Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1979

The Ergodic Behaviour of Piecewise Monotonic Transformations

Gerold Wagner

Mathematisches Institut der Universität, Pfaffenwaldring 57 D-7000 Stuttgart 80

1. Main Result

Let T be a piecewise monotonic transformation of the unit interval I = [0, 1) onto itself satisfying some additional conditions to be specified later. Then T splits into a finite number of ergodic components in the following sense: There is a decomposition of I into finitely many disjoint measurable sets A_1, \ldots, A_s and B such that

(a) the A_{ρ} 's are invariant $(TA_{\rho} = A_{\rho} \mod 0)$ and the restrictions $T|_{A_{\rho}} = T_{\rho}$ are ergodic with respect to Lebesgue measure m,

(b) on each A_{ρ} there exists an invariant measure μ_{ρ} which is equivalent to the restriction of *m* to A_{ρ} ,

(c) the set B satisfies the relations $T^{-1}B \subset B$ and $\lim m(T^{-n}B) = 0$.

(d) to each component A_{ρ} there corresponds a power $T_{\rho}^* = T_{\rho}^{m(\rho)}$ of the transformation T_{ρ} and a disjoint decomposition $A_{\rho} = A_{\rho 1} \cup \ldots \cup A_{\rho m(\rho)}$ such that $T_{\rho}^*(A_{\rho\sigma}) = A_{\rho\sigma} \mod 0 (\sigma = 1, \ldots, m(\rho))$ and T_{ρ}^* is an exact endomorphism on each $A_{\rho\sigma}$. The transformation T_{ρ} permutes the $A_{\rho\sigma}$ cyclically.

(The set B may have measure 0.)

2. Preliminaries

Let $\mathscr{P} = \{P_1, \ldots, P_L\}$ be a partition of I into intervals. With every P_j we associate a strictly monotone, absolutely continuous function V_j which maps P_j onto an interval $Q_j \subset I$. Without loss of generality we may assume that for $i \neq j$ we have either $Q_i \cap Q_j = \emptyset$ or $Q_i = Q_j$. This can be achieved by choosing an appropriate refinement \mathscr{P}' of the partition \mathscr{P} , if necessary. The transformation T is defined by $Tx = V_j(x)$ for $x \in P_j$. We further assume $TI = I \mod 0$. Set-theoretic relations are always meant to be modulo a set of Lebesgue measure 0 unless indicated otherwise. We point out the different use of the notion of an "invariant set". A set $M \subset I$ is called invariant with

respect to a transformation T, if $TM = M \mod 0$, and strictly invariant, if $T^{-1}M = M \mod 0$. Let the functions V_j be such that the inverses $V_j^{-1} = f_j$ satisfy the following conditions:

(C1) $0 < c_1 \le |f'_j(x)| \le c_2 < 1$ for all $x \in Q_j$ and some positive constants c_1 and c_2 . (C2) $|f''_i(x)| \le K$ for all $x \in Q_j$ and some K > 0.

Note. As I learnt from Li, the results (a) to (c) are contained in a paper by Li and Yorke, Trans. Amer. Math. Soc. 235 (1978), 183–192. These authors use a quite different method. However, the proofs of Lemma 2.5. and 2.7. are not satisfactory, using relations (2.6.) (a) and (c) which are false.

Using an ingenious method, Lasota and Yorke [1] proved for such transformations the existence of a *T*-invariant measure $\mu \ll m$ on *I*. Similar results were obtained by the author in this thesis [4], using a short of renewal argument, the basic idea of which is taken from Fischer's paper [2]. In the author's investigation a major role is played by cylinders (a_1, \ldots, a_s) with the property that the domain of definition of the corresponding function $f_{a_1} \circ \cdots \circ f_{a_s}$ is just the interval Q_{a_s} . A cylinder of this type will be called a Q_{a_s} -cylinder. In the following we make the additional assumption $\sup |f'_j(x)| \leq \frac{\delta}{2}$ for some $\delta \in (0, 1)$. We will return to the

general case later on. As proved in [4], the transformation T and its iterates T^k can be described essentially in terms of Q_j -cylinders. Denote by $E_{m,n}$ $(0 < m \le n)$ the union of all Q_j -cylinders (j=1, ..., L) of rank s satisfying $m \le s \le n$. The following lemma is an immediate consequence of Lemma 5.1. in [4]. For sake of completeness, however, a separate proof will given below.

Lemma 2.1. Let $\varepsilon > 0$ and $n_1 \in \mathbb{N}$. Then there is an integer $n_2 \in \mathbb{N}$ such that $m(I \setminus E_{n_1,n_2}) < \varepsilon$.

Proof. Let $\Re(n_1)$ be the class of all cylinders of rank n_1 which are not Q_j -cylinders for any $j \in \{1, ..., L\}$. Let $R(n_1)$ be their union, and denote their number by $\tau(n_1)$.

Consider an arbitrary cylinder $(a_1, \ldots, a_{n_1}) \in \mathscr{R}(n_1)$, and let $(i) = P_i$ $(i \in \{1, \ldots, L\})$ be a cylinder of rank 1.

Three cases are possible:

(1) If (i) is contained in the interval $T^{n_1}(a_1, \ldots, a_{n_1})$, then $(a_1, \ldots, a_{n_1}, i)$ is a Q_i -cylinder of rank $(n_1 + 1)$.

(2) If we have $m((i) \cap T^{n_1}(a_1, \ldots, a_{n_1})) = \emptyset$, the cylinder $(a_1, \ldots, a_{n_1}, i)$ is not defined at all.

(3) If we have $0 < m((i) \cap T^{n_1}(a_1, \ldots, a_{n_1})) < m(i)$, the cylinder $(a_1, \ldots, a_{n_1}, i)$ is defined but is not a Q_i -cylinder.

The latter case can occur for at most two different values of *i*.

Now let $\Re(n_1+1)$ be the class of all cylinders of rank (n_1+1) which are contained in $R(n_1)$, and which are not Q_j -cylinders. Let $R(n_1+1)$ be again their union, and let $\tau(n_1+1)$ be their number. By the argument above we have $\tau(n_1+1) \le 2\tau(n_1)$.

Defining $\Re(n_1+s)$, $R(n_1+s)$ and $\tau(n_1+s)$ (s=1, 2, ...) inductively, and repeating the argument, we get $\tau(n_1+s) \leq 2^s \tau(n_1)$.

The Ergodic Behaviour of Piecewise Monotonic Transformations

We shall estimate $m(R(n_1 + s))$. By our additional assumption, the measure of a cylinder of rank $(n_1 + s)$ is at most $(\frac{1}{2}\delta)^{n_1 + s}$.

This implies $m(R_1(n+s)) \leq 2^s \tau(n_1) (\frac{1}{2}\delta)^{n_1+s} \leq \delta^{n_1+s} \cdot \tau(n_1)$.

We thus have $m(I - E_{n_1, n_1+s}) \leq m(R(n_1+s)) \leq \delta^{n_1+s} \cdot \tau(n_1)$. Now choose s in accordance with $\varepsilon > 0$, and set $n_2 = n_1 + s$. This completes the proof.

It turns out to be convenient in many cases to restrict oneself to points in I which are not endpoints of any cylinder interval. Throughout this article they will be called "interior points". Note that if x is interior, the same is true for Tx. The set of points which are not interior is, of course, countable..

By the next definition we introduce an essential concept.

Definition 2.1. A point $x \in I$ is said to be a Q_i -point if x is interior and is contained in infinitely many Q_i -cylinders. A set M of positive measure is said to be a Q_i -set if almost all points $x \in M$ are Q_i -points.

(Note that a Q_i -cylinder, if considered as a subset of I, need not be a Q_i -set.) Using Lemma 2.1. we can prove the following assertion:

Lemma 2.2. For almost all $x \in I$ there exists at least one interval Q_i (depending on x) such that x is a Q_i -point.

Proof. Choose an arbitrary sequence $\varepsilon_1, \varepsilon_2, \ldots$ of positive real numbers satisfying $\sum_{\nu=1}^{\infty} \varepsilon_{\nu} < \infty$. Lemma 2.1, we can find a sequence $0 < n_0 < n_1 < n_2 < \dots$ of integers such

that $m(I \smallsetminus E_{n_{\nu-1}, n_{\nu}}) < \varepsilon_{\nu} \ (\nu = 1, 2, ...).$

Since there is only a finite number of different intervals Q_i , the Borel-Cantelli lemma implies for almost all $x \in I$ the existence of a sequence of cylinders $c_1 \supset c_2 \supset \ldots$ which contain the point $x \in I$ and which are Q_i -cylinders for a certain index *j*. This completes the proof.

We now prove three more lemmata which will be of use later on.

Lemma 2.3. If $x \in I$ is a Q_i -point then the same is true for Tx.

Proof. Let $c_1 \supset c_2 \supset \ldots$ be a sequence of Q_j -cylinders with ranks $1 \leq r_1 < r_2 < \ldots$ such that $x \in \bigcap_{m=1}^{\infty} c_m$.

It is true that the image of a cylinder need not be a cylinder again, but the image of Q_j -cylinder of rank $r \ge 2$ is always a Q_j -cylinder. Therefore, $Tc_2 \supset Tc_3 \supset ...$ is a sequence of Q_j -cylinders with $Tx \in \bigcap_{m=2}^{\infty} Tc_m$. Moreover, the point Tx is interior. This completes the proof.

Lemma 2.4. If some set $A \subset I$ of positive measure is a Q_i -set then $\limsup T^n A \supset Q_i$.

Proof. It will be sufficient to show $\bigcup_{\rho=n}^{\infty} T^{\rho} A \supset Q_{j}$ for every n = 1, 2, ... By Lebesgue's density theorem and our assumption, there exists a point $z \in A$ with the following two properties:

(1) $z \in A$ is a point of density 1 and

(2) $z \in A$ is a Q_i -point.

Let $c_1 \supset c_2 \supset \ldots$ be a sequence of Q_j -cylinders with ranks $1 \leq r_1 < r_2 < \ldots$ containing the point $z \in A$. Fix $n \in \mathbb{N}$. For every $\varepsilon > 0$ there is a cylinder $c_k = (a_1, \ldots, a_{r_k})$ satisfying $r_k > n$ and $m(c_k \cap A) \geq (1 - \varepsilon) \cdot m(c_k)$. For an arbitrary measurable set $B \subset c_k$ we shall estimate $m(T^{k(r)}B)$. We note that conditions (C1) and (C2) imply Renyi's condition. That is, for some constant K > 0 depending only on the transformation T, we have

$$\sup \left| \frac{d}{dx} f_{a_1} \circ \cdots \circ f_{a_k} \right| \leq K \cdot \inf \left| \frac{d}{dx} f_{a_1} \circ \cdots \circ f_{a_k} \right|$$

for every cylinder (a_1, \ldots, a_k) .

This implies $m(T^{r_k}B) \leq K \cdot m(Q_j) \cdot m(B) \cdot (m(c_k))^{-1}$ for every $B \subset c_k$.

For $B = c_k \setminus A$ we get $m(T^{r_k}(c_k \setminus A)) \leq K \varepsilon \cdot m(Q_j)$, hence $m(T^{r_k}(c_k \cap A)) \geq (1 - K \varepsilon) \cdot m(Q_j)$, the sets $T^{r_k}(c_k \setminus A)$ and $T^{r_k}(c_k \cap A)$ being disjoint.

By choice of k we have $T^{r_k}(c_k \cap A) \supset \bigcup_{\rho=n}^{\infty} T^{\rho} A$.

This implies $m\left(Q_j \smallsetminus \bigcup_{\rho=n}^{\infty} T^{\rho} A\right) \leq K \varepsilon \cdot m(Q_j)$, which proves the assertion.

Lemma 2.5. If some set $A \subset I$ of positive measure is a Q_j -set then the interval Q_j itself is a Q_j -set

Proof. By Lemma 2.3., the set $\bigcup_{n=0}^{\infty} T^n A$ is a Q_j -set which contains the interval Q_j by Lemma 2.4.

3. Construction of the Ergodic Components

For a fixed Q_j consider the set $F(Q_j)$ of all Q_j -points in *I*. Lemma 2.5. implies that either the set $F(Q_j)$ has measure 0 or that it contains the interval Q_j . We can disregard the Q_j 's for which $m(F(Q_j)) = 0$ holds, thus assuming $m(F(Q_j)) > 0$ in the sequel. It is clear from Lemma 2.3. that $T(F(Q_j)) \subset F(Q_j)$ holds. For any invariant subset $H \subset F(Q_j)$ we can easily prove that *H* is ergodic with respect to *m*, but there still remains the possibility that there may exist a proper subset $G \subset H$ satisfying 0 < m(G) < m(H) and TG = G. This would imply that any invariant measure $\mu \ll m$ on *H* must vanish on $H \smallsetminus G$. So we are looking for a minimal invariant subset of $F(Q_j)$ which we can find as follows:

Let $F' \subset F(Q_j)$ be an arbitrary subset such that m(F') > 0 and TF' = F'. Lemma 2.4., the set F' contains the interval Q_j and hence the set $M_j = \bigcup_{\nu=0}^{\infty} T^{\nu}Q_j$. We shall prove that the sets M_j possess the required properties.

Theorem 3.1. The following statements are true:

- (a) $TM_i = M_i;$
- (b) if $i \neq j$ then the sets M_i and M_j are either disjoint or identical.

Proof. (a) We have $TM_j = \bigcup_{\nu=1}^{\infty} T^{\nu}Q_j \subset M_j$. Thus the sequence M_j , TM_j , T^2M_j , ... is descending. By Lemma 2.4., we have $\overline{\lim_{n \to \infty} T^n}M_j \supset Q_j$ and hence a fortiori $TM_j \supset Q_j$. This proves $TM_j = M_j$. (Note that, in general, we do not have $T^{-1}M_j = M_j$!)

(b) Let $D = M_i \cap M_j$ and assume that $0 < m(D) < m(M_i)$. As proved in (a), the sets M_i and M_j are invariant. Thus the sequence D, TD, T^2D , ... is descending. By Lemma 2.4., the set D contains the interval Q_i and hence the set M_i . This contradicts the assumption $m(D) < m(M_i)$.

In order to complete the construction, it now suffices to denote by $A_1, A_2, ..., A_s$ the different ones among the sets M_j and to let T_{ρ} ($\rho = 1, 2, ..., s$) be the restriction of T to A_{ρ} . It remains to prove ergodicity and existence of an invariant measure.

Theorem 3.2. (a) Each transformation T_{ρ} is ergodic on A_{ρ} with respect to the restriction $m|_{A_{\rho}} = m_{\rho}$.

(b) There exists a (unique) T_{ρ} -invariant measure μ_{ρ} on A_{ρ} which is equivalent to m_{ρ} .

Proof. (a) This follows from the minimality property of the sets A_{ρ} . The statement may also be proved along the lines of part (b) of Theorem 3.1.

(b) The existence of an invariant measure $\mu_{\rho} \ll m$ was proved in [1] and, by another method, in [4].

Let $g_{\rho}(x)$ be the Radon-Nikodym derivative of μ_{ρ} with respect to *m*. We shall prove that $g_{\rho}(x) > 0$ for *m*-almost all $x \in A_{\rho}$.

Let $G_{\rho} = \{x \in A_{\rho} | g_{\rho}(x) > 0\}$. Then the relation $T_{\rho}G_{\rho} = TG_{\rho} \subset G_{\rho}$ holds, which again implies $G_{\rho} = A_{\rho}$. This proves part (b).

Since the measures m_{ρ} and μ_{ρ} are equivalent, the transformation T is also ergodic with respect to μ_{ρ} . As is well-known from ergodic theory, this implies that the measure μ_{ρ} is the only one which is invariant and absolutely continuous with respect to m_{ρ} . We are going to study the complement of the union of the A_{ρ} 's.

Theorem 3.3. Let $B = I \setminus \bigcup_{\rho=1}^{s} A_{\rho}$. Then the set B satisfies the relation $\lim_{n \to \infty} m(T^{-n}B)$

Proof. We proved in Theorem 3.1. that $TA_{\rho} = A_{\rho}$ and hence $T^{-1}A_{\rho} \supset A_{\rho}$ ($\rho = 1, ..., s$). This implies that the sequence $B, T^{-1}B, T^{-2}B, ...$ is descending. Denote its limit by C and assume m(C) > 0. We know by Lemma 2.2. that C has a Q_j -subset of positive measure for some index $j \in \{1, ..., s\}$. Since the set C is strictly invariant, it must contain the interval Q_j and, hence, the set A_{ρ} for some $\rho \in \{1, ..., s\}$. This contradicts the definition of B.

We can describe the sets A_{ρ} as follows: Each A_{ρ} contains those intervals Q_j for which $m(A_{\rho} \cap F(Q_j)) > 0$ holds. Furthermore, the set A_{ρ} may contain measurable subsets of intervals Q_j for which $m(F(Q_j))=0$ is valid.

The Theorems 3.1. through 3.3. were proved under the additional assumption that $\sup |f'_j(x)| < \frac{1}{2}$. In the general case, choose a suitable power $S = T^g$ such that S will satisfy this assumption. Let C_1, \ldots, C_t , D be the components of S. We let B = D and prove that $\lim m(T^{-n}B) = 0$.

Let $n = p \cdot g + q$ $(0 \le q < g)$. We have the obious inequality $m(T^{-n}B) \le L^g \cdot m(S^{-p}D)$, L being the number of cylinders of rank 1. So $\lim_{n \to \infty} m(T^{-n}B) = 0$.

We define sets A'_{σ} by $A'_{\sigma} = \bigcup_{\nu=0}^{g-1} T^{\nu} C_{\sigma}$. Clearly, one has $TA'_{\sigma} = A'_{\sigma}$.

By arguments very similar to those used in the proofs of Theorems 3.1. and 3.2., we can establish the following properties:

(a) For $\sigma \neq \tau$ the sets A'_{σ} and A'_{τ} are either identical or disjoint. (In fact, each set A'_{σ} is the union of sets C_{λ} but we do not use this.)

(b) If U_{σ} is a subset of A'_{σ} of positive measure satisfying $TU_{\sigma} \subset U_{\sigma}$ then $U_{\sigma} = A'_{\sigma}$.

Denoting the different ones among the sets A'_{σ} by A_1, \ldots, A_s , we obtain the desired decomposition $I = A_1 \cup \cdots \cup A_s \cup B$ for which the Theorems 3.1. through 3.3. remain valid. This settles the general case.

A special case. Let T be an F-expansion (that is, let $F: [0, 1) \rightarrow \mathbb{R}$ be a strictly monotone, absolutely continuous function; define T by $Tx = F(x) \mod 1$). The corresponding f'_i s are assume to satisfy conditions (C1) and (C2).

Theorem 3.4. If T is an F-expansion then there is only a single component A_1 .

Proof. For an arbitrary interval $J \subset I$ consider the sequence J, TJ, T^2J , Since we have assumed $\sup |f'_j(x)| < 1$, there is an integer $k \in \mathbb{N}$ such that T^kJ contains an interval which intersects two cylinders of rank 1. In case of an *F*-expansion this means that $T^{k+1}J$ contains, for some $\varepsilon > 0$, a set of the form $(0, \varepsilon) \cup (1 - \varepsilon, 1)$. By the definition of the A_ρ 's, every component A_ρ would contain a set of this form for some $\varepsilon > 0$. Since different components A_ρ are disjoint, there can only be a single one. This concludes the proof. One might think that, at least in the case of *F*-expansions, the endomorphism (T_1, A_1, μ_1) would be exact. This is not so, however. For a counterexample, consider the transformation *T*:

 $Tx = \frac{6}{5}x + \frac{2}{5} \mod 1$. For every sufficiently small $\varepsilon > 0$ ($\varepsilon < \frac{1}{10}$ will do) we have $T^i(0, \varepsilon) \subset (\frac{2}{5}, \frac{3}{5})$ if *i* is odd, and $T^i(0, \varepsilon) \subset (0, \frac{1}{5}) \cup (\frac{4}{5}, 1)$ if *i* is even. Since $(0, \varepsilon) \subset A_1$ for some $\varepsilon > 0$, T_1 cannot be exact.

But we shall prove that there is always a power T^g of T such that T^g splits into exact components.

In the author's thesis [4] several sufficient conditions were established which imply the existence of an invariant measure $\mu \equiv m$ on I such that T is exact. This is true, for example, if T is an F-expansion satisfying sup $|f'_i(x)| < \frac{\delta}{2}$ for some $\delta \in (0, 1)$.

4. Decomposition of the A_{ρ} 's into Exact Components

Let $I = A_1 \cup \cdots \cup A_s \cup B$ be a decomposition of T into ergodic components, and let $(A_\rho, T_\rho, \mu_\rho)$ be the corresponding dynamical systems for each $\rho \in \{1, ..., s\}$. We prove

Theorem 4.1. For each $\rho \in \{1, ..., s\}$ there is a number $m(\rho) \in \mathbb{N}$ and a disjoint decomposition $A_{\rho} = A_{\rho 1} \cup \cdots \cup A_{\rho m(\rho)}$ such that $T^{m(\rho)}A_{\rho\sigma} = A_{\rho\sigma}$ ($\sigma = 1, ..., m(\rho)$) and the transformation $T_{\rho}^* = T_{\rho}^{m(\rho)}$ is an exact endomorphism on each $A_{\rho\sigma}$. The $A_{\rho\sigma}$'s are permuted cyclically by T_{σ} .

Proof. (a) First assume the f_i 's to satisfy the additional assumption $\sup |f_i'(x)| < \frac{1}{2}$. By Theorem 3.1. there exists a representation $A_\rho = \bigcup_{\nu=0}^{\infty} T^{\nu} Q_j$ for some interval Q_j . We have $T^N Q_j \supset Q_j$ for some $N \in \mathbb{N}$, the interval Q_j being itself a Q_j -set. We define sets S_{α} by $S_{\alpha} = \lim_{\nu \to \infty} T^{\nu N+\alpha} Q_j$ ($\alpha = 0, ..., N-1$). The sets S_{α} have the obvious properties $S_{\alpha} \subset A_\rho$, $\bigcup_{\alpha=0}^{N-1} S_{\alpha} = A_\rho$ and $T_\rho S_{\alpha} = S_{\alpha+1} \pmod{N}$. Let $m(\rho)$ be the least positive integer such that $T^{m(\rho)} S_0 = S_0$, hence $m(\rho) \leq N$. It follows that $m(\rho)$ is the least positive integer such that $T^{m(\rho)} S_{\alpha} = S_{\alpha}$ for each $\alpha \in \{0, ..., N-1\}$. Now define $A_{\rho\sigma}$ by $A_{\rho\sigma} = S_{\sigma-1} (\sigma = 1, ..., m(\rho))$. By construction no two of the $A_{\rho\sigma}$ are identical. If we can prove the transformation T_{ρ}^* to be exact on each $A_{\rho\sigma}$, the sets $A_{\rho\sigma}$ must be mutually disjoint.

(b) Let $\varepsilon_0 = \min_{\sigma \neq \tau} m(A_{\rho\sigma} \setminus A_{\rho\tau})$ and choose $\varepsilon > 0$ such that $0 < \varepsilon < \varepsilon_0$. By definition

inition of $A_{\rho\sigma}$ there exists an integer $i(\varepsilon) \in \mathbb{N}$ with the property that $m(A_{\rho\sigma} \setminus T^{i \cdot m(\rho) + \sigma - 1}Q_j) < \varepsilon \cdot m(A_{\rho\sigma})$. Let $D \subset A_{\rho\sigma}$ be an arbitrary set of positive Lebesgue measure. By the same argument as in Lemma 2.4. there exists, for every $\delta > 0$, a Q_j -cylinder $c(\delta)$ (with rank $r(\delta) \ge 1$) satisfying $m(D \cap c(\delta)) \ge (1 - \delta) m(c(\delta))$.

It was shown in the proof of Lemma 2.4. that $m(T_{\rho}^{r(\delta)}(D \cap c(\delta))) > (1 - K \delta) \cdot m(Q_j)$ with K > 0 depending only on T_{ρ} .

We note that, for fixed values of $i, m(\rho)$, and σ , the transformation $T^{i \cdot m(\rho) + \sigma - 1}$ is an absolutely continuous set function. Hence $m(A_{\rho\sigma} \setminus T^{i \cdot m(\rho) + \sigma - 1 + r(\delta)}D) < \varepsilon \cdot m(A_{\rho\sigma})$ for $\delta > 0$ sufficiently small. The restriction $\varepsilon < \varepsilon_0$ implies $\sigma - 1 + r(\delta) \equiv 0 \mod m(\rho)$. Thus $m(T_{\rho}^{*n}D) > (1-\varepsilon) \cdot m(A_{\rho\sigma})$ with $n = i + (\sigma - 1 + r(\delta))/m(\rho)$. By Rohlin's criterion T_{ρ}^{*} is exact on $A_{\rho\sigma}$.

(c) Now let τ be an arbitrary transformation satisfying conditions (C1) and (C2), and let $k \in \mathbb{N}$ be such that our additional assumption holds for $T = \tau^k$. For an arbitrary ergodic component C of τ there is a representation

$$C = A_{\rho_1} \cup \cdots \cup A_{\rho_l} \qquad (l \ge 1),$$

the sets A_{ρ_i} being ergodic components of *T*. For each set A_{ρ_i} (i=1,...,l) we define the sets $A_{\rho_i\sigma}$ for the transformation T_{ρ_i} in the same way as in part (a).

Let *m* be the least common multiple of the numbers $m(\rho_i)$, and define the transformation T^* on *C* by $T^* = T^m$. Every power of an exact endomorphism is again exact, and all we have to show is that τ permutes the sets $A_{\rho_i\sigma}$ cyclically.

Fix a set $A_{\rho_i\sigma}$. For every integer $v \in \mathbb{N}$ the set $\tau^{\nu} A_{\rho_i\sigma}$ is invariant with respect to the transformation T^* because T^* and τ^{ν} commute. For the same reason T^* is exact on each $\tau^{\nu} A_{\rho_i\sigma}$. Thus every set $\tau^{\nu} A_{\rho_i\sigma}$ is again of the form $A_{\rho_i\sigma'}$. Furthermore $\bigcup_{\nu=1}^{m + k} \tau^{\nu} A_{\rho_i\sigma} = C$ since C does not contain a proper τ -invariant subset. This completes the proof.

References

- 1. Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186, 481-488 (1973)
- 2. Fischer, R.: Mischungsgeschwindigkeit für Ziffernentwicklungen nach reellen Matrizen. Acta Arith. 23, 5-12 (1973)
- 3. Rohlin, W.A.: Exact endomorphisms of a Lebesgue space. Isv. Akad. Nauk SSSR 25, 499-530 (1960)
- 4. Wagner, G.: Zahlentheoretische Transformationen. Thesis, Stuttgart 1975

Received January 1, 1978; in revised form August 30, 1978