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Summary. In this paper, we continue earlier works of one of the authors on 
vague convergence of the sequence/~k,,, =/~k+l * ... */~,, where/~, is a sequence 
of probability measures on semigroups or groups. Typical results in this 
paper are: Theorem. Let S be a locally compact noncompact  second countable 

group such that S =  0 S~, S~ being the support  of a probability measure/~ 
n = l  

on S. Suppose there exists an open set V with compact closure such that 
x71 Vx= V for every x~S. Then for all compact  sets K, sup{/~"(Kx): x~S} nO 
as n -~ oo. Theorem. Let S be an at most countable discrete group. Let/?, be a 
sequence of probability measures on S. Then for all nonnegative integers k, 
the sequence/?k., converges vaguely to some probability measure if and only 

if there exists a finite subgroup G such that the series ~ /3 ,  ( S -  G)<,so and for 
n = l  

any proper subgroup G' of G and any choice of elements g, in S, the series 

~fln( S-gn-I  G' g21) = oo. A sufficient condition for the vague convergence 
n = l  

of the sequence /?k., to a probability measure is that (i) there exists a finite 

subgroup G such that ~ ]3 , (S -G)<oo  and ( i i ) /~ , (e)>s>0 for all n, e being 
the identity. ,=1 

1. Throughout  this paper, S will denote a locally compact second countable 
semigroup (i.e. an algebraic semigroup with locally compact Hausdorff  topology 
and jointly continuous multiplication). 

By a measure on S, we mean a finite regular non-negative measure on the class 
of all Borel sets (generated by open sets) of S. Let C(S) be the real-valued con- 
tinuous functions with compact  support. A net of measures (/~k) is said to converge 
in the weak*-sense (or vaguely) to a measure/~ if and only if for each f ~ C(S), 
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S fdf lk  converges to S fd f i .  By Banach-Alaoglu's theorem, the set B(S) of all 
measures fi with fl(S)=<l is compact in the weak*-topology. Also B(S) is an 
algebraic semigroup under the usual convolution (*) operation of measures. 

Throughout we will use the following notation. For sets A and B c S  and 
any point x in S, we will write: 

A x - a = { y :  y xeA}; x - l A = { y :  x y e A } ;  

A B - I = U { A x - I : x e B }  and A - 1 B = ~ ) { x - I B : x E A } .  

It is known that for any f leB(S)  and any Borel set C, the mappings x --, fi(C x -  1) 
and x ~ fi(x -1 C) are measurable; also for/~1 and f12 in B(S), we have: 

 1(c x -1)  2(dx)=S/h(x -1 c) Bl(dx). 

When S is compact, B(S) as well as P(S) (= the  probability measures on S) is 
a compact topological semigroup with respect to convolution and the weak*- 
topology. But P(S), despite being a topological semigroup, is compact if and only 
if S is compact while B(S) although compact is not a topological semigroup since 
the convolution in B(S) is not jointly continuous - for example, when S=(0, oo), 
6~,~ ~ 0 vaguely, 6~1/, } ~ 0 vaguely while 6~,~ * 6~1/,} = 611 }. When S is the semigroup 
[0, c~) under multiplication, the convolution in B(S) is not even separately con- 
tinuous; the reason is: one can show by using the Central Limit theorem that 

oo X n 

if # is the normalized Lebesgue measure on [0, e], e = ~ n~' then #" converge 

vaguely to the measure �89 g~o~B(S) while #",6~o}=6~0 ~ and �89 8~o~, 3~o}_~.._1 6~0~" 
The purpose of this paper is to describe the limit behavior of the sequence 

f lo. ,=fll  , . . . , f t , ,  where fl,, is a sequence in P(S), on semigroups S which are 
either compact or groups. So far the main work in this context seems to have 
been done by Kloss [6], Csiszfir [1], and Tortrat [12]. See also [4, 7, 8, 9, 10]. 
Kloss [6] proved the following theorem 

Theorem (Kloss). Let S be a compact group. Then if (ft,) is a sequence in P(S), 
there exist elements a ,~S  such that the normalized sequence f i l*f i2*. . .*f i ,*c~, ,  
converges', vaguely as n ~ o o  to a probability measure on S. 

Kloss left the problem of extending this result to compact semigroups open. 
One of the results (Theorem 1) in this paper is this extension. Csiszflr [1] proved 
the following theorem. 

Theorem (Csiszfir). Let S be a locally compact group. Let  (ft,) be a sequence in P(S). 
Then either 

sup{flt *f l2*. . .  *f in(Kx):  x e S }  --+0 as n---~oo 

for each compact set K or there exists a, e S such that the sequence fll * fi2 *.. .  * ft, * 6 ~. 
converges weakly as n ~ o 0  to some probability measure. 

In [10], it was proved that in a non-compact locally compact second countable 
group S generated by the support of a probability measure fie P(S), the sequence fi" 
converges vaguely to zero. In this paper, we will discuss when we can expect a 
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stronger limit theorem, namely when sup{fl"(Kx): x ~ S } ~ O  as n tends to 
infinity for each compact set K. In this paper, we also study the question of 
existence of constants a, in a locally compact non-compact group such that the 
sequence fln*C~an converges vaguely to a probability measure on S, which is 
generated by the support of ft. A good part of this paper (all of Section 4) is devoted 
to solving the problem of finding suitable necessary and sufficient conditions 
for the vague convergence of a sequence fik,,= fik+l *"" *ft, to some probability 
measure for all positive integers k on at most countable discrete groups. This 
subject was first studied in details by Maksimov [7, 8] in the case of finite groups. 
Maksimov generalized the classical concept of variance for random variables 
taking values in a finite group. His methods and results are interesting, but do not 
seem to carry over to the case of infinite groups. Our results extend Maksimov's 
results to infinite groups, and our methods are more direct and different from 
those of Maksimov. We mainly use ideas of Csisz/tr and Tortrat. In this context, 
we should mention an interesting paper by Heyer [4]. He also considering finite 
groups to study this problem and presents a detailed proof of the following 
Maksimov theorem: if f t , (e)>&>0 for all n, then ilk,,, is vaguely convergent for 
all k. An extension of this result is obtained as a corollary to our character- 
ization theorem (Theorem 16). We also present some new results in finite groups. 

2. In this section, we extend Kloss's theorem to compact semigroups. Our method 
is different from that of Kloss (Kloss' method actually does not extend to semi- 
groups) and our proof is very much like that of Mukherjea [9]. For completeness, 
we include the proof. 

Theorem 1. Let S be a compact Hausdorff second countable semigroup and fir be a 
sequence in P(S). Then there exist a sequence of constants a n in S such that for all 
nonnegative integers k, the sequence flk.,*&a, converges vaguely to a probability 
measure as n tends to infinity. 

Proof Since S is a compact semigroup, P(S) is a compact semigroup. ByTheorem 2.1 
in [1], there exists a subsequence n k of positive integers such that for each non- 
negative integer j, we have: 

flj,,~ ~ rcj as k tends to infinity, 

2 
~'nk ---~ TCoo ~ ~oc , 7[j * TCoc ~ 7~oo. 

Let G~'s be open sets such that S ~  = ~ Gn. We choose a subsequence (Pk) of (rig) 
such that ~-1 

flp~.p~,l - '  z~ as k tends to infinity 

and 

flpk~pk_i(Gk)> 1 _ 1  for each k and for each i>  1. 
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Let m be any positive integer such that Pk <m~pk+l.  Then 

P~. ~ +~ ( ~ )  = fi~.~ * tim. ~+~ (6~) 

=I fl.~.m(akY -1) flm, p~+~(dY) 

<fiv~.~(Gk z~, 1) (for some z~ in S). 

Now let z be any element in the support of ~o. Then we claim that the sequence 
ilk, ~ * 6~.~ converges vaguely to the probability measure 7c k, 6: as n --, c~. To prove 
this claim, we consider a cluster point Qk of the sequence ilk,,* 6 .  Then there 
exists a subsequence m~ of positive integers such that 

fik..,*6~mj--*Qk as j ~ o o .  

We now replace the sequence mj by a suitable subsequence (and still calling this 
subsequence mj's such that we can choose a subsequence (Pk~) of the sequence (Pk) 
such that pkj<mj<pk~+. The sequence /~ , 3  has cluster points of the 

r Pk j  , m e Zmd 

form 2.5~o, where z o is a cluster point of the z~'s and 2 is a cluster point of the 
sequence fipg~, ,.j. Because of the way the sequence zm's have been chosen, it follows 

that the support of 2.6zo is contained in the support of ~z~; otherwise there would 
be an open set V with Vc~ G empty (G an open set containing S~=) and V inter- 
secting the support of 2.6~o, which means that 2.6~o(V)>0 and for infinitely 
many j, fipkr,.*6~,.j(V) is greater than a fixed positive number which clearly 

contradicts the way the z~'s have been chosen. Now by [11], we have for any Borel 
set B and for any y in the support of ~ that 

~oo(Bz -1 y - l )  = zc~(B z-l). 

Then 

rc~ ,2,6~oz(B)=7c ,2,5~o(BZ -1) 

=~ ~ ( B  z - '  y - l ) ~ ,  6zo(dy) 

=~ ~oo(Bz -1) 2,3~o(dy)=rc ,6~(B ). 

Since ilk, m j* 6~,,~ z = ilk, Pkj* (fiPkj. "~ * 6~j~), it is clear that 

This proves the claim and the theorem follows. 

3. In this section, S will always denote a locally compact non-compact topological 
group. It is known [10] that i f#~P(S)  and S is the smallest closed group con- 
taining S,, then ~"--, 0 vaguely as n ~ o9. In this section we show that actually 
a stronger form of this result is valid in many topological groups. 

Proposition 2. Let I~ ~P(S). Suppose there exist a~eS such that the sequence #~* 6~. 
converges vaguely as n-~o9 to a probability measure Q~P(S). Then for some 
z ~ s , # , Q = Q , 6 ~ .  
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Proof If#~.c5 ~ Q  as n ~ o %  then #n + l . ba ~ # .  Q as n - + . ~ .  But # " + 1 . 6 ~ =  
#~ + 1 .6~,  +~ * c521+ ~ ~,. This  means  that  if a~+l- 1 a,, ~ o o ,  then #" +1 . C3a~ ~ 0 as n ~ oo 
which is impossible.  Therefore,  -1 a~+l an-~ oo and consequently,  this sequence has 
some limit point  z~ S. It follows easily t h a t / ~ .  Q = Q .  c5. 

Theorem 3. Suppose #eP(S) and S= ~ S~. Suppose there exists an open set V 
n=l  

with compact closure such that for every xeS,  x -1 Vx = V Then for every compact K, 
sup { / ( K  x): xeS}  --*0 as n ~oo.  

Proof. Suppose  the conclusion of the t heo rem is false. Then by Csisz~tr's theorem 
(see Sect ion 1), #n,6~.  ~ Q e P ( S )  as n ~ .  With no loss of generality, we can 
assume that  SQ c~ V4=~. N o w  by Propos i t ion  2, #*  Q = Q ,  c5~ for some zeS. Then  
# " , Q = Q , @ .  

The  function x ~ Q ( x  -1 K), K=V,,  is upper  semi-cont inuous and therefore, 
attains its m a x i m u m  at some x = x  o in S. Then  

Q(xo 1 K ) = # " , Q ( x o  1 K z") 

=~ ~n(Xo i K z" y-l)  O(dy) 

= ~ #,, (x ~ 1 z"y -1 K) Q (dy) = ~ - .  xo (P")(Y-1 K) Q (dy) 

where for any measure  )~, j" 2(B) = 2 ( x -  1 B). 

Let  us write: v =  ~ 2~ Then v is a probabi l i ty  measure  and we 
n = l  have:  

1 
Q(xo 1K)= 2 ~ Q ( x o  1 K ) = I  v(Y -1 K) Q(dy) 

n=l  Z 

= ~ , ,(K y -  1 / O (dy) = v �9 Q(K)  = S Q (Y 1 K) v(dy). 

This means  that  

[Q(xo 1 K ) - Q ( y  -1 K)]  v(dy)=O. 

Since Q(xo 1 K)>Q(y  -1 K) for all yeS, it follows that  Q(xo 1 K)=Q(y -1 K) for 
a lmost  all y(v) in S,,. By the upper  semicontinui ty of the function x ~ Q(x -1 K), 
Q(xo 1 K)=Q(y  -1 K) for all yeS,,. This means  that  S,. is compact .  T o  see this, 
suppose there exist infinitely m a n y  y,zeS such that  the sequence Yn doesn ' t  have 
a limit point.  Then  for each n, Q(y21 K) = Q(x o 1 K) > 0; also since Y21 K ~ y(  1 K +fJ 
for all n implies that  yneK(y[ 1 K) -1 (which is a compac t  set) for all n, there 
exists n 1 > 1 such that  y~- 1 K ~ y[- 1 K =~.  Again, since y,- 1 K ~ (y,7~ I K u y[- 1 K) =l=~i 
for all n > n  1 implies that  the yn's (for all n>n 0 lie in a compac t  set, there exists 
n 2 > n  1 such that  y ~ l K c ~ ( y ~ l K w y ~ l K ) = f i  In this way, we can show the 
existence of infinitely m a n y  pairwise disjoint sets y2,1 K, each having the same 
positive Q-measure.  This  contradicts  that  Q is a probabi l i ty  measure,  proving 
that  S~ is compact .  
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k k Now we claim that H =- S u S u is a compact normal subgroup of S. To see 
k = l  

this, we notice that S~= ~) z -k x o S k and S~. 1S, .~H so that H is compact. Since # '  

k = l  

by hypothesis, S=  0 S~, it is clear that for any x~S, x - 1 H  x c H ,  this inclusion 
k=l 

being easily valid for all x~S"~ (n any positive integer). This means that for all 
xeS,  x H = H x .  It follows that H is a subsemigroup since for any two positive 
integers m and n, 

n ~ - - n  n - -  - - n  n (S; m S'~)(S;" S.) H(S. S . ) - ( H S .  ) S. 
n ~  =(S;" H) Su H. 

Since H = H-1,  H is a compact normal subgroup of S as claimed. 
Since S ; I S ,  c H ,  it follows immediately that S , ~ H . x  for some x. This 

�9 x r H, since otherwise S, ~ H = a compact subgroup, contradicting that the smallest 
closed subgroup containing Su is non-compact. Since S~ ~ H x", by the normality 

of H, S = S~ = H x'. Now we notice that the set H x" is closed. The 
n = l  n = l  n = l  

co 

reason is: let y be not contained in, but a limit point of U s~, then there are 
n = l  

oo 

elements u,, e S~ ' such that u,, ~ y as i ~ oo. Notice that S,. = ~) z-  k XO sk is compact. 
k = l  

Hence there is a subsequence n~j such that z - % .  x o u ,~j~weS.  But this means 

that z" iJ~Xo.yW as j ~ o o .  Since by Proposition2, H , i , . Q = Q . 6 : % ,  this 

means that p"~J*Q ~ Q * 6 ~ o r ,  as j--.oo. This is a contradiction, since # " ~ 0  
vaguely as n ~ oo. 

It is now clear that S=  0 Hx". Let a e S , ~ H x .  Then a - l e H x "  for some 
n = l  

positive integer n and therefore, H x " = H x  -~ or x"+~eH. This means that 

S = 0 H x k, which is a contradiction since S is non-compact. The theorem now 
k = l  

follows. 

The following corollary now follows immediately. 

Corollary 4. Let S be discrete, #eP(S) and S= ~j Sk,. Then for every compact set K, 
sup{p"(K x): xeS}  ~ 0  as n~oo .  k=l 

Remark 5. It is not clear how we can prove Theorem 3, if, instead of assuming 

S=  @ S~ (i.e. the group S is generated by S, as a semigroup), we assumed S=  
k=l 

~J(Su US21) k (i.e. the group S is generated by S u as a group). The difficulty is in 
1r 
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showing (in the proof  of Theorem 3) that H = [~ S~ S~ -k is a semigroup. However, 
k = l  

we can prove the following theorem when S is abelian or # is symmetric. 

Theorem6. Suppose #eP(S)  and S= U (Su u S 2 I )  k. Suppose also that either S is 
k = l  

abelian or # is symmetric I (i.e. #(B)=#(B-1)) .  Then there exist elements a, eS 
such that the sequence #".c~,, converges vaguely as n-~ oo to some Q~P(S) if and 
only if there exists a compact normal subgroup H such that S u c H .  x for some xCH. 
Also, the limiting measure Q (when it exists) is the translate of some Haar measure 
on a compact group. 

Proof The proof  of the ' i f '  part  follows from that of Theorem 3. We will prove 
only the "only if" part. 

First, suppose that S is abelian. If a,~S such that the sequence # " . ~ ,  con- 
verges to some Q ~P(S) as n ~ o v ,  then the sequence 

v, = (#" * cSa,) * (cSa~ 1 �9 = #" �9 (here, fi (B) = # (B- 1)) 

converges, as n ~ or, to Q .  (~ = 2, say, where for any measure v, ~ denotes the 
measure ~(B)=v(B-1). This means that v,=(#./~)" and therefore, since 2 =  
lira (#./~)", 2 = 2 a is the normal Haar  measure on its support  H( = Sx), a compact 

n ~ t - J  

subgroup. Also, # * / ~ . 2 = 2  and therefore, S u . S j t c H  and H =  U ( S u . S - t p  
- - U  / �9 

n = i  

It is clear that if x ~ S u u S~ t, x - ~ H x c H. It follows that for all x ~ S, x - a H x c H 
and consequently, H is a compact normal subgroup and S u c H . x  for some 
xCH. 

In case, S is not abelian and #=f i ,  the sequence v, equals #2, and 2 =  lim # 2 n .  
~t ~ oo 

Again, Sa=H is a compact subgroup since 2=22.  Since /~=~, Su=S2 ~. It is 

clear that H =  S u and as above, H is normal and S ~ c H . x ,  x~It .  Note that 
n = i  

in this case, S has to be compact, a contradiction. 
Finally, about the structure of the limiting measure Q (when it exists), let S 

be abelian. With no loss of generality, we assume that e~S  e. By Proposition 2, 
there exists z in S such that # .  (2 = Q * c5 and therefore, by the abelian property 
of S, ((6~_~)* #)* (2 =Q. It follows from [12] that Q(Bx-~)=Q(B)  for all Borel 
sets B and all x in H~, the group generated by the support z - I . S  u of the 
measure (cS=_d.#. Since SQ contains e, it is clear that SQ~H. Since the group 
generated by z - ~ . S ,  contains H, it follows that Q is the Haar  measure on SQ. 

Before we present our next results in the context of the question when 
s u p { # " ( K x ) : x E S } ~ O  as n--,oo for every compact set K in a non-compact  
group S, we consider the following example due to Harry Kesten (private com- 
munication to the second-named author). This example shows, among other 
things, the importance of Theorem 3 in the non-connected case and the interesting 
nature of Theorem 6 and also, Theorems 8 and 9 to follow. 

It follows easily that for a symmetric # there don't exist elements a,, such that the sequence p"* c~ 
converges vaguely to a probability measure 
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Example 7. Let S be the group of matrices of the form 

where 0 < d < 1 and d is a fixed real number, and k and r range over the integers 
and real numbers respectively. We assume that the support of #, a probability 
measure on S, is the set 

{ (d  o ~) '  r is a real number} 

and such that E(lrl)<oo. Then a product 

of n independent identically distributed (according to #) matrices in S is given by 

(~ ~")' s ,=q +drz +d2 ra + ... +d ' - l  r,. 

It is clear that s, has a limit distribution since 0 < d < 1 and E(lr I) < oo, and therefore, 
the sequence 

has also a limit distribution. Hence, in this case the sequence # " ,  6,n, where 

a = , converges vaguely t e a  probability measure as n ~ oo. 

TheoremS. Let S be nilpotent, #eP(S) and S = (SuuS,-1)." Suppose e~Su. 
Then for an), compact set K, "=~ 

sup {#"(K x): x~S} ~ 0 

as/q ----~ oo. 

Proof. Since S is nilpotent, by definition there is a finite sequence of closed normal 
subgroups (Zi)~= 1 such that 

{ e } = Z o c Z  1 c Z 2 c  .. .  cZn=S 

and the quotient group Zi+I/Z i is the center of the quotient group S/Zi for 
i = 0, 1, ..., n -  1. We make an induction argument on n. If n = 1, S is non-compact 
abelian and the theorem follows by Csisz&r's theorem and Theorem 6. Suppose 
the theorem is true for all non-compact nilpotent groups S whose central ascending 
series (as above) has length less than n. It is clear that the quotient group S/Z 
(where Z = the center of S) has length n -  1 for its central ascending series, if the 
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corresponding series for S has length n. I fS /Z  is compact, then by [2], the quotient 
S/S' (S '= the  topological commutator subgroup) is non-compact and abelian 
with S' compact; therefore, it follows easily by Csiszfir's theorem that the 
conclusion of the theorem follows for S. Now the only case left to be considered 
is when the quotient S/Z is non-compact. Then by induction-hypothesis, the 
conclusion of the theorem holds for the group S/Z, which is non-compact, 
nilpotent and has length n - 1  for its central ascending series. Let us define the 
measure 2 on the Borel subsets of S/Z by 2(B)=p(r  where ~b is the 
natural map from S onto S/Z. Then for any compact set K c S ,  cP(K) is compact 
and 

sup 2k(~(K) ~(x) -1) - 0 
x~S 

as k--+ o0, since S;. contains the identity of S/Z. Since for each k, 

2 k (B) = #k (~ -  1 (B)), 

it follows that the theorem holds for S. The induction argument is complete. 
The theorem now follows. 

Our last theorem in this section gives a complete picture of when there exist 
elements a n such that #" �9 6a~ converges weakly in the case of non-compact abelian 
groups. 

Theorem 9. Let S be a locally compact non-compact abelian group. Let #6P(S) and 

S= Q)(Suu S~1) n. Then there exist elements a,~S such that the sequence #"*ban 
n = l  

converges vaguely as n --+ ov to a probability measure if and only if the following 
conditions hold: 

(i) S is topologically isomorphic to Z x H o, where Z is the discrete group of 
integers and Ho, a compact abelian group: 

(ii) S, = { 1 } x A, where A is some compact subset of H ,such that ~) ( A u A-  1)~ = H. 
n = l  

Proof Suppose there exist a,~S such that #".c~a+Q~P(S) as n ~ov .  Then by 
Theorem 6, S, c H x ,  x(~H and H is a compact subgroup. Hence S, is compact 
and consequently, S is compactly generated. By [3, p. 90] S is topologically iso- 
morphic to the direct product R ~ x Z ~ x H, where R is the additive group of reals, 
Z is the additive group of integers and H o is a compact abelian group, and n, m 
are non-negative integers. If n2 and n are both positive, then since S u c H x and H 
is a compact subgroup of S, it is clear after identifying S with R" x Z m x H o that 

S , c { x l }  x {x2} •  o 

where x=(x~,x2 ,  x3)~S. But if n>0,  then Su cannot generate the group S and 
consequently, n=0.  If m>  1, then also Su cannot generate the group S since a 
single element cannot generate Z ~, m> 1. Hence, m = l  and S is topological 
isomorphic with Z x H o. Since for S, to generate Z x Ho, x 2 above must be the 
integer 1, it is clear that Sr {1} x A, A c H  o. 

The converse is clear by Theorem 6. 
We end this section with the following conjecture. 
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Conjecture. Let S be a locally compact non-compact connected group and #eP(S) 

such that S= U ( S , ~ S - l V  ' _ ~  j .  Then ~for every compact set K, 
n=l 

sup{#n(Kx): x6S}  ~ 0  

as n ~ o e  (or equivalently, there don't exist elements an such that the sequence 
#"* 6a, is weakly convergent). 

4. In this section, we will consider the weak convergence of the sequence ilk, n = 
flk+l*flk+2*'"*fin, where fl~eP(S) and S is an at most countable group with 
discrete topology. In the case of compact groups where the fl~'s are all the same, 
we know from the Kawada-Ito theorem [5] that the weak convergence of lk, n 
depends upon the support of the measure. This is not so when the measures are 
different as can easily be seen. For instance, let S = {e, x}, the cyclic group of order 
two. Then if 12,+1 =6e and 12n---cSx, the sequence ilk,,, does not converge. Also, 
by defining here ln=Xn 3~+(1--Xn) 6 x, we see that for proper choice of the xn's, 
we can have lo,2n+l(e)<3/8 and to,2n(e)>5/8. Our goal in this section is to 
obtain necessary and sufficient conditions for the weak convergence of the sequence 
tk.n. While this problem is solved in the case of discrete groups here, it remains 
unsolved in the non-discrete situation; however, there are two very useful (and 
significant) results available in this context in the case of general locally compact 
second countable groups, the first one being due to I. Csiszfir [1] and A. Tortrat  
[121 independently and the second one due to I. Csisz~tr [1]. To state the results, 
let X1, X2, . . .  be independent random variables with values in S with distribu- 
tions i l ,  12, ... respectively. Since the natural mapping O: S ~S /G ,  where S/G 
is the set of all left cosets of G with the quotient topology, is continuous and there- 
fore, O(X,) is a random variable with values in S/G. By saying that the sequence 
X n converges mod G, we will mean the convergence of the corresponding sequence 
O(Xn) in S/G. The first of the two results mentioned above is stated in Section 1. 
The second one can be stated as follows: 

Theoreml0.  Assume that the product XkXk+ 1 ... X n (for all k > l )  have limiting 
distributions as n --* ~ .  Then there exists a unique compact subgroup G ~ S  such that 
all the above limiting distributions are G-uniform and the product X~ X 2 . . .X ,  
converges rood G with probability one. 

Though the problem of weak convergence is completely unsolved in the non- 
discrete situation, it is rather easy to give a necessary and sufficient condition 
for the vague convergence to zero of the sequence io,n in the special case when 
the sequence In is a periodic sequence (i.e. for all k, lk=ik+p for some fixed 
positive integer p). Before we state this, we may observe the following: The vague 
cluster points of the sequence lk, n can only be zero or probability measures; this 
follows because in case of a non-zero cluster point of the sequence tk, n, by Csisz~tr's 
theorem there exist constants a n such that ik, n*a, converge vaguely to some 
probability measure t~, and it is then clear that for any non-zero cluster point Q 
of ik.,,  Q * csb = il, for some cluster point b of the sequence a n, implying that Q is a 
probability measure. 
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Theorem l l .  Lef (fi,) be a periodic sequence (with period p) of probability measures 
on S, a locally compact group. Then the sequence flo,, converges to zero vaguely as 
n tends to infinity if and only if for all s with l < s < p ,  the set S~ . . . . . . .  ~ is not 
contained in a compact group. 

We omit the proof. 
In what follows, S is always an at most countable group with discrete topology. 

We provide necessary and sufficient conditions for the weak convergence of 
fig,, for all positive integers k. Maksimov [-7, 8] and Heyer [4] studied this problem 
for S a finite group. Maksimov's methods of proofs are based on a generalized 
concept of variance that he introduces for group-valued random variables. His 
proofs do not seem to carry over to the case of infinite groups. Our proofs are 
different and hold for groups which are not necessarily finite. Also Maksimov 
seems to have studied the convergence problem in [7] in the case where the limit 
measures ~k are not of the form nk*WG, where G +  {e}. On the other hand, Heyer 
introduces a concept of "filling" and then proves a number of results on the 
convergence problem based on this concept. He also considers only finite groups. 
An extension of Maksimov's main result is presented here as a corollary to our 
characterization theorem (Theorem 16). 

Lemma 12. I f  for each positive integer k, the sequence ilk,, converges vaguely to a 
probability measure 7Ck6P(S), then there is a finite subgroup G such that ~z k con- 
verges vaguely to w G as k tends to oQ and ~k = ~k * WG" Furthermore there exists a 
positive integer N such that for any k > N, 7c k = ~k * WH (H a finite subgroup of S) 
implies that H c G. Here w represents the uniform distribution. 

Proof This is precisely the assertion 3.31 on page 291 in [3]. The last assertion 
follows easily by noting that nk(G) > 1/2 for k sufficiently large, and that ~k = rCk * Wr~ 
implies that for x EH, ~zk(G)=~k(G x - i )  so that G c~ G x -1 +~. 

It is easy to see that the sequence fi0,, converges vaguely to WH, H a finite sub- 
group if fll =WH and for k >  1, S ~ c H  although the sequence fig,, (for k >  1) may 
not converge. Our next result describes when this kind of situation is not possible. 

Proposition 13. Suppose for some nonnegative integer k, the sequence ilk, ~ converges 
vaguely to nk6P(S) and ~z k is not of the form ~k *WG where G is a fin!te subgroup 
distinct from identity. Then for every nonnegative integer k, the sequence fik., 
converges vaguely to a probability measure. 

Proof I f  ilk., converges to ~z k for some k, then tip., converges for all p<k.  VVe now 
claim the following: 

lira inffl,,m(e)= 1. (1) 
n ~ o o  m:>n 

If(l) is not true, then we can find subsequences n~, m~ with n~ < m~ of positive integers 
such that fi . . . . .  vaguely converges to some fl' as i ~  and fl'(e)< 1. But since 

we have: 

Gk * J~t ~ Tfk 
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so that f l 'sP(S).  It is clear that S~, is contained in a finite subgroup G of S, since 
otherwise fl'" converges vaguely to the zero measure and this means that ~k= 

~k* f i , , ~  0 as n ~ o~, which is, of course, a contradiction. Since (l/n) ~ f i ' i ~  wa 

as n ~ 0% it is clear that ~z k = 7c k* w G. By the hypothesis of our proposition, G = {e} 
and thus, f l '= the  unit mass at e. This proves (1). Now let p > k .  Let rc~p and rc2p 
be any two vague cluster points of tip.,. Then we choose subsequences n~ and n' i 
of positive integers such that n i < n' i and 

flp, nl-"')" ~lp,  flp. n~-~" ~2p. 

Since we have (1) and the following equality 

tip. ,i = tip. ,,* fi . . . .  ;, 

it follows that 7C2p = nlp* 5e= ~lp" The proposition now follows. 

Now we will present two lemmas which will be needed to establish our main 
theorem (Theorem 16). 

Lemma 14. Let  G be a f inite subgroup of  S, flnaP(S), and Xt,  X 2 . . . .  be independent 
random variables with values in S and distributions ill, fi2, . . . .  Then the product 

X 1 X 2 ... X n converges rood G if and only if ~ f i ~ ( S - G ) < o o .  Also, in this case 

lira inf fin.,~(G)= 1. ,=1 
n~oo rn?~n 

Proof  The first assertion of the lemma follows easily by the Borel-Cantelli lemma. 

For the second assertion, note that if ~ f l , ( S - G ) < o o ,  then given any positive 
n = l  

number t, there exists a positive integer N such that n > N implies that 

n 

which means that 

> l - - t ,  

p ( X  N XN + ~ ... X n ~ G ) >  1 - t .  

It  follows now that lira inf f l , ,m(G)= 1. 

Lemma 15. Let G be a finite subgroup of  S, f l ,~P(S), and X1,  X 2, ... be a sequence 
of  independent random elements on S with distributions ill, fi2, . . . .  Suppose that 
the product X 1 X2  ... X n converges rood G with probability one, but there do not 
exist constants a, such that X 1 X 2 ... Xn a n converges rood G' with probability one 
for any proper subgroup G' of  G. Then for every positive integer k, the sequence 

ilk,, vaguely converges to some ~Zk~P(S). 

Proof  Suppose X 1 X 2 ... X n converges rood G with probability one. Then by 
Csisz~r's theorem, there exist constants a, such that X~ X 2 ... Xn an converges 
rood G' for some finite subgroup G', the sequence ilk,,* 6,~ vaguely converges to 
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some ~keP(S), ~k--' WG, and ~Ck=rCk*WG,, It is clear from Lemma 14 that every 
vague cluster point of the sequence ik, n is a probability measure (because of the 
validity of the "lira inf" condition there). This means that every subsequence of 
the sequence a, has a cluster point; for, otherwise for some subsequence n i, 6an~ --' 0 

vaguely and by the joint continuity of convolution as a mapping from P(S) x B(S) 
into B(S), it will follow that ~k = 0, a contradiction. Now we choose a subsequence 
n s of positive integers such that i . . . . . . .  * c~a,s + 1 ~ wG' vaguely�9 If b is a cluster point 

a - 1  of the subsequence ( . . . .  ), then w G,, 6 b is a vague cluster point of the double 
sequence i,,m. This fact alongwith the lira inf condition in Lemma 14 (which 
is also valid here) implies that G ' b c G  or G ' c G b  -1. This means that G ' c G  
and beG. By our assumption in the statement of the lemma, G'=G. It follows 
that every cluster point of the sequence a n lies in G. It is clear then that for each 
positive integer k, ilk,, ~ ~Zk vaguely. 

Theorem 16. For all nonnegative integers k the sequence ilk,, converges vaguely to 
some zckeP(S) as n ~ov  if and only if there exists a finite subgroup G such that 

o o  

f i , ( S -  G) < oo and for any proper subgroup G' of G and any ,selection of elements 
n = l  o o  

gn in S, n=0,  1, 2, ..., the series ~ l , ( S - g , _  1G' g~-l)= oo. 
n = l  

Proof Note that if X~, X2, ... are random variables with distributions/71, 82, ..., 
then the sequence g,_~ X, gn-~ has distributions given by the sequence in(g2~l �9 g,) 
and by Lemma 14, it follows that the sequence X 1 X 2 ... X, g~-~ =got(g0 X~ g1-1) 
�9 (g~ Xz  g21).. .  (g,_~ Xn g2 1) converges rood G' with probability one if and only if 

oo 

ft, (g2l 1 (S - G') g,) < oo. The 'if' part of the theorem now follows from Lemma 15. 
n = l  

For the 'only if' part, the proof goes as follows�9 Suppose that for all k>0,  
the sequence fig,, converges to rCkeP(S ). Then by Theorem 10 and Lemma 14, 

oo 

there is a finite subgroup G such that ~ l , ( S - G ) <  oo. Suppose there is a proper 

subgroup G' of G and constants gn such that i~(S-gn_~ g~-l)<oo. Then 
n = l  

since G has only finitely many proper subgroups, we can assume with no loss of 
generality that G' does not have any proper subgroup with the above property. 
Now we define the measures i'~ by 

' - 6  * i . , c S g  . i n  - -  g,-TJ1 

Then we have 

y~ 6')< oo, 
n = l  

and for all proper subgroups G" of G' and elements a, eS, n=0,  1, 2 . . . .  , the series 

~ - 1  f l , ( S - a , _  1 G' a, )=  oo. By the ' i f ' pa r t  of the theorem, it follows that for all 
n ~ l  
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k = 0, 1, 2 . . . . .  the sequence 

l'k.,=fl~+l * ... *~; ~7~ k vaguely as n - - .~ ,  

! ~ ! _ _  ! 7~k WG', Zk-- Zk* Wa' and for k sufficiently large, 

t t ~z k = 7~ k * wr~ implies that H c G'. 

Since fl~,, = 3g~_~ * ilk., * 3g, and ilk,, as well as fl~,. converges vaguely to probability 
measures, it is clear that the sequence g, has a cluster point g in S. This means that 

and 

7rlk * Wg-lGg=~gfftl*~k * WG*~g 

= 6~ffJl * ~k * 6~ (since rc k = ~k * WO) 
! 

= 7~ k . 

This means that g-1 G g ~ G', which is a contradiction since G' is a proper subgroup 
of the finite group G. The proof of the theorem is now complete. 

We now present three interesting corollaries of Theorem 16. 
Our first corollary is an extension of the main result of Maksimov [8] and 

Heyer [4]. 

Corollary 17. Let S be an at most countable discrete group. Suppose there is a finite 

subgroup G such that ~ f i , (S-G)<oo.  Then a sufficient condition for the vague 
n = l  

convergence of ilk., tO some ~k in P(S) Jbr all nonnegative integers k is that for all 
positive integers k, flk(e)>s for some fixed positive number s. 

Proof Let p be the smallest integer with the property that there is a finite subgroup 

G' with cardinality p such that ~ f l , ( S - G ' ) < ~ .  Such a p exists clearly 
n = l  

because of our assumption in the corollary. Suppose that l~ (e )>s  >0  for all m, 
and for some positive integer k, the sequence ilk,, does not converge vaguely to a 
probability measure. Then by Theorem 16, there exist elements g, in S and a 

proper subgroup H of G' such that ~ f l , ( S - g , _  1 H g2~)<c~. This means that 
n = l  

there exists a positive integer N such that for all n > N, the identity e belongs to 
g,_~ H g2 ~, or g,_~ H = g ,  H and H g,_~a = H  g21. This means that gu-1 H gN-11 = 

g N _ l H g ; l = g , _ l H g 2 1  and ~fi,(S--gN_lHg~vl_l) is convergent. Since 
n ~ l  

gN-~ H g ~ a  has fewer number of elements than G', this contradicts the mini- 
mality of p. The corollary now follows. 

Corollary 18. Suppose S is an at most countable discrete group and has no non- 
trivial proper finite subgroup. Let fi, eP(S) and suppose that fl,(e)= 1 - r , .  Then 
the following statements are valid: 
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(a) I f  ~ rn<oo, then the sequence ilk., converges vaguely to some ~Zk~P(S ) 
n = l  

Jor all nonnegative integers k, 

(b) Suppose S is infinite and ~ r, = oo. Then the sequence ilk,, does not converge 
n = l  

vaguely to a probability measure for any positive integer k. 

(c) Suppose that S is finite and ~ r,=c~. Then 
n = l  

(i) /f ~ , [1 - sup{f l , (x ) :  x~S}]<oo ,  then for some positive integer k, the 
n = l  

sequence fik,, does not converge vaguely to a probability measure," 
Go 

(ii) /f ~ [-1-sup{fi,,(x): x6S}]=oo,  then for all nonnegative integers k, the 
n = l  

sequence ~k., ~ Ws vaguely as n --* c~. 

Proof The statement (a) follows from Theorem 16. To prove part (b), notice that S 
is assumed to have no proper finite subgroup other than {e}, and therefore by 

Theorem 16, ~ J;, =oo implies that for some k, the sequence ilk,, does not converge 
n = l  

vaguely to a probability measure. Then by Proposition 13, assertion (b) follows. 

Let us now prove (c). So we assume that S is finite and ~ r, = oo. Note that the 
n = l  

condition that for any choice of constants g,, in S, the series ~ f i , (S-g,_~ e g2Z) 

is divergent is equivalent to saying that "=~ 

inf{fl . (S-x):  xeS}  = ~ [ 1 - s u p  {/~.(x): x~S}]=oo .  
n = l  n ~ l  

Since {e} is the only proper subgroup and S itself is the only finite subgroup G 

such that ~ f l , (S -G)< o o ,  it is clear that assertion (c) holds by Theorem 16. 
n = l  

Note that in case of convergence, the limit probability measures ~r k satisfies 
Tgk = TCk * W s  ~ W s  . 

Our last corollary shows what is needed to obtain a theorem like Theorem 1 
in the non-compact situation. We only look at the discrete case. Csiszflr's results, 
of course, somewhat describes this situation even in the non-discrete situation. 

Corollary 19. Let S be an at most countable discrete group. Let fl~ be in P(S). Then 
there exist constants a~ in S such that the sequence fig, n* CSa, converges vaguely to 
some probability measure as n -~oo for all nonnegative integers k if and only if 

oo 

there exists a finite subgroup G such that ~ f l~ (S -g~_  1 Gg ~ ) < o o  for some 
selection of elements g. in S with go = e. ~=t 

Proof To prove the 'if' part, let define the sequence 
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Then ~ f i ' . (S-G)< oe for some finite subgroup G, which means that 
n= l  

lim inf t'.. m(G) = 1 
n ~  m > n  

(by Lemma 14). By Csisz~tr's theorem, there are constants b n in S such that for all k, 
ilL. n * 3b. converges vaguely to some probability measure ~ .  It follows that with 
a . = g .  bn and ~k=6gk_l*r@ the sequence flk..*6~ converges vaguely to ~k' The 
proof for the 'only if' part is also similar. 

We end this paper with an interesting proposition which can also be used to 
give straightforward and elementary proofs of some special cases of Theorem 16. 

Proposition 20. Let S be an at most countable discrete group and G a subgroup of S. 
Let K c S. Then for nonnegative integers k, p and m with k + 1 <=p and m >= 1, we have: 

p + m  

ik, p(KG)- F, i.(S-G)=<tk, p+m(KC) 
n = p + l  

p + m  

<=&,~(KG)+ F~ I.(S-G). 
n = p q l  

Proof Using definition of convolution, we have: 

ik, v+l(KG) -- ~ ik.p( KG X -1) lp+l(X) 
x ~ S  

<=lk.~(KG)+ Z lk.,(KG x -~) l~+~(x) 
xg~G 

N ilk. p (KG) + tp + 1 ( S -  G). 

Repeating this process m times gives us the right-hand inequality of the pro- 
position. For the other inequality, 

tk.~+~(KG)>= Y~ tk.v(KG x -~) ip+~(x) 
x e G  

= lk.p(KG) [1 - t p + ~ ( S -  G)] >_- fik.p(KG)- 8 , + ~ ( S -  G). 

Another m times produces the left-hand inequality of the proposition. 
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