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0. Introduction 

Limit  theorems for null-recurrent and non-recurrent Marker  chains are usually 
proved under two different assumptions: either probabilities of visits in single 
states i, ], ...  are considered and the initial distributions are allowed to be arbitrary,  
or else probabilities of visits in sets A, B . . . .  of states are considered, but  then the 
initial distribution is assumed to be concentrated in one state. In  the lat ter  case 
A, B, ...  usually have finite invariant  or subinvariant measure. Theorems of both 
types are now also available for very general state-spaces, see e.g. [19], [17], [18], 
[15], [3]. Limit  theorems which drop the Tointwise assumptions both with respect 
to the initial distribution and the visited set will be called global limit theorems. 
We shall, roughly speaking, show tha t  some theorems on ordinary and Cesgro- 
convergence do have global analogues, while global ratio limit theorems require 
crucial additional assumptions. A mutual  generalization of the two pohltwise 
generalizations of the Doeblin ratio limit theorem [6] does not hold. 

In  section 2 we prove a general stochastic ergodic theorem for arbi trary con- 
tractions in ~1 and a global limit theorem for the corresponding nonsingular 
Marker  process. We also give a new counterexamp]e to a conjecture of I-[I~REWICZ. 
Our example, which is based on the example on Marker  chains mentioned above, 
allows us to disprove the conjecture even for sets of finite invariant  measure. 
(DowKXR and ERD6S [8] showed tha t  the conjecture is wrong for sets of possibly 
infinite measure.) 

In  section 3 an example is given showing tha t  the known sufficient conditions 
for the strong ratio limit property do not imply such a proper ty  for probabilities of 
visits in sets of finite i nwr i an t  measure. The ratios of n-step and (n + 1)-step 
transition probabilities, however, satisfy a strong global ratio limit theorem. 
Section 3 is independent of section 2. 

1. Marker Chains 

We shall adopt  the terminology and notation of CHUI~O [4] and consider a 
Marker  chain {Xn,  n >~ 0} with countable state space I .  For any subset A c I let 
10~/~ = ~ p~) be the k-step transition probabil i ty from state i to the set A. Let  I r  
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and  I2v be the  sets of  posit ive s ta tes  and  null-s tates  respectively.  Wi th in  Ip the 
global l imit  behaviour  is well known and, in fact ,  follows f rom the pointwise l imit  
theorems.  A measure  u = {ui, i e I }  is called sub invar ian t  ff 

us ~ ~ uc19t~ 
ieI 

holds for all k e I and  u is called invar ian t  ff equal i ty  holds. The  following simple 
result  is p robab ly  known:  

Proposition 1.1. Let 19 ~- {19~, i e I }  be any probability distribution on I,  u : {uc} 
a subinvariant measure, A ~ I p  -~ O, A c {i: uc > 0}, u (A) -~ ~ uc < oo. Then 

Z 19c19!  ) tends to 0 
ieI 

Proo]. We m a y  assume t h a t  19 is concent ra ted  in one s ta te  i0 and  t h a t  
Uio ~ 19io ---- 1. I f  s > 0 is given, choose finitely m a n y  s tates  al . . . . .  a r e  A with 
u ( A -  {al,  . . . ,  a t } ) <  e/2. Then  since 19 = < u and ~0,~(.~) - + 0 ( k  = 1, . . . ,  r) i t  
follows t h a t  ~Co,~(n)A < s for n large enough. 

Since the  l imit  is 0, the  question for rat io  l imit  theorems arises: I s  there a 
mu tua l  general izat ion of  the following two pointwise l imit  theorems (see e.g. 
[15]) ?: 

Let  the chain be recurrent  and let I consist of  only one ergodic class. Then:  
(a) I f  u = {uc} is the (essentially unique) invar ian t  measure  (see D E ~ A N  [5]) 

and  ff bo th  A C I and  B C I have  finite invar ian t  measure,  then  
n 

t ~ l  p~ u(A) (1.1) - - ~  - - > -  
n 

t~= l~9~ u( B) 

for all i, j e I .  
(b) I f  19 = {19c} and  q = {qc} are two probabi l i ty  dis tr ibut ions in I 

n 

(1.2) ~ uj u~ 1 

t = l  

for all ~', k e I .  
We shall show t h a t  no common generalization for (a)and (b) exists. Moreover  

we shall see ra ther  exac t ly  to wha t  ex ten t  (1.1) can be generalized concerning 
more  general initial distr ibutions.  

We  shall f requent ly  need taboo-probabi l i t ies :  For  t ~ 1 H19~ O = prob { X t e A ;  
X~ ~ H for v 1, t l l X o  i}, for t 0 (o . . . . .  - -  ~ "  = H19CA ---- 0 f f  i ~ A and ---- 1 ff 
i e A. I f  {g(O, t ~ 0} is a sequence of real numbers  (eventual ly wi th  some lower 

c o  

indices), t hen  ~* shall denote  ~ :d0. For  example  Ch19~ is the probabi l i ty  of  re turn-  
t = l  

ing to i wi thout  passing th rough  h, given a s t a r t  a t  i. 

L e m m a  1.1, Let I consist of only one ergodic class and let u = {uc} be a non- 
trivial subinvariant measure. I /  A C I satis/ies u ( A )  < c~ and if 19 ---- {191} is a 
19robability measure such that /or  some h e I 

( 1 . 3 )  ~ 19c u71 (1 - -  th19i~) -1 < 
i:vh 
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then 
N 
E Ep~p~' 

Q~r n = l  i e I  
2/ 

~ 1  

tends to a/inite limit Q (p, A) :~ O, which is 1 i/ the chain is recurrent. 

Proo/. For  n ~ 1 we have 
n--1 

~=1 

Multiplying with Pi, summing over all i e I and n = 1 . . . . .  N,  reordering the 
N 

sums, and finally dividing by  ~ ~(n) A~ ~hA we obtain 
n = l  

N ZT--1 N--n 

( 1 . 4 )  Q N  - -  ~v § 

n=l n=l 

A well-known lemma on N5rlund-means (see e. g. C~Iu:~(~ [4]) implies that the 

second term on the right hand side converges to which is = I 
k = 1 i e I  

ff the chain is recurrent.  The lemma will be proved if  we show t h a t  under  our 
assumptions the nomina tor  of  the first t e rm is finite. F r o m  

n--1 
hp(in)A = ihP(in)A "~- ~ ~n~ii"~(t) h'PiA~(n--t) (n => 1) 

t = l  

i t  follows upon summing f rom 1 to r t h a t  aP~A satisfies the equat ion 

= ihPi i  hPiA �9 

I f i~:h ,  then  (1 a * -- ~ Pii) r O. Hence for i ~ h we have 

0.5) ~p~* ~p*(1  * -~ = - -  ~ h p ~ )  �9 

Clearly lhPiSA ~ IP~A. S i n c e  u is  s u b i n v a r i a n t  t h e  inequality 
(1.6) u7 ~ Uj > "ha(l) "n~(n) 

follows by  induction. 
Altogether  we obtain  

Z p, hpi* <= Tn hP*A q- ~ P, ,aPi*A (1 - -  tapir) -~ g 
i ~ I  i=~h 

p h u ~ l u  (A)  --1- ~ . p t u ~ l ( 1  - -  t h p ~ )  - 1  < c ~ .  
i:~h 

For  any  i r  (1 - -  ihPi~) is the probabi l i ty  of  visiting h before or at  the t ime 
of  the first re turn  to i, given a s tar t  a t  i. This probabi l i ty  is denoted by  b~a. For  
i = h w e p u t b i a =  1. 

Proposition 1.2. Let I consist o/ one ergodic class, which is recurrent. Let u = {u~} 
be the invariant measure (which is uniquely determined up to a constant/actor), 
p = (pi} and q = (qi} two probability distributions in I,  and A, B two subsets o / I  
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with u ( A )  ~ ~ and u (B)  ~ co. I / t he re  exist two states h, lce I with 
-1 -1 (1.7) y < co < co 

i e I  i e I  
then 

hr 

- -  N 

n~=l i e I  

tends to u ( A ) / u ( B ) .  

Proo]. This is now an immediate  consequence of  (1.1) and lemma 1.1. 

E x a m p l e  1.1. The most  crucial point  of condition (1.7) is the occurrence of  
the factors b~. They  m a y  be hard to compute.  Since h and k do not  appear  in the 
result, it  is a natura l  question to ask, whether bT~ and bi- ~ are only needed for the 
present proof. Unfor tuna te ly  this is not  so. We shall now exhibit  a null-recurrent 
Markov chain {Pt~; i, k e I},  a set A ~ I with u (A) < co and  two probabil i ty 
distributions p ---- {Pi}, q = {ql} with ~ p i u 7 1  < co, ~q~u~ 1 < co for which 

i e I  i e I  
Q~v (A, A) diverges. I n  addit ion p and q will be bounded by  u. 

Let  I - - - -{0,  =E 1, =J= 2, ...}. We shall inductively define several str ict ly 
increasing sequences of  nonnegative integers: {tn}, {kn}, {bn}, {ln} (n ~ O) 
start ing with to = k0 = b0 = l0 = 0. Fur thermore  we shall need two sequences of  
real numbers  {~n, n ~ 1} and {fin, n ~ 1} with 0 < O~n, fin < 1. The reader is 
invited to visualize the state space rearranged in the following way :  The states 
lCn-1 -k 1 ~ ]n, ?n -~ 1 . . . . .  lcn form a column with top/on and base ?n (n ~ 1). 
I t  will be called the n- th  column to the r ight of  0. The states - -  in, - -  (?n ~- 1), 
�9 .. ,  --/Cn form the n- th  column to the left of  0, --/Cn is its top  and - -  ?n its base. 
For  short  let Cn* : {in . . . . .  ]Cn}, C*n ~- { - -  in . . . . .  - -  lcn} and Cn -~ Cn* U C*n 
be the r ight  column, the left column and their union respectively. For  n ~ 1 let 
bn ~- ~n Jr- tn, In -~ bn ~- tn-1 -~ i and Ion -~ In Jr tn. ~n, fin and tn will be specified 

~o 
at  the n- th  step of  the construction. We shall pu t  A n  -~ {bo . . . . .  bn} and A -~ ~ J A n .  

n ~ 0  

l~Tow we define the transit ion probabilities in terms of  ~n and fin: Let  Pi,,o -~ 
P-]~,o ~-- 1. I n  the left columns the mass moves downwards:  for any  ~ with 

--kn ~ ?" ~ -  ?'n let Pi,I+1----1. I n  the r ight  columns it  moves downwards  
with exception o f b n :  for any  ] with ?n ~ ? ~ bn or bn ~ ~ ~ l~n let Pi, t-1 ~ 1; 
finally pu t  Pb~,b.-1 - ~  1 --  fin, Pb~,l. ~ f i n ,  p o o  ~ 1/2, Po, k. ---- ~ 2 - ( n + 1 )  and 
Po,-k~ ~ (1 - -gn)2- (n+l ) .  Then all other transit ion probabilities P,k necessarily 
are 0. 

The initial distributions p ---- {pt} and q : {q,} are defined by  the equations:  
For  n ~ 2 even Pl~ ~ 2-2n and ql~ ---- 0, for n ~ 1 odd Pl~ ~-- 0 and qz~ ---- 2-2n, 

oo oo 

fur thermore Plo = 1 - -  ~ Pl,; ql0 : 1 - -  Z ql,, and p~ : qi ---- 0 for all i ~ {ln, n ~ 0}. 
n ~ l  n ~ l  

n-th step: Let  Gn -~ U C~ and Fn = I - -  Gn. At  this point  ~ ,  fi~, t~, l~, and 
~_~n 

k~ are well-defined for v ---- 1 . . . .  , n ~ 1. Therefore the set Gn and the taboo- 
probabilities ~(t) 2-n r  are well-defined for all i, k ~ Fn .  Necessarily P0, a~ 

21 Z. Wahrschein l ichkei t s theor ie  verw.  Geb., Bd.  6 
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and  this  implies  

( 1 . s )  _ (8) - -  sup a,p~,a,_l -+  0 (s --> oo). 
] e F n  

Le t  sn > tn-1 be so large t h a t  s > sn impl ies  y ~ ) <  2- (2n+i )n- i ( tn_ l  ~- 2) - i .  
Now i t  is possible to choose n a t u r a l  numbers  tn and  mn of the  form tn = ran(in-1 Jr 2) 
such t h a t  

mn"  2 -2n >= 1 -~ n ( sn  @ ran" 2 -(2n+1) n-1) .  

This  de te rmines  kn ,  ln,  bn as well as tn. 

Now 3/4 < fin < 1 is chosen so close to  1 t h a t  

ran" tim"" 2 - zn  > n (sn + m n  2 -(2"+1) n - l ) .  

F i n a l l y  0 < ~n < 1 is de t e rmined  in  such a w a y  t h a t  the  i nva r i an t  measure  
assigns p r o b a b i l i t y  2 -n  bo th  to  In and  bn. W e  shall  show t h a t  th is  can be achieved 
b y  p u t t i n g  ~n = 2 (1 - -  fin). Now the  M a r k o v  chain  is comple te ly  defined. 

I t  follows f rom the  defini t ions of  the  t r ans i t ion  probabi l i t i es  t h a t  i t  is r ecur ren t  
and  has  one ergodie class only.  Hence  there  exis ts  an  i nva r i an t  measure  u--= {u~} 
which is un ique ly  de t e rmined  i f  we p u t  u0 = 1. I t  is easi ly  checked, t h a t  
uk,  ~ u k , _  1 = . . . __~ uz,+l  ----= o~n 2-(n+ l), ul ,  = u l ,_  1 ~ Ub, -~ ~n2-(n+l) -]- fln 2 -n  = 2-n ,  
Ub,_ 1 . . . . .  U j .  ~ 0~n 2-(n+1)  and  u~ = (1 - -  ~ n ) 2  - (n+ l )  for i ~ C*n. This implies  

o o  o o  c o  o o  

u (A) = ~ uo. = ~ 2-'~ < oo, ~ p~ u~ ~ = ~ p~.@. <= ~ 2 - 2 - 2 -  < ~ a n d  ~ q~ u; ~ < 
n = 0  n = 0  i s I  n = 0  n = 0  i e I  

b y  the  same inequa l i ty .  I t  r emains  to  show, t h a t  Q~r (A, A) diverges.  
F o r  this  we consider  first the  case N -= tn with  n > 2 even:  F o r  r > 0 and 

lc ( t , - i  + 1) -F r( tn-1 ~- 2) we have  ~(k) > fi~. Hence  Fln, bn 

In tn ran-- 1 

. ~  l ~ ' i l J i A  ~ l " l ~ , b n  = - -  

> m n f l ~ n 2  - z n  > n ( sn  -4- mn2- (un+l )n -1 ) .  

N e x t  we es t ima te  the  denomina to r :  F o r  a n y  n l  > n we have  In~ - -  bn~ ~ tn, SO 
t h a t  no mass  coming f rom I m can reach  A before t ime  tn ~- 1. This and  qt, = 0 

t oge the r  i m p l y  
tn tn n - - 1  

/ = 0  i e [  t = 0  ~ = 0  

F u r t h e r m o r e  for a n y  v ~ n we have  lc~ - -  b~ > tn,  so t h a t  no mass  enter ing Gn 
f rom s ta t e  0 can reach  A before t ime  tn + 1. Hence  

t .  n - - 1  tn n - -  1 

~lt~ G n l ~ l ~ , A n - 1  �9 
t = O  ~ = 0  t = O  ~ 0  

F r o m  the  choice of  sn we have  
tn n - - 1  t~ 

(1.12) ~ x ' .  ~(t) < ~ (t) /~ ul, a, ~q,,_4 . . . .  sn + ~ Yn <= sn + m n  2 -(2n+1) n -1 �9 
l ~ O  v ~ O  l = 8 n  

The  inequal i t ies  (1.9)--(1.12) i m p l y  Qt, > n. I n  the  same w a y  i t  follows for 
n ~ 1 odd,  t h a t  Qt, < n-1. Hence  l ira inf  Qt = 0 and  l ira sup Qt : c~. This also 
implies  t h a t  the  Markov  chain  is nul l - recurrent ,  since Q~v(A, A )  converges for 
chains  wi th  pos i t ive  s ta tes .  
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R e m a r k s.(1 ) One might also b e interested in simpler example s, even if they show 
somewhat less. Some such examples can be obtained using similar ideas. I f  it shall 
only be shown, that  (1.1) and (1.2) do not possess a mutual generalization, one 
can dispense with the numbers fin and put Pb,,b=-i = 1. A (~ C~, must then consist 
of sufficiently many states {bn . . . . .  bn -- Xn} with xn ~ tn and both xn and tn 
sufficiently large, an must then be determined in such a way, that  u (A (3 Cn*) < 
< 2 -n. This construction is not appreciably much simpler. I t  has, however, 
another advantage: the numbers bi0 are then all = i and it follows that  also the 
factor u71 in (1.7) is essential. (2) The method indicated in remark 1 can also be 
used in order to show that  u(A)  < c~ is an indispensable condition in lemma 1.1, 
even if 

x : ,  ~ -1 b-1 p~u7 lb7~<r  and ~ u ~ i  ~a < c ~ .  
i s I  i e I  

This is of interest in view of the fact that  for recurrent chains 

N 

Y p:r 
(1.13) ~=~ iv ~1 

for all A C I. (1.13) is a consequence of the inequality 

37 

P~ P~A 
(1.14) l iminf  n ~ _ _  >=1 

\ ~ / 

which follows from (1.4). 
(3) For recurrent random walks all sets of finite invariant measure are finite, so 

that  all results concerning sets A with u (A) < r follow from the pointwise results. 
The ratios Qlv (A, A) need not converge for arbitrary sets A C I,  and probability 
measures {p~} and {qt}. An example may be given using the coin-tossing random 
walk. I t  is omitted, since its description is almost half as complicated as that  of 
example 1:1 and example 1.1 shows so much more for Markov chains. 

2. Markov Processes 

Let (X, ~-, #) be a a-finite measure space. All sets and functions introduced 
are assumed to be measurable. Sets as well as functions are identified if they 
coincide almost everywhere. A c denotes the complement of a set A C X ,  1A is 
the indicator function of A, ~ = ~5 (#) denotes the Banach space of finite signed 
measures ~, absolutely continuous with respect to #: ~ 4 #. For any function / 
on X the set {x e X: / # 0} will be called the support of [ (supp (])) and for ~ e ~b 
we put supp (~) = supp (dcp/diu). For any function [ and any set function ~ define 

(2.1) I~1 = 1Af, 
~XA(B) = ~ ( A  n B ) .  

Let P denote a positive contraction in r  i. e. a linear operator in ~5 with 
P ~ 0 f o r a l l ~ 0  and with 11PII : s u p l l ~  Pll ~ l .  T h e d u a l P *  of P i s  a 

lq ~ II _<-i 

21"  
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positive contraction in ~o~(#) : / -~ P*/ .  A substochastic kernel p(x, A) is called 
nonsingular ff # (A) = 0 implies p (x, A) = 0. I t  then induces a positive contrac- 
tion P in ~ by 

(2.2) (~P)  (A) ---- fp(x ,A)dq~ (A e ~ ,  q~eq3) 

and its dual by 
( P ' l )  (x) = ] l ( y )p (x ,  dy) (/e~oo). 

In  particular: A measurable point-mapping T in X is called nonsingular, if 
~ ( A ) ~ 0  (~0e~b) implies q ~ P ( A ) = ~ ( T - Z A ) ~ O  ( A e ~ ,  ~ e r  P is then 
induced by p(x, A) ~ lr-~A. A G-finite measure 2 ~ # is called (sub)-invariant 
or P-(sub)-invariant if  f P * / d 2 ( ~ ) l i d 2  for all l e ~  + = {0 ~ / e  Boo}. A set 
A e ~ is called invariant ff for any 0 ~ ~0 e ~b with q~(A c) = 0 also q~P(A c) ~ 0 .  
As usual C and D denote the conservative and dissipative part  of X, see e.g. [10], 
[17], [19]. I f  X ~ C the operator is called conservative. P is called ergodie if for 
any invariant set A,/~ (A) ~ 0 or/~ (A c) = O. P denotes the positive part  of the 
state space X, i.e. the maximal carrier of finite invariant measures, see Nv.v]~v 
[20], K R ~ G ~ L  [16]. 

r (/~) is isomorphic to ~1 (#) by the Radon-Nikodym theorem and P thereby 
induces an isomorphic operator in ~z (#), which also will be denoted by P and acts 
from the right side. 

Theorem 2.1. Let 2 ~ 0 with 2 ~ /~ be a (~-/inite P-subinvariant measure, 
S = supp(2), A C S, ~(A) < oo and A (~ P ~ O. Then/or any q~ ~ q5 we have 

n - - 1  

(2.3) lim 1 ~, ~ p~ (A) = 0.  
n - + ~  n k=O 

For the proof the following simple lemma is needed: 

Lemma 2.1. I / 0  ~ 2 ~ # is a r subinvariant measure, then S ~ supp (2) 
is invariant. 

Proo/. Let 0 ~< ~v ~ ~5 and supp (F) C S. Further let / ~ 0 be the density of ~v 
with respect to ~ and let K~ ~ 0 be so large tha~ f ( / - -  ( fAK,) )d2  ~ s > O. 
Then 

0 ~ f 1so d (V P) = f (P* 1so) dv = 
= f (P* l so)  (lAKe)g2 + f (P* l so)  ( / - -  (]/\g~))d2 

Ke f 1so d (2 P) + s ~ K~ f 1so d2 + e = e. 

Since e > 0 was arbitrary it  follows that  supp (~ P) C S. 

Proof of theorem 2.1. We may and do assume ~ ~ 0. We define inductively 

* 9 +i = P Is ,  = P Iso. 
Then 

(2.4) 9) p N  = 990 pA r _~. . . .  _~_ ~N-1  P -~- (~N + ~oAr* 

follows by induction and + I[V*§ =< IIv*ll imp es =< IIv]l. 

Let e > 0 be given. Choose N = Ne so large that  II ~ iI < e/4. We shall consider 
k = N + l  
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~fl : q~P'~lz. Since ~ is equivalent to # I s  we have 

II ~ - (9 A Ks 2) IJ < 8/S 

for sufficiently large K,.  Let ~Vl ---- ~v/~ K,~ and ~v2 ---- ~p - -  ~vl, By  theorem 1 of [16] 

pc is a countable disjoint union pc = 0 Xg of sets X~ with the property 
n--I k=l 

n - i  ~ q~P~(Xg) ---> O. Let the integer r be so large tha t  ~(A (~ (X~ t) .-. t) Xr)c) < 
i = 0  

< s/16K~. Let M = M~ be > iV, ~nd so large tha t  N~II~vlIM~ 1 < e/16 and for 
n > M e  

I n--I 

Wi~=oq)Pl(Xg ) < ~/16r ( k - - - - l , . . . , r ) .  

I t  follows from the invarianee of S that  

11 ~ P ~  1so Pg Is II = 2 ~ N + ~ - J  Pj ----< ]l qi 11 < ~/4 
j = o  i = N + I  

for all k > 0. Finally we observe tha t  ~ < ~ implies Q P __< X; in fact, denoting 
b y / q  the density of ~ with respect to/x, we have : 

QPtA) = f l~dI~P) = f l ~ ( / o e ) @  = f ( e * l A / o @  _<- 

Let Ar -~- A (3 (X1 t) ... w Xr) c. For n > Me the following inequalities holds: 

W 7 o ~ P ~ ( A ) ~ r . ~ / 1 6 r +  P k ( A r ) ~  

1 N--I 1 n - - N - 1  

~ / 1 6 - ~ n  .~llvll +~-  Y T P ~ P ' ( A t )  
z=O i=0 

n--N--1 1 n--iV-I 

z = 0  i = 0  
n - -Z~- - I  �9 n--g--I 

z=O i = 0  

~/8 + e/8 + Ks" ~/16 K ,  + ~/4 < ~. 

An alternative proof of theorem 2.1 may be given using pointwise ergodic 
theory and a uniform integrabflity argument. Let  [~ be the density of ~ with 
respect to / t .  I t  follows from a very general ergodie theorem of C~Aco~ [2] (or by  
an extension of the Hopf-Dunford-Schwartz ergodic theorem [12], [9]) tha t  

n -1 ~ [r Pg converges a.e. in S. Proposition 1 of [16] implies tha t  the limit is 0 
k = 0  

in pc. One uses the following lemma: 

Lemma 2.2. Let ~l >= 0 with 2 ~ # be a c~-[inite P-sub invariant measure. Let 
A C supp(2) and ~(A) < oo. T]~en /or any ~ ~ r the r {IA(/r is 
uni/ormly inlegrable. 

(We call a sequence {/g} uniformly integrable, if  for any s > 0 there is a 
ge e s  such that  ~ ]]~] - -  (l/g] A g,)dtt < e for all k. This definition is equi- 
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valent to the standard one ff/~ is finite, but  even in that  case it simplifies the 
proof.) The proof of lemma 2.2 makes use of the fact that  ~o ~ ~ implies QP ~ ~. 
I t  is similar to the proof of lemma 4 in [16], which treats the special case of a finite 
invariant measure 2, and is therefore omitted. 

We now prove a theorem on comparative averaging of two measures. J denotes 
the a-field of invariant subsets of C. 

Theorem 2.2*. Let Pbe a positive conservative contraction in q5 and q~, y~ ~ qD. I /  
(and clearly only i/) ~ (F) ---- y~ (F) /or all F ~ J then 

I n--l= J 
(2.5) n-~lim k~0( ~ -- ~) P~ = 0.  

R e m a r k .  For point-mappings theorem 4 was proved by Mrs. DOWKER [7]. 
The present elegant proof is due to N~v~g. (The authors original proof was based 
on lemma 1 of [3].) 

Proo[. Let I denote the identity operator, n -  pk tends to 0 if ~ belongs 

to the closure of the image ~ (P -- I) of ~ under (P - - / ) .  This is the ease iff ~ is 
or~hogonal to all P-invariant elements of g~. However, the P-invariant elements 
in ~ ,  by a theorem of N~v~v [19, p. 179] are just those, which are measurable 
with respect to J .  By the usual approximation the condition: (~ --  ~)(A) = 0 
for all A ~ J implies J" [d~ = ~]d~ for all / ~ g~ (J) .  

R e m a r k .  For aperiodic, recurrent and ergodic Markov chains a theorem of 
O~EY [21] proves (2.5) even without averaging; see also BLACKWELL and F ~ D -  
Ma~ [1]. 

The question for ratio limit theorems has already been negatively answered in 
section 1. Here we want to point out that  one can use example 1.1 to give examples 
also in the deterministic case of a point-mapping. This considerably strengthens a 
counterexample of DOWKER and ERD6S [8] to a conjecture of I-Iu~]~WlCZ. 

Let T be a point-mapping in the a-finite measure space (X, ~, /~) .  Assume T 
to be 1 --  1, onto, T and T -1 measurable, and nonsingular, T ergodic and conser- 
vative, # is assumed to be nonatomic. HHc~EWlCZ asked, whether for any two 
normalized measures ~1, g2, which are equivalent to # the ratio 

k ~ oq~l ( T-~ F) 
(2.6) n 

k =~0~e(T-~F) 

tends to 1 for all F e ~ .  DOWK]~]~ and ]~RDDS showed that  this is only so, ff T 
possesses a finite invariant measure, which is equivalent to #. We shall show, that  
(2.6) may diverge even if ~1 and ~2 are bounded by a a-finite invariant measure 
# and # (F) < c~. 

We shall only indicate the method: One first shows that  in example 1.1 
p ~- {p~) and q = (q~} may be modified in such a way that  all p~ and q~ are strictly 
positive. Let X* be the unilateral infinite product space with coordinate spaces 
I ~ (0, =~ 1 . . . .  ) ~ state space from example 1.1. The measures p, q and u induce 
measures ~*, ~2" and ~u* by the theorem of C. IO~EScc-TuLc]~ [13]. Some argu- 

* Theorem 2 has independently been proved by SVe~ESTO~ (to appear). 
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ments  of  M o t  [17, sec. IV] show tha t  ~*, ~ and #* are equivalent  to each other. 
Let/~* and ]2" be the densities of  ~1" and ~2" with respect to #*.  Let  X be the bilate- 
ral p roduc t  space and # the measure induced by  u in X. I f  T is the shift, then T is 
conservative and ergodic by  a theorem of H A ~ I s  and P e P s i n s  [11]. The densities 
/1 and f2 are defined by  fi(. . .x_~, . . . ,  x- l ,  x0, Xl . . . .  ) = / / *  (x0, xl . . . .  ). The corre- 
sponding measures ~i with d ~  = fi d/z are then bounded by  # since p and q were 
bounded  by  u. The example is completed if we take F = {x = ( . . . .  x0, xl . . . .  ) : 
x0 e A}, where A is the set constructed in example 1.1. I n  fact  

/ ,  ~tz l'~iA �9 
i e I  i e I  

The end of this section is devoted to a proof  of a pointwise ra ther  than  global 
limit theorem:  

A sequence {/~) of measurable functions on X is said to converge stochastically 
to a funct ion g if # (A 5~ {x: [f~ - -  g l > e}) -+ 0 for any  e > 0 and any  set A with 
# (A) ~ oo. (This is one of two s tandard  definitions which are equivalent i f /z  is 
finite.) Let  P be an arbi t rary  contract ion in ~1 (/z), not  necessarily positive, and let 
]P[  be its modulus (see [27]). The maximal  carrier of  ] P[ - invar ian t / t - in tegrab le  
functions in X is denoted by  P.  We m a y  call P the positive par t  of X and 
N = X - -  P the null par t  of X (with respect to P).  

Theorem 2.3. (Stochastic ergodic theorem)z. I f  P is a linear operator in ~1(#) 
1 n-i 

 ith ii P II <= I then/or any f the  eque  e = I ~ co verges aochastically. 
The limit vanishes in the null-part IV o / X .  n k = 

R e m a r k .  The sequence fn need not  converge almost everywhere as shown by  
C~Aco~ [28], see also A. IO~Scv-TuLc]~A [29]. However,  for any  contract ion P in 
~1 there exists a matr ix  summat ion  method M, which is stronger than  the Cess 
method  and which enforces almost everywhere M-convergence of  (]P~} for all 
f e ~1- This was shown for P ~ 0 by  the author  [16]. (The assumption P ~= 0 
used in [16] is unnecessary ff one uses [Pl in the proof.) 

Proof o/ theorem 2.3. Let  f e ~+ be I Pl- invar iant  and supp (/) = P,  and let 
f e ~1, e ~ 0, 5 ~ 0 and A with /z (A) ~ oo be given. Corollary 2 of  C ~ c o ~ -  

n 1 n - - 1  

K ~ O ~ L  [27] implies t ha t  ~ . / P ~ / ~ f [  P[~ = fn/ f  converges a. e. in P ,  hence fn 
k = O  k = O  

converges stochastically in P .  Nex t  we show stochastic convergence o f /n  to 0 in h r. 
1 n - - 1  

Since []n ] =~ n ~ I /[[  P[~ we m a y  assume f ~= 0 and P ~= 0. Again we use the 
k = 0  oo 

fact  tha t  N is a countable disjoint union N = ( .J  X~ with the proper ty  
i = l  

1 n - - 1  

lim n ~ P ~ ( X ~ )  = 0 (~e~b, i =  1,2 . . . .  ) .  
n--> oo k = 0  

Choose no so large tha t  # A n ~ X~ < c~/2. Let  No = X~ and let q~ be the 
i = n a + l  / i = 1  

1 If  it is a-finite, then it may happen that X = iV and for some e ~ 0 (# { x : ]/n [ ~ e } ) 
does not tend to 0. Thus the theorem would be wrong for the stronger version of stochastic 
convergence (convergence in measure). 
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measure with Radon-Nikodym derivative [. For nl  sufficiently large and n ~ nl 
we have 

1 ~ G ~Pk(No) < e" d/2.  
~ - / c  = 0 

Hence 

Hence 

~(AnNn{l/~l >~})<Z A +~(Non{ll~ 1 >~})<~. 
1 i 

Since d > 0 was arbi trary the theorem follows. 

R e m a r k s .  (1) For P ~ 0 the limit can be identified also in P, see e.g. [16]. (2) 
The application of corollary 2 of [27] can be avoided. (This is desirable since tha t  
corollary depends on a very deep theorem of CHACO~ [2]). Using f o n e  may  reduce 
the proof of almost everywhere convergence in P to the proof of the ergodie 
theorem in the case IlPII < 1, llPIIoo < 1; for this technique see I-IOPF [12], 
N~v~v  [19]. 

3. On the Strong Ratio Limit Property 

Following KINGMAN and ORgY [23] we say tha t  a recurrent, aperiodic and 
irreducible Markov chain has the strong ratio limit property if there exist positive 
numbers {u~, i e 1} such tha t  

lim P~+~) - -  uj m = 0 , 1  . . . .  , i e I ,  ] e I ,  k e I ,  h e I .  (3.1) 
t-,oo ~o~ u~ ' 

(We shall not need the more general definition of P~UITT [25], since we restrict 
ourselves to the recurrent case.) K]:NGMA~ and ORmr, and OR~:  [25] showed tha t  
both the following conditions are sufficient for the strong ratio limit property to 
hold: 

(I) There exists an 2V and an s > 0 such tha t  
/g  

inf ~ p~n)> e 
i s I  n = l  

(II) The chain is reversible, i.e. : there exists a sequence {~i, i e I} of positive 
constants such tha t  0~P~i -= QiPlt for every i and ]. (I t  follows immediately tha t  

---= {el} is an invariant  measure.) 
We are interested in the question, whether in (3.1) the probabilities of visits in 

single states may  be replaced by probabilities of visits in sets of finite invariant  
measure. The answer will be negative, though the crucial part  of the implication 
"(I) implies (3.1)" remains valid for probabilities of visits in arbi trary sets and for 
arbi trary initial distributions. 

Proposition 3.1. Let (PIj) be the matrix o/transition probabilities o /a  recurrent, 
aperiodic and irreducible Marlcov chain. I] it satis/ies condition 

(I*) infp~ > 0 ,  
i E I  
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then /or a n y  A C I and a n y  in i t ia l  distr ibution p = {P/} (P~ > 0, ~ p~ ---- 1) it  

follows that ~ ~ ~ 
pi P~ + ~ 

. .  i e I  
n m  ~ - -  1. 

Proof .  The proof  of  KINGMA~ and Om~u [23] of  the special case "A  = {j}, 
{p~} = point-mass in one point"  remains valid. I t  follows the lines of the proof  of  
C~u~G and Em)6s  [22] of the strong ratio limit proper ty  for recurrent  r andom 
walks. 

Corollary 3.1. Under the assumpt ions  of proposi t ion 3.1 

(3.1) �9 pi~ Inn ~a~- = 1 
t - - ~  F J A  

for all i, j e I and A C= I .  

The proof  is obtained in a s traightforward way  from the usual first-entrance 
decomposition. 

Corollary 3.2. Let  p ~- {p,} be a n y  in i t ia l  distribution,  then, under  the assump-  
t ions of proposi t ion 3.1 we have 

q~lc 
t---> oo  

for all j ,  k ~ I .  

Proof .  The fact t ha t  the limes inferior of  the above ratios is > u j /uk  follows 
t - - 1  

. _(t) ~ ~(t-s) ~p~]. The other inequali ty follows using the decomposit ion p~) = ~ j  ~- /~  ~ik 
by  symmetry .  ~ = 1 

E x a m p l e  3 .1 .  We now describe a null-recurrent, irreducible Markov chain 
with the properties (I*) and (II) (and hence (I)) and such tha t  

Qt(i ,  A )  - -  p~  p~2 

diverges for some state i and some set A of finite invariant  measure. 
The construct ion is done inductively.  At  the n- th  step we define two natural  

numbers  an and kn > an and a real number  g~t with 0 < un < 1/2. The state space 
I will be the union of J0 ---- {0, 1, 2 . . . .  ) and the set J1 of  all ordered pairs (i, ]) 
with i ~ {1, 2 . . . .  } and 0 < ] < k~. Let  

Poo -= 2 -1 , Pon ---- P0, (n, 0) ----- 2 -(n+2) (n ~ 1). 

Fur ther  for n > 1 let:  

pno = ~n, pnn ~ (1 - -  ~n), P(n, 0), 0 ---- 2-2, p(n, k,), (n, k~) ~- 3/4,  

p(n,j) ,  (n,i) -~ 2-1 (0 --< ~ < kn), P(n,j), (n,J+l) ---~ 2 -2 (0 =< ~ < kn), 

P(n,i), (n,j-1) --~ 2-2(0 < i ~-< fen). 

Then all other t ransi t ion probabilities necessarily are 0. A shall be the union of  all 
states (n, an) with n > 1. Since ~,, ~< 1/2 we have Pu ~ 1/2 for all i e I ,  so t h a t  
(I*) is satisfied. Condition (II) is easily checked: One defines ~0 ----- 1 and finds all 
other  ~i f rom the transi t ion probabilities. I t  follows tha t  ~ 9t ---- 1, so tha t  A has 
finite invariant  measure, i~A 
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We shall consider the ratios Qt(O,A)  for certain values t = tn, where 
0 = to < tl < - - - .  Before describing the n- th  step of  the construct ion we recall 
some facts about  the familiar coin-tossing r andom walk:  Let  Sr = Y1 d- Ys  d- 
d - " ' "  + Yr, where Yk(k = 1, 2 . . . .  ) are independent  r andom variables with 
Prob { Yk ---- l} = Prob  { Y~ = - -  1 } = 1/2. Let  ~ (t, l) = Prob {Sst  = 2 l, min Sr > 0}. 
The reflection principle yields for all integers 1 =~ 0 1 _~r ~2 t  

t 1 - -  t + l + l  = 2 - ~ t  t + / + l  t - - 1  

Let  It be a sequence of  nonnegat ive integers with It ~ t~ (in the sense t h a t  
It t-~ -+ 1). An  application of  Stirling's formula and two applications of  the formula 

lim ( l + ~ ) ~ = e ~ y i e l d  
8 - - - > 0 0  

(t, lt) "~ 2 z- �89 -1 t -1 . 
H e n c e  

(3.2) 
c o  

We are now ready to describe the n- th  step of  the construct ion (n ~ 1): Let  
Fn  = {n, n + 1 . . . .  }. At  this point  :r and  k~ are defined for all v < n. Therefore 
the taboo-probabifi t ies ~ ~(t) are well defined for t < rain k~. Since we do no t  

~ ' n l ~ O 0  = 

~ _ n  

"̂ (L) which would arise ff/c~ were know k~ for v ~ n we let Pn (t) be tha t  value of  F,/J0u 
larger than  t for all ~ ~ n. Since Po,F, = 2-(n+1) > 0 it follows t h a t  

o o  

(3.3) ~ pn (t) < c~.  
t = l  

Now observe tha t  the t ransi t ion probabilities pij for i, ] e {(n, s), 0 < s < kn} are 
the two-step t ransi t ion probabilities of  the coin-tossing random walk. Hence, 
assuming kn sufficiently large, 

(3.4) ~(t) Prob {Sst  = 21,  min Sr ~ - -  1 } ~ ~ (t, l) .  0/J(n,O),(n,l) = 
1 ~ r  _~2t 

Because of  (3.2) and (3.37 we m a y  choose an integer tn > tn-1 so large tha t  

tn > It._1 and 

(3.5) P(tn  - -  1, l t ,_ l )  ~= 2n+anpa (tn).  

Let  an = I t ,_ l  and  kn = tn. Final ly  for v ~ n we choose real numbers  ~n~ with 
0 < ~n~ < 1/2 so small t ha t  

o o  

(3.6) tn ~ O:n~ < Pn (tn) , 

and we pu t  ~ = rain ~kn. This completes the construction. Clearly all ~n are 
1 < b  _--<n 

str ict ly positive. Therefore the  chain is recurrent.  No mass coming f rom 0 reaches 
any  state (~, k~) with ~ _--> n before t ime tn. This and (3.6) imply  

o o  

(3.7) p(oto ~) ~ pn (tn) + tn ~ ~ < 2 p n  (tn).  
~ g t  
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The inequali t ies (3.4), (3.5) and  (3.7) yield 

p(~) >_ ~o(t~-l) . 2_(n+2)~(t n 1, l t ,_ l )  ~ 2 n p n ( t n )  > n p(o~ ) 0 , ( n ,  a n )  - -  P ( 0 , ( n , 0 )  "P(n,O),(n, an) ~ 

and  hence Qt(O, A )  > n. Hence l im sup Qt(O, A )  ---- oo. 
t --> oo 

R e m a r k s .  (1) Since the chain in  example 3.1 is reversible i t  follows t h a t  
(t) 0 (i ~ A). = Z o0p(   ) = ~ Let  {p,}  be def ined b y  p,  = O (i A) ,  = 

a e A  a e A  

Then  {p/} is an ini t ial  d is t r ibut ion  which is domina ted  by  the inva r i an t  measure. 
~-" ~ ~ ( t ) l~ ( t )  However  2_, ~ ' i0~v00 diverges. 

(2) One may  ask whether  condit ion (I) or (II) are strong enough to imply  a 
global ratio l imit  theorem as discussed in section 1. The author  has checked, t ha t  
example 1.1 can be modified in such a way tha t  i t  satisfies condit ion (I*) and  hence 
(I). I t  seems plausible and  easy tha t  the same can be done concerning condit ion 
(H), and  with (I) and  (II) s imultaneously.  The resul t ing point  mapping  as con- 
s t ructed  in  section 2 in  either case is s t rongly mixing in  the sense of K ~ I C ~ B ~  

[2~]. 

I am indebted to Professors K. L. CHU~a, D. F~EV.])~,  Y. ITO, D. LINDAE and J. ~EVEU 
for various references and some remarks. 
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