Afs, every component Ap would contain a set of this form for some 

>0. Since different components Ap are disjoint, there can only be a single one. This 
concludes the proof. One might think that, at least in the case ofF-expansions, the 
endomorphism (T~,A~,#I) would be exact. This is not so, however. For a 
counterexample, consider the transformation T: 

r x = 6 x + ~ m o d  1. For every sufficiently small e > 0  (e< lxO will do) we have 
Ti(0, e) ~(2, 3) if i is odd, and Ti(0, e) ~(0, • ts, 1) if i is even. Since (0, e) c A  1 for 
some e > 0, T~ cannot be exact. 

But we shall prove that there is always a power T g of T such that T g splits into 
exact components. 

In the author's thesis [4] several sufficient conditions were established which 
imply the existence of an invariant measure/~ = m on I such that T is exact. This is 

6 f  true, for example, if T is an F-expansion satisfying sup If/(x)k <~  or some 6~(0, 1). 

4. Decomposition of the Ao's into Exact Components 

Let I = A I ~ . . . ~ A s u B  be a decomposition of T into ergodic components, and let 
(Ao, Tp, t~p) be the corresponding dynamical systems for each pc{l ,  ..., s}. We 
prove 
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Theorem4.1. For each p~{1, . . . ,s} there is a number m(p)MN and a disjoint 
decomposition Ap =Apl U... wApmr ~ such that TmCp) Ap~=Apo ( a=  1, ..., re(p)) and 
the transformation T* = TO(e) is an exact endomorphism on each App. The Ape'S are 
permuted cyclically by Tp. 

Proof (a) First assume the fi's to satisfy the additional assumption sup ]f{(x)] <�89 

By Theorem 3.1. there exists a representation Ap = ~ T ~ Qj for some interval Q J" 
v = 0  

We have TNQj2 Qj for some N e N ,  the interval Qj being itself a Q j-set. We define 
sets S~ by S~=l im T~N+~Qj (c~=0, . . . ,N--1) .  The sets S~ have the obvious 

v ~ o o  
N - 1  

properties S ~ A p ,  ~ S~=Ap and TpS~=S,+l(modN ). Let re(p) be the least 
0t=0  

positive integer such that T ~(p) S o = S 0, hence re(p)< N. It follows that re(p) is the 
least positive integer such that T mCp) S~ = S~ for each a~ {0, ..., N -  1 }. Now define 
Apr by Apr =S~_ 1 ( a=  1, ..., re(p)). By construction no two of the Ap~ are identical. 
If we can prove the transformation T* to be exact on each Apo, the sets Ap~ must 
be mutually disjoint. 

(b) Let eo=minm(Apr ) and choose e > 0  such that 0 < e < 8  o. By def- 
ff:hZ 

inition of A^~ there exists an integer i(~)~N with the property that 
m(Ap~ \ T i'm(pf+~- i Q j) < e. m(Ap~). Let D ~ Ap~ be an arbitrary set of positive 
Lebesgue measure. By the same argument as in Lemma 2.4. there exists, for every 

>0, a Q~-cylinder c(6) (with rank r(6)__> 1) satisfying m(Dc~c(6))>(1- ~)m(c(6)). 
It was shown in the p roo fo fLemma 2.4. that m(T;(~)(Dc~c(6))) > (1 - K ~). re(Q j) 

with K > 0 depending only on Tp. 
We note that, for fixed values of i, re(p), and a, the transformation T i" m(p)+ ~ - 1  is 

m(p)+a l + r ( 6 )  an absolutely continuous set function. Hence m(Ap~'-. T '  - D) < e. m(Ap~) 
for ~ > 0 sufficiently small. The restriction e < e 0 implies a -  1 + r(cS)- 0 mod re(p). 
Thus m(T*"D)>(1 -e) .  m(Ap~) with n = i + ( a -  1 +r(~))/m(p). By Rohlin's crite- 
rion T* is exact on Ap~. 

(c) Now let ~ be an arbitrary transformation satisfying conditions (C1) and 
(C2), and let k e n  be such that our additional assumption holds for T = zk. For  an 
arbitrary ergodic component C of ~ there is a representation 

C=Am ~u...~uAp, (l > 1), 

the sets Ap, being ergodic components of T. For each set Ap~ (i = 1 . . . . .  l) we define 
the sets Ap~ for the transformation Tp, in the same way as in part (a). 

Let m be the least common multiple of the numbers m(pi), and define the 
transformation T* on C by T* = Tm. Every power of an exact endomorphism is 
again exact, and all we have to show is that ~ permutes the sets Apl ~ cyclically. 

Fix a set Ap~. For  every integer v~N the set z~Ap~o is invariant with respect to 
the transformation T* because T* and z v commute. For the same reason T* is 
exact on each z~Ap,~. Thus every set z*Api~ is again of the form Ap~,. Furthermore 
m'k  

U z~Ap~= C since C does not contain a proper z-invariant subset. This corn- 
v = l  

pletes the proof. 
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