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Summary. For an arbitrary experiment E we investigate the relation between its 
pairwise sufficient subalgebras and its sufficient sublattices in the M-space orE 
(in the sense of L. LeCam). By exhibiting an experiment without minimal 
pairwise sufficient subalgebra it is shown that this correspondence is in general 
not bijective. In view of this we introduce the rather large class of majorized 
experiments. They have a minimal pairwise sufficient subalgebra which can be 
described explicitely. 

As a natural subclass of the majorized experiments appear the coherent 
experiments that are distinguished by the coincidence of sufficiency and 
pairwise sufficiency. It is shown that the coherent experiments are characterized 
by the fact that they admit a majorizing measure which is localizable. As a 
consequence we obtain that the class of coherent experiments coincides with 
classes of experiments previously introduced by T.S. Pitcher, D. Mul3mann, M. 
Hasegawa and M.D. Perlman. 

One of the fundamental concepts in mathematical statistics is the notion of 
sufficiency. Important contributions to its theory are due to P.R. Halmos and L.J. 
Savage [3], R.R. Bahadur [1] and D.L. Burkholder [2]. It turns out that for 
dominated experiments the class of sufficient subalgebras has very nice properties 
whereas for arbitrary experiments most of these properties break down. In 
particular there does not always exist a minimal sufficient subalgebra. 

In order to preserve the nice sufficiency properties of dominated experiments 
generalizations of domination have been introduced. We mention the compact 
experiments of T.S. Pitcher [12], the weakly dominated experiments of D. 
MuBmann [10], and the coherent experiments ofM. Hasegawa and M,D. Perlman 
[4]. A different approach was taken by L. LeCam [7]. In establishing his theory of 
comparison of experiments he introduced the concept of a sufficient sublattice (in 
the M-space of the experiment). The class of sufficient sublattices has the same nice 
properties as the class of sufficient subalgebras of dominated experiments. But 
LeCam's theory was formulated in terms of Banach lattices, so it remains to explore 

0044-3719/79/0046/0237/$02.00 



238 E. Siebert 

its connection with measure theoretic concepts. It turns out that the pairwise 
sufficient subalgebras (already introduced by Halmos and Savage in [3]) cor- 
respond to the sufficient sublattices [7, 8]. In fact it was claimed in [83 that this 
correspondence is bijective. As a consequence there would exist a minimal pairwise 
sufficient subalgebra for any experiment. But this is disproved in the present paper 
(cf. Section 2). Hence a more careful analysis of the relation between sufficient 
lattices and pairwise sufficient a-algebras is necessary. In this paper we present 
some results in this direction. 

The first section describes the connection between sufficient sublattices and 
pairwise sufficient subalgebras. The proofs (which in most cases are simple) are 
omitted. In Section 2 an example of an experiment is given that has no minimal 
pairwise sufficient subalgebra. This disproves results in [6] and [8]. In Section 3 we 
introduce the concept of a majorized experiment that generalizes the concept of a 
dominated experiment considerably. For  majorized experiments we can prove the 
existence of a minimal pairwise sufficient subalgebra. Finally Section 4 is concerned 
with coherent experiments which are intermediate between dominated and 
majorized experiments. For coherent experiments sufficiency and pairwise suf- 
ficiency are essentially the same. It is shown that the class of coherent experiments 
coincides with the classes of Pitcher, Mul3mann, Hasegawa and Perlman men- 
tioned above. 

With the exception of Proposition 4.1 this paper contains only results out of the 
Habilitationsschrift [14] of the author. 

Preliminaries 

Let X be a non-void set and 9.I, 91' a-algebras of subsets of X. Then 96 v 92' denotes 
the a-algebra generated by 9.1 w 9.1'. If91' is contained in 92 we call 91' a subalgebra of 
92 (though the correct term would be sub-a-algebra). 5~ 92). denotes the space of 
bounded measurable real valued functions on (X, 92). IfA is a subset of X then 1 A is 
its indicator function. For  a family ~- of functions on X we denote by 91(N) the a- 
algebra on X generated by ~. If # is a measure and f > 0 a measurable function on 
(X, 91) then f .  # is the measure with #-density f L~(X, 9.1, #) and E~ 9.I, #) denote 
the spaces of (equivalence classes of) measurable functions on (X, 9.I) integrable 
respectively essentially bounded with respect to #. The measure # is said to 
have the finite subset property if for every A~92 such that #(A) = ~ there exists a set 
B E92 such that B ~ A and 0 < #(B)< oo. The measure # is said to be localizable if it 
has the finite subset property and if L~176 92, #) is an order complete lattice (i.e. for 
any non-void majorized set in L~ 92, #) its supremum exists in L~176 92, #)). 
Localizable measures are studied in some detail in [16]. 

Let I be a non-void index set. By ~(1)  and d ( I )  we denote the systems of finite 
respectively countable subsets :#~3 of I. By an experiment E with index set I we 
understand here a family (P~)i~1 of probability measures on a measurable space 
(X, 92). We write E - (X, 9.1, (Pi)i~i). For  any subset J of I we put E s = (X, 92, (Pi)i~J) 
and 91(J) = {A 692: P~(A) --- 0 for all i~J or P/(A) = 1 for all i6J}. If ~ is a subalgebra of 
91 let ~ = ~ v gt(I). If # is a measure on (X, 91) we write (Pi)i~i~# if #(A) =0  is 
equivalent with P~(A) = 0 for all i~I (A 696). Let Jgb(X, 91) be the L-space of bounded 
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signed measures on (X, 91) (with the norm of total variation). The band L(E) 
generated by {P~: ieI} in J/{b(X, N) is called the L-space of the experiment E. Its 
(topological) dual space M(E) is called the M-space of the experiment E. The 
canonical bilinear form on L(E)xM(E)  is denoted by ( . , . ) .  M(E) has a 
distinguished element u E called the norm fimctional which is defined by (g, uE) 
= IIg + I [ -  I[g-l] for all geL(E). For the theory of Banach lattices and especially of 
abstract L-spaces and M-spaces we refer to [-13]. 

1. Sufficient Sublattices and Pairwise Sufficient Subalgebras 

Let E = (X, 91. (P/)i~i) be an experiment with L-space L(E) and M-space M(E) (with 
unit uE). A subspace H of M(E) is called a weak sublattice if H is a o-(M(E), L(E))- 
closed sublattice containing u E. 

Let H be a weak sublattice of M(E). According to LeCam [-7] H is said to be a 
sufficient sublattice for E if the (abstract) subexperiment of E induced by H is as 
informative as E. The following assertions are equivalent ([-7], Prop. 9 and 11): 

(S 1) H is a sufficient sublattice for E. 
(S 2) There exists a positive linear projection/7 of M(E) onto H such that (P~, H f )  
= ( P / , f )  for all f e M ( E )  and for all ieI. 
(83) [JrP~-sP~ll=HrP~-sPjllu=sup{l(rP~-sPa, h)l: hell, Ihj<uE} for all pairs 
(i,j)el x I and (i", s)eIR+ x IR+. 
The projection H in (S 2) is uniquely determined by H. It is called the sufficient 
projection for H, and it has the property H( fg )=f ( /Tg)  for all f e l l  and geM(E) 
([--7], Prop. 9). 

Let ~(E) be the class of sufficient sublattices for E. There exists a smallest 
element H(E) in S3(E) ([7], Prop. 10). Hence by (S 3) any weak sublattice H of 
M(E) containing H(E) is also in O(E). 

Remark 1. Applying further results from the theory of Banach lattices (cf. [13]) the 
following can be shown: There exists a bijection between ~3(E) and the class N(E) of 
closed sublattices of L(E) containing {P~: id}.  It is given in the following way: If 
Be~3(E) then there exists a positive linear projection T of L(E) onto B ([,13], 120, 
Cor. 1). Let 17 denote the adjoint of T (on M(E)). Then/TM(E)e~(E),  /7 is the 
corresponding sufficient projection, and the topological dual space B' of B is 
isomorphic with/ /M(E).  Moreover T is a transition (i.e. preserves the norm of the 
positive elements). 

Conversely if He~(E)  with sufficient projection/7 then {#eL(E): (g, f )  = 0 for 
all f in the kernel of/7} eN(E). Finally let B(E) be the closed sublattice of L(E) 
generated by {P/: id}.  Then B(E) corresponds to H(E) under this bijection. 

We are now going to describe the relation between the sufficient sublattices and 
the pairwise sufficient Subalgebras for E. If 6 is a subalgebra ofg.I the subalgebra 
= (~ {6 v 91(d): J e f f ( l ) }  is called the E-closure of 6. If ~ = 6 then 6 is said to be 
E-closed. It can be easily seen that Y(X,  ~) is the a(5~(X, 9,i), L(E))-closure of 
2 '(X. 6). Moreover one has the following elementary result: 
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Lemma 1. There exists a bijection between the class of all E-closed subalgebras ~ of 
9.1 and the class of all a(5~(X, 92), L(E))-closed vector sublattices Y) of 5~(X, ~) such 
that lx~ ~. It is given by ~vC~e = 5~ ~) and ~se= {Ae92: 1AeNY }. 

A subalgebra ~ of 92 is called pairwise sufficient for E if ~ is sufficient for all 
experiments E j, Je~,~(I). By ~(E) we denote the class of all subalgebras of 92 that 
are pairwise sufficient for E. If ~e~3(E) we have 3;e~(E) for any r;-algebra 3; such 
that ~ ~ Z ~ 92; especially @e~(E). Conversely @e~3(E)implies ~e~3(E). 

Let p denote the canonical mapping of S(X,  92) into M(E). If ~ is a subalgebra 
of 92 and if H e denotes the o-(M(E), L(E))-closure of p(ZP(X, ~)) in M(E) then H e 
obviously is a weak sublattice of M(E). Now one has the following result: 

(1) ~ is pairwise sufficient for E if and only i fH e is a sufficient sublattice of M(E) 
([8], 321, Prop. 8). 

But as we shall see in the next section not every sufficient sublattice can be 
obtained in this way. One can gain more information about this relationship by 
proceeding along the following lines: L(E) is the inductive limit of the L-spaces 
L(Ej), Jesse(I). Hence the inductive limit Lo(E ) of the spaces L(Ej), Jeff(I), is dense 
in L(E). Thus M(E) is also the topological dual space of Lo(E), i.e. M(E) is 
(algebraically) the projective limit of the system {M(Ej): Jeff(I)}.  

Let ej denote the inclusion mapping of L(Ej) into L(E) and nj its adjoint 
mapping of M(E) into M(Ej). If pj denotes the canonical mapping of 5r 91) into 
M(Ej) then we have pj = 7cj o p. Now let H be a weak sublattice of M(E). Then 
p j-I(TQ(H)) is a a(Ae(X, 91), L(Ej))-closed sublattice of 5((X, 91) containing 1 x. By 
Lemma 1 there corresponds a subalgebra ~u(J) of 91 to it (Jeff(I)). From these 
observations we obtain easily the following results: 

(2) We have ~H(J)= ~/~(J) v 91(J). If ~H = ~o-~(HI = {Ae92: p(1A)eH } then 
~H(J)$~H if J runs through if(I). 

(3) If ~ is a subalgebra of 91 and if H:=H e (= the  a(M(E), L(E))-closure of 
p(S(X, ~)) in M(E)) then ~u(J)  = ~ v 91(J) and ~r~ = ~- 

(4) The following assertions are equivalent: 
(i) H is a sufficient sublattice for E. 
(ii) ~H(J) is a pairwise sufficient subalgebra for E for any J~,~(I). 
(5) If H is a sufficient sublattice for E such that p(p-l(H))=H then ~H is 

pairwise sufficient for E, and we have ~H(J)= ~ V 9l(,/) for all Je~(I). 

2. Minimal Pairwise Sufficient Subalgebras 

Let E=(X,  91, (P~)i~i) be an experiment. ~ e ~ ( E )  is said to be a minimal pairwise 
sufficient subalgebra for E if ~ c ~ for any 3;e~(E). In view of the results in Section 
1 a subalgebra ~ of 91 is minimal pairwise sufficient for E if and only i fH e = H(E). If 

i and ~2 are minimal pairwise sufficient subalgebras for E then one has ~1 = ~2. 
But in general there exists no minimal pairwise sufficient subalgebra. 

Example 1. Let X = [0, 2[, 9,1 = ~3([0, 2[), P~ =~-(e i +el+ 1) and ~i = {Ae91: P~(A)=0 
or P/(A)= 1} for all ie[0, 1[. Moreover let P1 and P2 be the Lebesgue measures on 
[0, 1[ and [1, 2[ respectively. Let I = [0, II u {2}. We consider the experiment E 
=(X, 92, (P/)iJ. Since ~i=91({i}) we have ~i=~i=~i  for ie[0, 1[. Now ~i is 
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sufficient for E if i t [0,1[.  [For any At92 the function la..(i,i+l}+�89 
1A(i + 1)) l~,~+1 ~ is a version of the conditional probability Pj(A[ ~i) for every jtl .] 

~ = ( ] { ~ g :  i t [0,  l [}={At92:  l+(Ac~[0, 1D=Ac~[1,2[} 

is not pairwise sufficient for E. 
[Taking into account the translation invariance of the Lebesgue measure 2 on 

1R we obtain for any A t ~  the relation PI(A)=A(Ac~[O, 1D=A(I+(Ac~[0, 1[)) 
= 2(A c~ [ 1, 2[) = P2(A), i.e. P1 and P2 coincide on ~. Since P1 + P2 the subalgebra 
cannot be pairwise sufficient for E.] 

If there existed a minimal pairwise sufficient subalgebra ~ for E we would have 
3; c ~i for all i t [0,  1[ and hence 3; c ~. But then also ~ had to be pairwise sufficient 
for E. Thus there exists no minimal pairwise sufficient subalgebra for E. 

Remarks 1. Example 1 is a modification of an example of Pitcher [1 1] proving that 
in general there exists no minimal sufficient subalgebra for an experiment. 

2. H. Luschgy has informed the author that he has found the same counterex- 
ample [9]. 

3. Let E=(X,  92, (P~)z~i) be an experiment. For any i t I  we denote by ~I 1'i the 
completion of 92 with respect to P~. Then any P~ can be extended to a probability 
measure/~ on ~ l=(~  {~Iv~: itI}. The experiment I~=(X, ~l, (/~)i~i) is called the 
completion of E. 

Example 1 is also valid for the completion ofE. [~[P~ is the power set of X for all 
i t  [0, 1 [. Hence ~I is the completion of the Borel-o--algebra ~([0, 2D with respect to 
the Lebesgue measure 2~o,2 t on [0, 2[. Since the extension of 2Eo ' 2~ to ~ is also 
translation invariant we can argue as above.] 

4. In view of Example 1 and Remark 3 the assertions in [6] and [8], 322 
concerning the existence of a minimal pairwise sufficient subalgebra can only hold 
under appropriate additional conditions. 

5. Let E = (X, ~l, (P/)f~i) be as in Example 1. In view of the results in section 1 
there cannot exist an ~ t ~ ( E )  such that H| =H(E). Hence the correspondence 

---, H~ between ~3(E) and ~(E) is in general not bijective. 
Obviously a minimal pairwise sufficient subalgebra | for an experiment E has 

the following property: 
(M) For any ~ t ~ ( E )  such that ~ ;c  ~ it holds ~ = ~. 
Conversely a subalgebra ~t~3(E) with the property (M) is minimal pairwise 

sufficient for E. 
[Let 3; t ~3(E) and J t ~ ( I ) .  Then for any K t.~f(I) such that K ~ J we have 91(K) 

~91(J). Hence lIs=@c~(3;vg~(d)) is sufficient for all E K, K ~ J  (since EK is 
dominated) and thus llj  ~ ~3(E). Since 11 s is E-closed we have l l j  = ~ by (M) and thus 

c 3; x/91(J) for all Jt~(1).  The definition of ~ yields ~ ~3;.] 
This shows that the order theoretic concepts "minimal" and "smallest" 

coincide for the set {~: 3;t~3(E)} ordered with respect to inclusion. 

3. Majorized Experiments 

We present a sufficient condition for the existence of a minimal pairwise sufficient 
subalgebra. The experiment E = (X, 92, (P~)i~1) is said to be majorized if there exists a 
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positive measure 2 on (X, 9.1) and for any ieI a function f~ELI(X, 92, 2) such that P~ 
=f~. 2. In this case 2 is called a majorizing measure for E and E is said to be 2- 
majorized. Of course any dominated experiment is majorized. 

Proposition 1. Let E =(X, 92, (f~. 2)i~) be a )~-majorized experiment. Without loss of 
generality we may assume 0 < f i <  + oo for all i~I. Then the subalgebra ~ of 92 
generated by the family {(f~/~ fj) 1E; ~ > 07: ied, de~( I )}  is minimal pairwise sufficient 

jEJ 

for E. 

Proof. For any J ~ ( I )  let Pj = ~ P~ and f j  = ~2 f~- For any isI  let B(i) = [f~ > 0]. For 
i~J i~d 

any J~,~(I) and iEJ let gi, j = (fi/fj) lB,). Finally let ~ = {gi,t~: i~K, K e Y ( I )  such 
that J oK}.  Then we have 92(~)=92(~, )  for all J, J'e~(I).  

[Without loss of generality we may assume J c d'. Then we have ~ ,  c .~j and 
hence 92(~s,))c92(~). For proving the converse inclusion it is sufficient to show 
that any fe~,~j is 92(~,)-measurable. Now for f e ~  there exist K e~,~(I), J ~ K and 
i~K such that f : g i ,~ .  Let K ' = K u J ' .  Then we have gi, K=(fi/fK ,) (fr'/fK) 1B{O 
= gi,K'/(~ gj, K'). Since d ' c  K' this proves the 92(~,)-measurability of f.] 

j eK  

We put ~ = 9 2 ( ~ )  for an arbitrary J ~ ( I ) .  ~ is pairwise sufficient for E. 
[Let de~,~(I). Since Pi = f '  2 =(f/1B(il ) �9 2 and Pj = f j .  2 we have Pi =gi.j" Pj for all 

ieJ. Thus by the Halmos-Savage theorem ([3], Theorem 1 or [53, 33, Satz 5.2) ~ is 
sufficient for Ej.] 

is minimal pairwise sufficient for E. 
[Let Ze~3(E) and Je~(I) .  By the Halmos-Savage theorem there exist 2;- 

measurable functions g~ > 0 such that P~ = g~. Pj for all ieJ. It follows g~ = g~. ~ a.e. (Pj), 
hence the functions g~,j, ieJ, are 2; v gt(J)-measurable. But for KeJ~(I), d c K, we 
have gt(K)cgt(J). Hence the functions g~,r, ieK, are 2; v 9l(d)-measurable too. 
This proves ~=92 (~ )c2 ;vg l (Y) .  Since Je~( I )  was arbitrary we get 
= (~ {2; v gt(J): deJ~(I)} =~ . ]  

Hence the proposition is completely proved. A 

Remarks. 1. If E=(X,  9X, (f~. 2)~) is a 2-majorized experiment then the o--algebra 
92({f~: ieI}) is pairwise sufficient for E. [This is immediate by Proposition 1.] 

2. The o--algebra ~ of proposition 1 is also generated by the families 
{(f//fd) l[f~>Ol: (i,j)eI x I} and {(f~/(fi+fj)) 1If,>01: (i,j)eI x I}. 

3. Let E=(X,  92, (f/. 2)i~) be a )~-majorized experiment. Then L(2)={J'.2: 
f~L~(X, 92, 2)} is a norm closed ideal and hence a band in Mdb(x, 92) ([13], 1 13, 8.3 
(ii)). Obviously L(E)~ L(2). Moreover the following holds:"(f / .  2)i~1 g ~" ~:~"L(E) 
= L(2) and 2 has the finite subset property". [" ~ "  L(2) is the ordered direct sum of 
L(E) and a band L in L(2) ([1 3], 1 1 3, Prop. 8.3). Let f .  2 eL + and N = I f  > 0]. Since 
f . 2  and f~-2 are orthogonal it is (fi' 2)(N)=0 (all iel) and hence 2(N)=0 by 
assumption. Thus f .  2 = 0 i.e. L = {0}. Concerning the finite subset property cf. [101, 
Lemma 2.9, (1). " ~ "  Let us assume that there exists an Ne92 such that (f~. ;~)(N) = 0 
for all ieI and 2(N)>0. Since 2 has the finite subset property we may assume 
without loss of generality 2(N) < oo. Then L = {f. 2eL(2): (If I" )~)(N) =0} is a band 
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in L(2) =L(E) containing { f .  2: ieI}. Hence L(2) =L.  This implies 1N �9 )LeL. But this 
contradicts ( 1  u �9 2)(N) = 2(N) > 0.] 

Example 1. Let G be a locally compact group, ~3(G) the a-algebra of Borel sets in G 
and/~ as well as 2 regular Borel measures on (G, 23(G)) such that #(G) = 1. Let the 
translation experiment E(/~) = (G, 23(G), (/x �9 a~)~G) be 2-majorized. Then E(#) is also 
majorized by the right Haar measure c% on G. [IfG is a-compact this is well known 
([15], 1384). For general G this follows from the fact that G is the union of its open a- 
compact subgroups.] 

Let now be especially # = 1B.c % where Be~3(G) is such that c%(B) = 1. Then it 
follows from Proposition 1 and Remark 2 that the a-algebra generated by {Bx: 
xeG} is minimal pairwise sufficient for E(#). If moreover B is open we have 
(# * ~)~G ~ c%. 

4. Coherent Experiments 

Let E = (X, 91, (Pi)i~1) be an experiment, p the canonical mapping of •(X, 91) into 

M(E) and H a sufficient sublattice of M(E). Generally we don't have p (p- 1 (H))  = H ,  

for otherwise ~u(E~ would be a minimal pairwise sufficient subalgebra for E (by (5) 
of Section 1). But we always have the relation p (p- I(H)) = H c~ p (~q~(X, 91)). Thus if 
p is surjective then for any sufficient sublattice H of M(E) the a-algebra ~u  
= {Ae91: p(l~)~H} is pairwise sufficient for E (by (5) of Section 1). 

The experiment E is said to be coherent if p(2~(X, 9A)) =M(E). 

Examples. 1. An experiment E =(X, 91, (P~)~I) is said to be weakly dominated [10] if 
there exists a localizable measure 2 on (X, 91) such that E is 2-majorized. The 
measure 2 can be chosen such that (P/)i~1 ~ 2 ([10], Lemma 2.9, (2)). Then by remark 
3.3 the L-spaces L(E) and LI(X, 91, 2) are isomorphic. Hence M(E) can be identified 
with L~(X, 91, 2). Thus any weakly dominated experiment is coherent. 

Especially the experiment of example 3.1 is weakly dominated (since o) G is 
localizable) and hence coherent. 

2. An experiment is coherent if and only if it is coherent in the sense of Hasegawa 
and Perlman ([4], 1051). Especially any compact experiment [12] is coherent. 

Proposition 1. For an experiment E=(X,  91, (Pi)i~I) the following assertions are 
equivalent: 

(i) E is coherent. 
(ii) E is weakly dominated. 

Proof In view of Example 1 we only have to show "( i )~  (ii)". By the representation 
theorem of Kakutani for L-spaces ([13], 114, Theorem 8.5) there exist a locally 
compact space Y which is the topological sum of a family (K~)~E A of compact spaces, 
a strictly positive regular Baire measure # on (Y, No(Y)) (where No(Y ) is the a- 
algebra of Baire sets in Y) and an isomorphism ~0 of the L-space L ~ (Y,, 23o(Y),/~) onto 
the L-space L(E). 

Let v~=~o(l~:~) for all ~sA and v = s u p { ~  v~: Fe~(A)}.  Then v is a positive 
ec~F 

measure on (X, 91). We prove that v is localizable and majorizes E. 
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1. v has the finite subset property. 
[-We denote by cO' the adjoint mapping to ~ of M(E) onto L~ ~30(Y),p) 

and by 0 the inverse mapping to ~o'. Then ( l r - l ~ ) A l ~  = 0  implies 
(O(lr)-O(IK~))/x~(l~)---0. Since E is coherent there exists a g~eSf(x, gx) 
such that O ( l ~ ) = p ( ~ ) .  But ( i x -  g~)/x g~=0 a.e. (P~) for all ieI yields the existence 
of a B~9.I such that 1~ =p(l~)=p(g~)=~,(l~:~) (c~eA). 

Let B ~ I ,  ] s = p ( l s )  and c~, fleA. Then 

v~(B c~ Bt~ ) =(v~, in/x 1 ~ )  = (l/(,,  cO'(]B) A lt;~) 

= f  1~[CO'(1,)/x 1~3 d# = 0 if c~,fi 

and 
=~ 1K, co'(i.) dp = <1~, CO'd.)} = <co(l~,), i.> 
=(va,]n)=-vz(B) if c~=fl. 

Hence we finally have: 

and 

v(B c~ B~) = sup { ~, v~(B ~ Ba): F e~(A)} = vp(B c~ Bp) 

v(B) = sup { ~ v~(B): F e~(A)} --- sup { ~ v~(B n Be): F~J(A)} 
~ F  a~F 

= s u p (  ~ v(Bc~B~): Fe@(A)}. 

If v(B)>0 then there exists an aeA such that v(B~B~)>O. On the other hand we 
have v(B~B~)=v~(Bc-~B~)<ov since v~eL(E). Hence v has the finite subset 
property.] 

2. Pi ~ v for all id .  
[There exist fieLl(Y, ~3o(Y ), #), 0 < f < o o  such that CO(f)=Pi. We put P/(~) 

=CO(f. IK~ ) (aeA). Then f ~ = s u p { ~ L - 1 K , :  Fe~(A)}  implies P~(B) 
o:~F 

= lira ~Pi(~)(B) for all B~9,I ([13], 113, Theorem 8.3(i)). Since 

fi" 1K~ A n l ~ ' f  i IK~ as n ~ oo we have Pi (~> A n v~'Pi (~) as n --+ ~ .  Hence P/(~) ~ v~(~eA). 
But then we also have P ~ v  (i~I). 

[-Let Neg.I such that P~(N) = 0 for all iel. L={2eL(E) :  [2[(N)=0} is a band in 
L(E) ([-13], 78 and 113, Theorem 8.3 (ii)). Since P/eL for all ieI we have L =L(E). 
Hence v~cL for all c(eA. This shows v(N)=0.]  

4. v is localizable. 
[By our assumption ~(X ,  gg)/p-l(O) and M(E) are isomorphic. By 3. we 

conclude p-~(O)={feS(x ,  gA): P~([-f4=0])=0 for M1 i e I } = { f ~ ( X ,  gA): 
v([f  4: 0]) = 0}. Hence ~ ( X ,  9.1)/p- ~(0) =L"~(X, 9.i, v). But then L~ 9A, v) is order 
complete ([13], 72, Prop. 4.2). Taking into account l. the measure v is therefore 
localizable.J 
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5. E is weakly dominated.  
[Since a localizable measure  has the R a d o n - N i k o d y m  proper ty  ([16], 265, 

T h e o r e m  3) there exist f~LI(X, 92, v) such that  Pi=fi.v (iel). Hence  E is v- 
major ized.]  

Remarks. 1. In [7] (Theorem 5) L e C a m  states a similar result for the comple ted  
exper iment  1~. But his p roo f  has a lacuna since a localizable measure  space need not  
be strictly localizable (i.e. a direct sum of finite measure  spaces). 

2. If  E is coherent  then also I~ is coherent.  [L(l~) and L(E) are obviously 
i somorphic  hence also M(I~) and M(E).] But there exist non-coherent  exper iments  
E with coherent  1~ ([7], 14481). 

3. I f E  = (X, 92, (P~)i~i) is a coherent  exper iment  and if 6 is an E-closed subalgebra  
of  92 then also E e = (X, 6 ,  (Pi[ 6)i~i) is a coherent  experiment.  

[Since 6 = ~ and since p is surjective we have p(d(X, 6))  = H , .  But H| can be 
identified with M(Ee).]  

4. If  E is a coherent  exper iment  and  if 6 E ~ ( E )  such that  ~ = 6 then 6 is even 
sufficient for E. 

[ H  e is a sufficient sublatt ice of  M(E) ((1) of Section 1). Let  H be the 
cor responding  sufficient projection.  Since p(Y(X, 6 ) ) = H |  there exists for f ~  
5f(X,  92) a function h ~ ( X ,  6) such that  FIp(f) =p(h) .  Hence  for any g~Sf(X,  6)  
we have ~ fgdP~=(Pi, p(f) p(g))  =(P~, Fl(p(f) p(g))) =(P~, p(g) H p(f)) = 
( P~,p(g) p(h)) =~ h g dP~ (all ieI).] 

5. Any  coherent  exper iment  E admits  a min imal  sufficient subalgebra.  This 
result  which is due to Hasegawa  and Per lman  [4] (for coherent  experiments)  and to 
M u g m a n n  [10] (for weakly domina ted  experiments)  can now be easily derived. 

[Since E is major ized  there exists a min imal  pairwise sufficient suba lgebra  6 for 
E (Prop.  3.1). Wi thout  loss of  generali ty we m a y  assume ~ = 6 .  Then 6 is sufficient 
for E by r emark  4. Let  Z be a sufficient suba lgebra  for E. Then we have ~ = Z and 
ZE~3(E), Hence  6 = ~ .  Thus 6 is min imal  sufficient.] 
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