# The Ergodic Behaviour of Piecewise Monotonic Transformations 

Gerold Wagner<br>Mathematisches Institut der Universität, Pfaffenwaldring 57 D-7000 Stuttgart 80

## 1. Main Result

Let $T$ be a piecewise monotonic transformation of the unit interval $I=[0,1$ ) onto itself satisfying some additional conditions to be specified later. Then $T$ splits into a finite number of ergodic components in the following sense: There is a decomposition of $I$ into finitely many disjoint measurable sets $A_{1}, \ldots, A_{s}$ and $B$ such that
(a) the $A_{\rho}$ 's are invariant $\left(T A_{\rho}=A_{\rho} \bmod 0\right)$ and the restrictions $\left.T\right|_{A_{\rho}}=T_{\rho}$ are ergodic with respect to Lebesgue measure $m$,
(b) on each $A_{\rho}$ there exists an invariant measure $\mu_{\rho}$ which is equivalent to the restriction of $m$ to $A_{\rho}$,
(c) the set $B$ satisfies the relations $T^{-1} B \subset B$ and $\lim _{n \rightarrow \infty} m\left(T^{-n} B\right)=0$.
(d) to each component $A_{\rho}$ there corresponds a power $T_{\rho}^{*}=T_{\rho}^{m(\rho)}$ of the transformation $T_{\rho}$ and a disjoint decomposition $A_{\rho}=A_{\rho 1} \cup \ldots \cup A_{\rho m(\rho)}$ such that $T_{\rho}^{*}\left(A_{\rho \sigma}\right)=A_{\rho \sigma} \bmod 0(\sigma=1, \ldots, m(\rho))$ and $T_{\rho}^{*}$ is an exact endomorphism on each $A_{\rho \sigma}$. The transformation $T_{\rho}$ permutes the $A_{\rho \sigma}$ cyclically.
(The set $B$ may have measure 0 .)

## 2. Preliminaries

Let $\mathscr{P}=\left\{P_{1}, \ldots, P_{L}\right\}$ be a partition of $I$ into intervals. With every $P_{j}$ we associate a strictly monotone, absolutely continuous function $V_{j}$ which maps $P_{j}$ onto an interval $Q_{j} \subset I$. Without loss of generality we may assume that for $i \neq j$ we have either $Q_{i} \cap Q_{j}$ $=\emptyset$ or $Q_{i}=Q_{j}$. This can be achieved by choosing an appropriate refinement $\mathscr{P}^{\prime}$ of the partition $\mathscr{P}$, if necessary. The transformation $T$ is defined by $T x=V_{j}(x)$ for $x \in P_{j}$. We further assume $T I=I \bmod 0$. Set-theoretic relations are always meant to be modulo a set of Lebesgue measure 0 unless indicated otherwise. We point out the different use of the notion of an "invariant set". A set $M \subset I$ is called invariant with
respect to a transformation $T$, if $T M=M \bmod 0$, and strictly invariant, if $T^{-1} M$ $=M \bmod 0$. Let the functions $V_{j}$ be such that the inverses $V_{j}^{-1}=f_{j}$ satisfy the following conditions:
(C1) $0<c_{1} \leqq\left|f_{j}^{\prime}(x)\right| \leqq c_{2}<1$ for all $x \in Q_{j}$ and some positive constants $c_{1}$ and $c_{2}$.
(C2) $\left|f_{j}^{\prime \prime}(x)\right| \leqq K$ for all $x \in Q_{j}$ and some $K>0$.
Note. As I learnt from Li, the results (a) to (c) are contained in a paper by Li and Yorke, Trans. Amer. Math. Soc. 235 (1978), 183-192. These authors use a quite different method. However, the proofs of Lemma 2.5. and 2.7. are not satisfactory, using relations (2.6.) (a) and (c) which are false.

Using an ingenious method, Lasota and Yorke [1] proved for such transformations the existence of a Tinvariant measure $\mu \ll m$ on $I$. Similar results were obtained by the author in this thesis [4], using a short of renewal argument, the basic idea of which is taken from Fischer's paper [2]. In the author's investigation a major role is played by cylinders $\left(a_{1}, \ldots, a_{s}\right)$ with the property that the domain of definition of the corresponding function $f_{a_{1}} \circ \cdots \circ f_{a_{s}}$ is just the interval $Q_{a_{s}}$. A cylinder of this type will be called a $Q_{a_{s}}$-cylinder. In the following we make the additional assumption $\sup \left|f_{j}^{\prime}(x)\right| \leqq \frac{\delta}{2}$ for some $\delta \in(0,1)$. We will return to the general case later on. As proved in [4], the transformation $T$ and its iterates $T^{k}$ can be described essentially in terms of $Q_{j}$-cylinders. Denote by $E_{m, n}(0<m \leqq n)$ the union of all $Q_{j}$-cylinders $(j=1, \ldots, L)$ of rank $s$ satisfying $m \leqq s \leqq n$. The following lemma is an immediate consequence of Lemma 5.1. in [4]. For sake of completeness, however, a separate proof will given below.

Lemma 2.1. Let $\varepsilon>0$ and $n_{1} \in \mathbb{N}$. Then there is an integer $n_{2} \in \mathbb{N}$ such that $m\left(I \backslash E_{n_{1}, n_{2}}\right)<\varepsilon$.
Proof. Let $\mathscr{R}\left(n_{1}\right)$ be the class of all cylinders of rank $n_{1}$ which are not $Q_{j}$-cylinders for any $j \in\{1, \ldots, L\}$. Let $R\left(n_{1}\right)$ be their union, and denote their number by $\tau\left(n_{1}\right)$.

Consider an arbitrary cylinder $\left(a_{1}, \ldots, a_{n_{1}}\right) \in \mathscr{R}\left(n_{1}\right)$, and let $(i)=P_{i}(i \in\{1, \ldots, L\})$ be a cylinder of rank 1.

Three cases are possible:
(1) If $(i)$ is contained in the interval $T^{n_{1}}\left(a_{1}, \ldots, a_{n_{1}}\right)$, then $\left(a_{1}, \ldots, a_{n_{1}}, i\right)$ is a $Q_{i}-$ cylinder of rank $\left(n_{1}+1\right)$.
(2) If we have $m\left((i) \cap T^{n_{1}}\left(a_{1}, \ldots, a_{n_{1}}\right)\right)=\emptyset$, the cylinder $\left(a_{1}, \ldots, a_{n_{1}}, i\right)$ is not defined at all.
(3) If we have $0<m\left((i) \cap T^{n_{1}}\left(a_{1}, \ldots, a_{n_{1}}\right)\right)<m(i)$, the cylinder $\left(a_{1}, \ldots, a_{n_{1}}, i\right)$ is defined but is not a $Q_{i}$-cylinder.

The latter case can occur for at most two different values of $i$.
Now let $\mathscr{R}\left(n_{1}+1\right)$ be the class of all cylinders of rank $\left(n_{1}+1\right)$ which are contained in $R\left(n_{1}\right)$, and which are not $Q_{j}$-cylinders. Let $R\left(n_{1}+1\right)$ be again their union, and let $\tau\left(n_{1}+1\right)$ be their number. By the argument above we have $\tau\left(n_{1}\right.$ $+1) \leqq 2 \tau\left(n_{1}\right)$.

Defining $\mathscr{R}\left(n_{1}+s\right), R\left(n_{1}+s\right)$ and $\tau\left(n_{1}+s\right)(s=1,2, \ldots)$ inductively, and repeating the argument, we get $\tau\left(n_{1}+s\right) \leqq 2^{s} \tau\left(n_{1}\right)$.

We shall estimate $m\left(R\left(n_{1}+s\right)\right)$. By our additional assumption, the measure of a cylinder of rank $\left(n_{1}+s\right)$ is at most $\left(\frac{1}{2} \delta\right)^{n_{1}+s}$.

This implies $m\left(R_{1}(n+s)\right) \leqq 2^{s} \tau\left(n_{1}\right)\left(\frac{1}{2} \delta\right)^{n_{1}+s} \leqq \delta^{n_{1}+s} \cdot \tau\left(n_{1}\right)$.
We thus have $m\left(I \backslash E_{n_{1}, n_{1}+s}\right) \leqq m\left(R\left(n_{1}+s\right)\right) \leqq \delta^{n_{1}+s} \cdot \tau\left(n_{1}\right)$.
Now choose $s$ in accordance with $\varepsilon>0$, and set $n_{2}=n_{1}+s$. This completes the proof.

It turns out to be convenient in many cases to restrict oneself to points in $I$ which are not endpoints of any cylinder interval. Throughout this article they will be called "interior points". Note that if $x$ is interior, the same is true for $T x$. The set of points which are not interior is, of course, countable..

By the next definition we introduce an essential concept.
Definition 2.1. A point $x \in I$ is said to be a $Q_{j}$-point if $x$ is interior and is contained in infinitely many $Q_{j}$-cylinders. A set $M$ of positive measure is said to be a $Q_{j}$-set if almost all points $x \in M$ are $Q_{j}$-points.
(Note that a $Q_{j}$-cylinder, if considered as a subset of $I$, need not be a $Q_{j}$-set.)
Using Lemma 2.1. we can prove the following assertion:
Lemma 2.2. For almost all $x \in I$ there exists at least one interval $Q_{j}$ (depending on $x$ ) such that $x$ is a $Q_{j}$-point.
Proof. Choose an arbitrary sequence $\varepsilon_{1}, \varepsilon_{2}, \ldots$ of positive real numbers satisfying $\sum_{v=1}^{\infty} \varepsilon_{v}<\infty$. Lemma 2.1, we can find a sequence $0<n_{0}<n_{1}<n_{2}<\ldots$ of integers such that $m\left(I \backslash E_{n_{\nu-}, n_{\nu}}\right)<\varepsilon_{v}(\nu=1,2, \ldots)$.

Since there is only a finite number of different intervals $Q_{j}$, the Borel-Cantelli lemma implies for almost all $x \in I$ the existence of a sequence of cylinders $c_{1} \supset c_{2} \supset \ldots$ which contain the point $x \in I$ and which are $Q_{j}$-cylinders for a certain index $j$. This completes the proof.

We now prove three more lemmata which will be of use later on.
Lemma 2.3. If $x \in I$ is a $Q_{j}$-point then the same is true for $T x$.
Proof. Let $c_{1} \supset c_{2} \supset \ldots$ be a sequence of $Q_{j}$-cylinders with ranks $1 \leqq r_{1}<r_{2}<\ldots$ such that $x \in \bigcap_{m=1}^{\infty} c_{m}$.

It is true that the image of a cylinder need not be a cylinder again, but the image of $Q_{j}$-cylinder of rank $r \geqq 2$ is always a $Q_{j}$-cylinder. Therefore, $T c_{2} \supset T c_{3} \supset \ldots$ is a sequence of $Q_{j}$-cylinders with $T x \in \bigcap_{m=2}^{\infty} T c_{m}$. Moreover, the point $T x$ is interior. This completes the proof.
Lemma 2.4. If some set $A \subset I$ of positive measure is a $Q_{j}$-set then $\lim \sup T^{n} A \supset Q_{j}$. Proof. It will be sufficient to show $\bigcup_{\rho=n}^{\infty} T^{\rho} A \supset Q_{j}$ for every $n=1,2, \ldots$. By Lebesgue's density theorem and our assumption, there exists a point $z \in A$ with the following two properties:
(1) $z \in A$ is a point of density 1 and
(2) $z \in A$ is a $Q_{j}$-point.

Let $c_{1} \supset c_{2} \supset \ldots$ be a sequence of $Q_{j}$-cylinders with ranks $1 \leqq r_{1}<r_{2}<\ldots$ containing the point $-\subseteq A$. Fix $n \in \mathbb{N}$. For every $\varepsilon>0$ there is a cylinder $c_{k}$ $=\left(a_{1}, \ldots, a_{r_{k}}\right)$ satisf! $m \varrho r_{k}>n$ and $m\left(c_{k} \cap A\right) \geqq(1-\varepsilon) \cdot m\left(c_{k}\right)$. For an arbitrary measurable set $B \subset c_{k}$ we shall estimate $m\left(T^{k(r)} B\right)$. We note that conditions (C1) and (C2) imply Renyi's condition. That is, for some constant $K>0$ depending only on the transformation $T$, we have

$$
\sup \left|\frac{d}{d x} f_{a_{1}} \circ \cdots \circ f_{a_{k}}\right| \leqq K \cdot \inf \left|\frac{d}{d x} f_{a_{1}} \circ \cdots \circ f_{a_{k}}\right|
$$

for every cylinder $\left(a_{1}, \ldots, a_{k}\right)$.
This implies $m\left(T^{r_{k}} B\right) \leqq K \cdot m\left(Q_{j}\right) \cdot m(B) \cdot\left(m\left(c_{k}\right)\right)^{-1}$ for every $B \subset c_{k}$.
For $B=c_{k} \backslash A$ we get $m\left(T^{r_{k}}\left(c_{k} \backslash A\right)\right) \leqq K \varepsilon \cdot m\left(Q_{j}\right)$, hence $m\left(T^{n_{k}}\left(c_{k} \cap A\right)\right) \geqq(1$ $-K \varepsilon) \cdot m\left(Q_{j}\right)$, the sets $T^{r_{k}}\left(c_{k} \backslash A\right)$ and $T^{v_{k}}\left(c_{k} \cap A\right)$ being disjoint.

By choice of $k$ we have $T^{r_{k}}\left(c_{k} \cap A\right) \supset \bigcup_{\rho=n}^{\infty} T^{\rho} A$.
This implies $m\left(Q_{j} \backslash \bigcup_{\rho=n}^{\infty} T^{\rho} A\right) \leqq K \varepsilon \cdot m\left(Q_{j}\right)$, which proves the assertion.
Lemma 2.5. If some set $A \subset I$ of positive measure is $a Q_{j}$-set then the interval $Q_{j}$ itself is a $Q_{j}$-set

Proof. By Lemma 2.3., the set $\bigcup_{n=0}^{\infty} T^{n} A$ is a $Q_{j}$-set which contains the interval $Q_{j}$ by Lemma 2.4.

## 3. Construction of the Ergodic Components

For a fixed $Q_{j}$ consider the set $F\left(Q_{j}\right)$ of all $Q_{j}$-points in $I$. Lemma 2.5. implies that either the set $F\left(Q_{j}\right)$ has measure 0 or that it contains the interval $Q_{j}$. We can disregard the $Q_{j}$ 's for which $m\left(F\left(Q_{j}\right)\right)=0$ holds, thus assuming $m\left(F\left(Q_{j}\right)\right)>0$ in the sequel. It is clear from Lemma 2.3. that $T\left(F\left(Q_{j}\right)\right) \subset F\left(Q_{j}\right)$ holds. For any invariant subset $H \subset F\left(Q_{j}\right)$ we can easily prove that $H$ is ergodic with respect to $m$, but there still remains the possibility that there may exist a proper subset $G \subset H$ satisfying $0<m(G)<m(H)$ and $T G=G$. This would imply that any invariant measure $\mu \ll m$ on $H$ must vanish on $H \backslash G$. So we are looking for a minimal invariant subset of $F\left(Q_{j}\right)$ which we can find as follows:

Let $F^{\prime} \subset F\left(Q_{j}\right)$ be an arbitrary subset such that $m\left(F^{\prime}\right)>0$ and $T F^{\prime}=F^{\prime}$. Lemma 2.4., the set $F^{\prime}$ contains the interval $Q_{j}$ and hence the set $M_{j}=\bigcup_{v=0}^{\infty} T^{v} Q_{j}$. We shall prove that the sets $M_{j}$ possess the required properties.
Theorem 3.1. The following statements are true:
(a) $T M_{j}=M_{j}$;
(b) if $i \neq j$ then the sets $M_{i}$ and $M_{j}$ are either disjoint or identical.

Proof. (a) We have $T M_{j}=\bigcup_{v=1}^{\infty} T^{v} Q_{j} \subset M_{j}$. Thus the sequence $M_{j}, T M_{j}, T^{2} M_{j} \ldots$ is descending. By Lemma 2.4., we have $\lim _{n \rightarrow \infty} T^{n} M_{j} \supset Q_{j}$ and hence a fortiori $T M_{j} \supset Q_{j}$. This proves $T M_{j}=M_{j}$. (Note that, in general, we do not have $T^{-1} M_{j}=M_{j}$ !)
(b) Let $D=M_{i} \cap M_{j}$ and assume that $0<m(D)<m\left(M_{i}\right)$. As proved in (a), the sets $M_{i}$ and $M_{j}$ are invariant. Thus the sequence $D, T D, T^{2} D, \ldots$ is descending. By Lemma 2.4., the set $D$ contains the interval $Q_{i}$ and hence the set $M_{i}$. This contradicts the assumption $m(D)<m\left(M_{i}\right)$.

In order to complete the construction, it now suffices to denote by $A_{1}, A_{2}, \ldots, A_{s}$ the different ones among the sets $M_{j}$ and to let $T_{\rho}(\rho=1,2, \ldots, s)$ be the restriction of $T$ to $A_{\rho}$. It remains to prove ergodicity and existence of an invariant measure.

Theorem 3.2. (a) Each transformation $T_{\rho}$ is ergodic on $A_{\rho}$ with respect to the restriction $\left.m\right|_{A_{\rho}}=m_{\rho}$.
(b) There exists a (unique) $T_{\rho}$-invariant measure $\mu_{\rho}$ on $A_{\rho}$ which is equivalent to $m_{\rho}$.

Proof. (a) This follows from the minimality property of the sets $A_{\rho}$. The statement may also be proved along the lines of part (b) of Theorem 3.1.
(b) The existence of an invariant measure $\mu_{\rho} \ll m$ was proved in [1] and, by another method, in [4].

Let $g_{\rho}(x)$ be the Radon-Nikodym derivative of $\mu_{\rho}$ with respect to $m$. We shall prove that $g_{\rho}(x)>0$ for $m$-almost all $x \in A_{\rho}$.

Let $G_{\rho}=\left\{x \in A_{\rho} \mid g_{\rho}(x)>0\right\}$. Then the relation $T_{\rho} G_{\rho}=T G_{\rho} \subset G_{\rho}$ holds, which again implies $G_{\rho}=A_{\rho}$. This proves part (b).

Since the measures $m_{\rho}$ and $\mu_{\rho}$ are equivalent, the transformation $T$ is also ergodic with respect to $\mu_{\rho}$. As is well-known from ergodic theory, this implies that the measure $\mu_{\rho}$ is the only one which is invariant and absolutely continuous with respect to $m_{\rho}$. We are going to study the complement of the union of the $A_{\rho}$ 's.

Theorem 3.3. Let $B=I \backslash \bigcup_{\rho=1}^{s} A_{\rho}$. Then the set $B$ satisfies the relation $\lim _{n \rightarrow \infty} m\left(T^{-n} B\right)$
$=0$.
Proof. We proved in Theorem 3.1. that $T A_{\rho}=A_{\rho}$ and hence $T^{-1} A_{\rho} \supset A_{\rho}$ ( $\rho$ $=1, \ldots, s)$. This implies that the sequence $B, T^{-1} B, T^{-2} B, \ldots$ is descending. Denote its limit by $C$ and assume $m(C)>0$. We know by Lemma 2.2. that $C$ has a $Q_{j}$-subset of positive measure for some index $j \in\{1, \ldots, s\}$. Since the set $C$ is strictly invariant, it must contain the interval $Q_{j}$ and, hence, the set $A_{\rho}$ for some $\rho \in\{1, \ldots, s\}$. This contradicts the definition of $B$.

We can describe the sets $A_{\rho}$ as follows: Each $A_{\rho}$ contains those intervals $Q_{j}$ for which $m\left(A_{\rho} \cap F\left(Q_{j}\right)\right)>0$ holds. Furthermore, the set $A_{\rho}$ may contain measurable subsets of intervals $Q_{j}$ for which $m\left(F\left(Q_{j}\right)\right)=0$ is valid.

The Theorems 3.1. through 3.3. were proved under the additional assumption that sup $\left|f_{j}^{\prime}(x)\right|<\frac{1}{2}$. In the general case, choose a suitable power $S=T^{g}$ such that $S$ will satisfy this assumption. Let $C_{1}, \ldots, C_{t}, D$ be the components of $S$. We let $B=D$ and prove that $\lim m\left(T^{-n} B\right)=0$.

Let $n=p \cdot g+q \quad(0 \leqq q<g)$. We have the obious inequality $m\left(T^{-n} B\right) \leqq L^{q} \cdot m\left(S^{-p} D\right), L$ being the number of cylinders of rank 1 . So $\lim m\left(T^{-n} B\right)=0$.
$n \rightarrow \infty$
We define sets $A_{\sigma}^{\prime}$ by $A_{\sigma}^{\prime}=\bigcup_{\nu=0}^{g-1} T^{v} C_{\sigma}$. Clearly, one has $T A_{\sigma}^{\prime}=A_{\sigma}^{\prime}$.
By arguments very similar to those used in the proofs of Theorems 3.1. and 3.2., we can establish the following properties:
(a) For $\sigma \neq \tau$ the sets $A_{\sigma}^{\prime}$ and $A_{\tau}^{\prime}$ are either identical or disjoint. (In fact, each set $A_{\sigma}^{\prime}$ is the union of sets $C_{\lambda}$ but we do not use this.)
(b) If $U_{\sigma}$ is a subset of $A_{\sigma}^{\prime}$ of positive measure satisfying $T U_{\sigma} \subset U_{\sigma}$ then $U_{\sigma}=A_{\sigma}^{\prime}$.

Denoting the different ones among the sets $A_{\sigma}^{\prime}$ by $A_{1}, \ldots, A_{s}$, we obtain the desired decomposition $I=A_{1} \cup \cdots \cup A_{s} \cup B$ for which the Theorems 3.1. through 3.3. remain valid. This settles the general case.
$A$ special case. Let $T$ be an $F$-expansion (that is, let $F:[0,1) \rightarrow \mathbb{R}$ be a strictly monotone, absolutely continuous function; define $T$ by $T x=F(x) \bmod 1$ ). The corresponding $f_{i}^{\prime} s$ are assume to satisfy conditions (C1) and (C2).

Theorem 3.4. If $T$ is an $F$-expansion then there is only a single component $A_{1}$.
Proof. For an arbitrary interval $J \subset I$ consider the sequence $J, T J, T^{2} J, \ldots$. Since we have assumed sup $\left|f_{j}^{\prime}(x)\right|<1$, there is an integer $k \in \mathbb{N}$ such that $T^{k} J$ contains an interval which intersects two cylinders of rank 1. In case of an $F$-expansion this means that $T^{k+1} J$ contains, for some $\varepsilon>0$, a set of the form $(0, \varepsilon) \cup(1-\varepsilon, 1)$. By the definition of the $A_{\rho}$ 's, every component $A_{\rho}$ would contain a set of this form for some $\varepsilon>0$. Since different components $A_{\rho}$ are disjoint, there can only be a single one. This concludes the proof. One might think that, at least in the case of $F$-expansions, the endomorphism ( $T_{1}, A_{1}, \mu_{1}$ ) would be exact. This is not so, however. For a counterexample, consider the transformation $T$ :
$T x=\frac{6}{5} x+\frac{2}{5} \bmod 1$. For every sufficiently small $\varepsilon>0\left(\varepsilon<\frac{1}{10}\right.$ will do) we have $T^{i}(0, \varepsilon) \subset\left(\frac{2}{5}, \frac{3}{5}\right)$ if $i$ is odd, and $T^{i}(0, \varepsilon) \subset\left(0, \frac{1}{5}\right) \cup\left(\frac{4}{5}, 1\right)$ if $i$ is even. Since $(0, \varepsilon) \subset A_{1}$ for some $\varepsilon>0, T_{1}$ cannot be exact.

But we shall prove that there is always a power $T^{g}$ of $T$ such that $T^{g}$ splits into exact components.

In the author's thesis [4] several sufficient conditions were established which imply the existence of an invariant measure $\mu \equiv m$ on $I$ such that $T$ is exact. This is true, for example, if $T$ is an $F$-expansion satisfying sup $\left|f_{i}^{\prime}(x)\right|<\frac{\delta}{2}$ for some $\delta \in(0,1)$.

## 4. Decomposition of the $\boldsymbol{A}_{\boldsymbol{\rho}}$ 's into Exact Components

Let $I=A_{1} \cup \cdots \cup A_{\mathrm{s}} \cup B$ be a decomposition of $T$ into ergodic components, and let $\left(A_{\rho}, T_{\rho}, \mu_{\rho}\right)$ be the corresponding dynamical systems for each $\rho \in\{1, \ldots, s\}$. We prove

Theorem 4.1. For each $\rho \in\{1, \ldots, s\}$ there is a number $m(\rho) \in \mathbb{N}$ and a disjoint decomposition $A_{\rho}=A_{\rho 1} \cup \cdots \cup A_{\rho m(\rho)}$ such that $T^{m(\rho)} A_{\rho \sigma}=A_{\rho \sigma}(\sigma=1, \ldots, m(\rho))$ and the transformation $T_{\rho}^{*}=T_{\rho}^{m(\rho)}$ is an exact endomorphism on each $A_{\rho \sigma}$. The $A_{\rho \sigma}$ 's are permuted cyclically by $T_{\rho}$.

Proof. (a) First assume the $f_{i}^{\prime}$ 's to satisfy the additional assumption sup $\left|f_{i}^{\prime}(x)\right|<\frac{1}{2}$. By Theorem 3.1. there exists a representation $A_{\rho}=\bigcup_{v=0}^{\infty} T^{\nu} Q_{j}$ for some interval $Q_{j}$. We have $T^{N} Q_{j} \supset Q_{j}$ for some $N \in \mathbb{N}$, the interval $Q_{j}$ being itself a $Q_{j}$-set. We define sets $S_{\alpha}$ by $S_{\alpha}=\lim _{v \rightarrow \infty} T^{v-1}, Q_{j}(\alpha=0, \ldots, N-1)$. The sets $S_{\alpha}$ have the obvious properties $S_{\alpha} \subset A_{\rho}, \bigcup_{\alpha=0}^{N-1} S_{\alpha}=A_{\rho}$ and $T_{\rho} S_{\alpha}=S_{\alpha+1}(\bmod N)$. Let $m(\rho)$ be the least positive integer such that $T^{m(\rho)} S_{0}=S_{0}$, hence $m(\rho) \leqq N$. It follows that $m(\rho)$ is the least positive integer such that $T^{m(\rho)} S_{\alpha}=S_{\alpha}$ for each $\alpha \in\{0, \ldots, N-1\}$. Now define $A_{\rho \sigma}$ by $A_{\rho \sigma}=S_{\sigma-1}(\sigma=1, \ldots, m(\rho))$. By construction no two of the $A_{\rho \sigma}$ are identical. If we can prove the transformation $T_{\rho}^{*}$ to be exact on each $A_{\rho \sigma}$, the sets $A_{\rho \sigma}$ must be mutually disjoint.
(b) Let $\varepsilon_{0}=\min m\left(A_{\rho \sigma} \backslash A_{\rho \tau}\right)$ and choose $\varepsilon>0$ such that $0<\varepsilon<\varepsilon_{0}$. By definition of $A_{\rho \sigma}$ there exists an integer $i(\varepsilon) \in \mathbb{N}$ with the property that $m\left(A_{\rho \sigma} \backslash T^{i \cdot m(\rho)+\sigma-1} Q_{j}\right)<\varepsilon \cdot m\left(A_{\rho \sigma}\right)$. Let $D \subset A_{\rho \sigma}$ be an arbitrary set of positive Lebesgue measure. By the same argument as in Lemma 2.4. there exists, for every $\delta>0$, a $Q_{j}$-cylinder $c(\delta)$ (with rank $r(\delta) \geqq 1$ ) satisfying $m(D \cap c(\delta)) \geqq(1-\delta) m(c(\delta)$ ).

It was shown in the proof of Lemma 2.4. that $m\left(T_{\rho}^{r(\delta)}(D \cap c(\delta))\right)>(1-K \delta) \cdot m\left(Q_{j}\right)$ with $K>0$ depending only on $T_{\rho}$.

We note that, for fixed values of $i, m(\rho)$, and $\sigma$, the transformation $T^{i \cdot m(\rho)+\sigma-1}$ is an absolutely continuous set function. Hence $m\left(A_{\rho \sigma} \backslash T^{i \cdot m(\rho)+\sigma-1+r(\delta)} D\right)<\varepsilon \cdot m\left(A_{\rho \sigma}\right)$ for $\delta>0$ sufficiently small. The restriction $\varepsilon<\varepsilon_{0}$ implies $\sigma-1+r(\delta) \equiv 0 \bmod m(\rho)$. Thus $m\left(T_{\rho}^{* n} D\right)>(1-\varepsilon) \cdot m\left(A_{\rho \sigma}\right)$ with $n=i+(\sigma-1+r(\delta)) / m(\rho)$. By Rohlin's criterion $T_{\rho}^{*}$ is exact on $A_{\rho \sigma}$.
(c) Now let $\tau$ be an arbitrary transformation satisfying conditions (C1) and (C2), and let $k \in \mathbb{N}$ be such that our additional assumption holds for $T=\tau^{k}$. For an arbitrary ergodic component $C$ of $\tau$ there is a representation

$$
C=A_{\rho_{1}} \cup \cdots \cup A_{\rho_{1}} \quad(l \geqq 1),
$$

the sets $A_{\rho_{1}}$ being ergodic components of $T$. For each set $A_{\rho_{i}}(i=1, \ldots, l)$ we define the sets $A_{\rho_{i} \sigma}$ for the transformation $T_{\rho_{i}}$ in the same way as in part (a).

Let $m$ be the least common multiple of the numbers $m\left(\rho_{i}\right)$, and define the transformation $T^{*}$ on $C$ by $T^{*}=T^{m}$. Every power of an exact endomorphism is again exact, and all we have to show is that $\tau$ permutes the sets $A_{\rho_{i} \sigma}$ cyclically.

Fix a set $A_{\rho_{i} \sigma}$. For every integer $v \in \mathbb{N}$ the set $\tau^{\nu} A_{\rho_{i} \sigma}$ is invariant with respect to the transformation $T^{*}$ because $T^{*}$ and $\tau^{v}$ commute. For the same reason $T^{*}$ is exact on each $\tau^{\nu} A_{\rho_{i} \sigma}$. Thus every set $\tau^{\nu} A_{\rho_{i} \sigma}$ is again of the form $A_{\rho_{i}^{\prime} \sigma^{\prime}}$. Furthermore $\bigcup_{v=1}^{m \cdot k} \tau^{\nu} A_{\rho_{i} \sigma}=C$ since $C$ does not contain a proper $\tau$-invariant subset. This completes the proof.

## References

1. Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186, 481-488 (1973)
2. Fischer, R.: Mischungsgeschwindigkeit für Ziffernentwicklungen nach reellen Matrizen. Acta Arith. 23, 5-12 (1973)
3. Rohlin, W.A.: Exact endomorphisms of a Lebesgue space. Isv. Akad. Nauk SSSR 25, 499-530 (1960)
4. Wagner, G.: Zahlentheoretische Transformationen. Thesis, Stuttgart 1975

Received January 1, 1978; in revised form August 30, 1978

