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0. Introduction

Limit theorems for null-recurrent and non-recurrent Markov chains are usually
proved under two different assumptions: either probabilities of visits in single
states<, 7, ... are considered and the initial distributions are allowed to be arbitrary,
or else probabilities of visits in sets 4, B, ... of states are considered, but then the
initial distribution is assumed to be concentrated in one state. In the latter case
A, B, ... usually have finite invariant or subinvariant measure. Theorems of both
types are now also available for very general state-spaces, see e.g. [19], {17], [18],
[15], [3]. Limit theorems which drop the pointwise assumptions both with respect
to the initial distribution and the visited set will be called global limit theorems.
We shall, roughly speaking, show that some theorems on ordinary and Cesaro-
convergence do have global analogues, while global ratio limit theorems require
crucial additional assumptions. A mutual generalization of the two pointwise
generalizations of the Doeblin ratio limit theorem [6] does not hold.

In section 2 we prove a general stochastic ergodic theorem for arbitrary con-
tractions in €; and a global limit theorem for the corresponding nonsingular
Markov process. We also give a new counterexample to a conjecture of HUREW10zZ.
Our example, which is based on the example on Markov chains mentioned above,
allows us to disprove the conjecture even for sets of finite invariant measure.
(DowkEr and ErDp6s [8] showed that the conjecture is wrong for sets of possibly
infinite measure.)

In section 3 an example is given showing that the known sufficient conditions
for the strong ratio limit property do not imply such a property for probabilities of
visits in sets of finite invariant measure. The ratios of n-step and (n - 1)-step
transition probabilities, however, satisfy a strong global ratio limit theorem.
Section 3 is independent of section 2.

1. Markov Chains

We shall adopt the terminology and notation of CHUNG [4] and consider a
Markov chain {Xy, # = 0} with countable state space I. For any subset 4 c I let

8 = z pg?) be the k-step transition probability from state i to the set 4. Let Ip
jed

*This work has been prepared with partial support of the National Science Foundation
(Grant GP-2593).
** niversity of Erlangen and University of California, Berkeley.



Global Limit Behaviour of Markov Chains 303

and Iy be the sets of positive states and null-states respectively. Within Ip the
global limit behaviour is well known and, in fact, follows from the pointwise limit
theorems. A measure w = {u;, 1 € I} is called subinvariant if
g = > wiPik
iel

holds for all k € I and u is called invariant if equality holds. The following simple
result is probably known:

Proposition 1.1. Let p = {p;, ¢ € I} be any probability distribution on I, w = {us}
a subinvariant measure, A N Ip =0, A c {i:u; > 0}, u(4) = > u; < co. Then
> pipd tendsto 0. ied
iel

Proof. We may assume that p is concentrated in one state 7o and that
u;, = p;, = 1. If & > 0 is given, choose finitely many states ay, ..., ar € 4 with
(4 — {a1,...,ar}) < ¢/2. Then since p <u and p{¥, -0k =1,...,7) it
follows that p{™, < & for n large enough.

Sinee the limit is 0, the question for ratio limit theorems arises: Is there a
mutual generalization of the following two pointwise limit theorems (see e.g.
[15]) ¢:

Let the chain be recurrent and let I consist of only one ergodic class. Then:

(a) If u = {u;} is the (essentially unique) invariant measure (see DERMAN [5])
and if both 4 C I and B C I have finite invariant measure, then

n
o)
tglpm w(A)
(L1) L
PPREID
t=1 !

for all ¢,5€e 1.
(o) If p = {p:;} and ¢ = {¢:} are two probability distributions in I

(1.2)

forall j, kel

We shall show that no common generalization for (a)and (b) exists. Moreover
we shall see rather exactly to what extent (1.1) can be generalized concerning
more general initial distributions.

We shall frequently need taboo-probabilities: For t = 1 gp{®} = prob {X;e4;
X,¢H forv=1,...,t —1|Xo=4d}, for t =0 gply =0 if i¢ 4 and =1 if
te A If {a®, t = 0} is a sequence of real numbers (eventually with some lower

indices), then a* shall denote z a®. For example ;,p is the probability of return-
=1
ing to 7 without passing through %, given a start at <.

Lemma 1.1, Let I consist of only one ergodic class and let w = {u;} be a non-
trivial subinvariant measure. If A C I satisfies u(A) << co and if p = {pi} is @
probability measure such that for some h e I
(1.3) 2 Pt (1 — )™ < oo

t¥+h
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then

tends to a finite imit Q(p, 4) +0, which is 1 if the chain is recurrent.
Proof. For n = 1 we have

P8 = wpld + Z B,
Multiplying with p;, summjng over all e and n =1, ..., N, reordering the
sums, and finally dividing by Z p(") we obtain

N—-1
zezl nzlp2 h])(") nz Z)Z gl pihp‘(”?
(1.4) Qy = + = — .
T S 3
A well-known lemma on Nérlund-means (see e. g. CHUNG [4]) implies that the
second term on the right hand side converges to Z Zpi w2, which is =1

k=1 1el
if the chain is recurrent. The lemma will be proved if we show that under our

agsumptions the nominator of the first term is finite. From
P = anpld + Z wP@ i (= 1)

it follows upon summing from 1 to co that »pJ satisfies the equation
10 = i + i nps -
If i +h, then (1 — ;3p%) +0. Hence for 7 +% we have

(L.5) Wiy = anpis (L — )~
Clearly ;1p¥ < ip¥. Since v is subinvariant the inequality
(1.6) wituy ZapP + e+l

follows by induction.
Altogether we obtain

zlpz' 1Pl = Prnpia + Z Peanpia (1 — anpf) 1 <
1€

= pruztu A)’*‘Z%“ (I — anph)™ <oo.

For any i +h (1 — sp)) is the probablhty of visiting % before or at the time
of the first return to ¢, given a start at 7. This probability is denoted by b;;. For
t = h we put by = 1.

Proposition 1.2. Let I consist of one ergodic class, which is recurrent. Let w= {u;}
be the invariant measure (which is uniquely determined up to o constant factor),
p = {pi} and q = {q:} two probability distributions in I, and A, B two subseis of 1
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with w(A4) < oo and u(B) < oo. If there exist two states b, k € I with

(L.7) > piuitby < oo and Y quuitby < oo
1el iel
then
z1 iezIpipm)
.
Qnvd,B)=—F——
> D ang
n=1 1el

tends to u(d)[u(B).
Proof. This is now an immediate consequence of (1.1) and lemma 1.1.

Example 1.1. The most crucial point of condition (1.7) is the occurrence of
the factors ;. They may be hard to compute. Since & and k do not appear in the
result, it is a natural question to ask, whether b7 and b are only needed for the
present proof. Unfortunately this is not so. We shall now exhibit a null-recurrent
Markov chain {pi; ¢, ke I}, a set A C I with u(4) < oo and two probability
distributions p = {p;}, ¢ = {¢;} with me{l << o0, Zqiugl < oo for which

i€l iel
Qy (4, 4) diverges. In addition p and ¢ will be bounded by .

Let T={0,41,42,...}. We shall inductively define several strictly
increasing sequences of nonnegative integers: {t»}, {ka}, {bn}, {In} (n =0)
starting with #y = ko = by = lp = 0. Furthermore we shall need two sequences of
real numbers {on, n = 1} and {f,, n = 1} with 0 < otn, 84 < 1. The reader is
invited to visualize the state space rearranged in the following way: The states
kn1+1=14n, ju+1,..., k, form a column with top k, and base j, (n = 1).
It will be called the n-th column to the right of 0. The states — j,, — (jn 1),
..., — ky form the n-th column to the left of 0, — &, is its top and — §,, its base.
For short let Cpx = {jun, ..., kn}, Con = {— jn, ..., — kn} and Cp = Ops U Osyp,
be the right column, the left column and their union respectively. For n = 1 let
bp = jn 4 tn,ln = bn + tu—1 + land ky = Uy + 4. 00, Bn and &, will be specified

at the n-th step of the construction. We shall put 4, = {b, ..., bp}and 4 = UAn.
n=0

Now we define the transition probabilities in terms of o, and f,: Let p;, o=
= P_j,0 = 1. In the left columns the mass moves downwards: for any § with
—kn = §<—17n let p; 501 = 1. In the right columns it moves downwards
with exception of by: for any j with j, <j << by or by < § < ky let pj, -1 = 1;
finally put P, 5,4 =1 — Bn, Py, 1. = B, Poo = 1/2, Py, = an2-®+) and
Po, —k, = (L — ap)27(®+D, Then all other transition probabilities p;; necessarily
are 0.

The initial distributions p = {p;} and ¢ = {¢;} are defined by the equations:
For n = 2 even p;, = 272" and ¢;, = 0, forn =1 odd p;,, = 0 and ¢, = 2727,
furthermore p,=1—2 p;,; g, =1 —Z 1> and p;=¢; =0 for all ¢¢{l,, n =0}.

n=1 n=1

n-th step: Let Gy =|_J) C) and Fp = I — Gy. At this point oy, By, ty, Iy, and

v =n

ky are well-defined for » = 1, ..., — 1. Therefore the set G, and the taboo-
probabilities 4, 72 are well-defined for all ¢, ke Fy. Necessarily py g, = 27

21 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 6
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and this implies

(1.8) ¥ = sup 4 pgsfin_ -0 (s—>00).
jeFy
Let sy = tn—1 be so large that s = s, implies y < 2-@n+yp-1(t, | + 2)-1,
Now it is possible to choose natural numbers ¢, and m, of the form &, = my(tn—1 -+ 2)
such that
My * 2-2n Z 1 + n(sn _}_ My * 2—(2n+1) n—l) .

This determines ks, I, , b, as well as fy.
Now 3/4 << f, < 1 is chosen so close to 1 that

My + fin - 2720 > p(sy -+ My 2-EnFD 1)

Finally 0 << oy << 1 is determined in such a way that the invariant measure
assigns probability 2-% both to I,, and b,. We shall show that this can be achieved
by putting oy = 2(1 — f,). Now the Markov chain is completely defined.

It follows from the definitions of the transition probabilities that it is recurrent
and has one ergodic class only. Hence there exists an invariant measure u = {u;}
which is uniquely determined if we put wp = 1. It is easily checked, that

Uy = Vg1 == U1 =0l 270D, g, =y, =y, =ty 27D - f 270 =27,
Upy =" = Uy, = 0 27("+D and u; = (1 — ocn)2”(”+1) for ¢ € C+y. This implies
u(A)—Zub —22 % < oo, ZPM% _Zpl 4] <Z2 202n < coand > qsu;t <o

iel
by the same 1nequah‘oy It remams to show that QN (4, A4) diverges.

For this we consider first the case N =, with » = 2 even: For r = 0 and
k= (g1 + 1) + 7(tn—1 + 2) we have p{¥, = f. Hence

in in
1 S Spplh =D pps, = 22“2"52 =
( -9) t=0 1€l I=0 r=0
= My BT 2720 > n(sy 4 My 2-Cut) 1) |

Next we estimate the denominator: For any n; > n we have [, — b, > £,, so
that no mass coming from [, can reach 4 before time ¢, + 1. This and ¢;, = 0
together imply
(1.10) Z > qrl = Z qumf,’A

1=0 {€1 t<% +=o

Furthermore for any v = n we have ky — by > ty, so that no mass entering G
from state 0 can reach A before time £, + 1. Hence

tn n—1 tn n—1
(1.11) 2 2,Pa =2 2064
t=0v=0 =0 v=0
From the choice of s, we have
in n—1
(1.12) Z quv G,,Pz,,A,, s+ Zy(”) < 8y -+ mp 2-C@ril) -1
t=0 »=0 t=2¢8n

The inequalities (1.9)—(1.12) imply @, > n. In the same way it follows for
n =1 odd, that @,, < n~1. Hence lim inf @; = 0 and lim sup @; = co. This also
implies that the Markov chain is null-recurrent, since @n(4, 4) converges for
chains with positive states.
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Remarks. (1) One might also beinterested insimplerexamples, eveniftheyshow
somewhat less. Some such examples can be obtained using similar ideas. If it shall
only be shown, that (1.1) and (1.2) do not possess a mutual generalization, one
can dispense with the numbers (5, and put gy, 5,1 == 1. A N Cy= must then consist
of sufficiently many states {by, ..., by — 2} With x, <, and both 2, and #,
sufficiently large. o, must then be determined in such a way, that u (4 N COyx) <
< 2-n, This construction is not appreciably much simpler. It has, however,
another advantage: the numbers b;o are then all = 1 and it follows that also the
factor «;! in (1.7) is essential. (2) The method indicated in remark 1 can also be
used in order to show that u(A4) < co is an indispensable condition in lemma 1.1,
even if

> piuplb < oo and > guitby < oo.
iel iel

This is of interest in view of the fact that for recurrent chaing

N
> B

(1.13)

2. .lezpiﬁ’
(1.14) lim inf {*=5"—— ] =1
Noo 2 PR
n=1

which follows from (1.4).

(3) For recurrent random walks all sets of finite invariant measure are finite, so
that all results concerning sets A with u(4) < oo follow from the pointwise results.
The ratios Qn (A, A) need not converge for arbitrary sets A C I, and probability
measures {p;} and {g;}. An example may be given using the coin-tossing random
walk. Tt is omitted, since its description is almost half as complicated as that of
example 1.1 and example 1.1 shows so much more for Markov chains.

2. Markov Processes

Let (X, #, u) be a ¢-finite measure space. All sets and functions introduced
are assumed to be measurable. Sets as well as functions are identified if they
coincide almost everywhere. 4A¢ denotes the complement of a set A C X, 14 is
the indicator function of A. @ = @ (u) denotes the Banach space of finite signed
measures @, absolutely continuous with respect to u: ¢ <€ u. For any function f
on X the set {x € X: {0} will be called the support of f (supp (f)) and for ¢ € @
we put supp () = supp(de/du). For any function f and any set function ¢ define

2.1) Lif = 14f,
¢la(B) = g(4 N B).

Let P denote a positive contraction in @(g), i. e. a linear operator in @ with
P =0 for all ¢ = 0 and with | P| =sup | ¢pP| < 1. The dual P* of P is a
o=t

21%*
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positive contraction in Qe (u) : f — P*f. A substochastic kernel p(x, 4) is called
nonsingular if u(4) = 0 implies p(z, A) = 0. It then induces a positive contrac-
tion P in @ by

(2.2) (9 P)(4) = [pla, A)dp (AcF, ped)

and its dual by
(P*f) (@) = [{y) plx,dy) (f€Leo)-

In particular: A measurable point-mapping T in X is called nonsingular, if
@(d) =0 (pe®) implies pP(4) = p(T14)=0 (AeF, g D). P is then
induced by p(x, 4) = Iy-14. A o-finite measure 1 <€ u is called (sub)-invariant
or P-(sub)-invariant if [ P*fdA(<) [fdA for all feRL = {0 =< fe o} A set
A € F is called invariant if for any 0 < ¢ € @ with p(4°) = 0 also pP(4°)=0.
As usual € and D denote the conservative and dissipative part of X, see e.g. [10],
[17], [19]. If X = C the operator is called conservative. P is called ergodie if for
any invariant set 4, u(4) = 0 or u(4¢) = 0. P denotes the positive part of the
state space X, i.e. the maximal carrier of finite invariant measures, see NEVEU
[20], KrENGEL [16].

@ (p) is isomorphic to €y () by the Radon-Nikodym theorem and P thereby
induces an isomorphic operator in £ {g), which also will be denoted by P and acts
from the right side.

Theorem 2.1. Let 2 =0 with 2 € u be a o-finite P-subinvariant measure,
S = supp(A), A C S, 2(4) < o0 and A N P = 0. Then for any ¢ € D we have

(2.3) lim - Z(pPk 4)=0.
oo™ g=0

For the proof the following simple lemma is needed:

Lemma 2.1, If 0 < 1 € u is a o-finite subinvariant measure, then S =supp (4)
is tnvariant.

Proof. Let 0 < y e @ and supp(y) C 8. Further let f = 0 be the density of p
with respect to A and let K, =0 be so large that | (f — (fAKe)dA <&>0.
Then

0< [Igd(pP)= f(P*1g)dy =
= [(P*1g) (fAKe)dA+ [ (P*1s) (f — (fAKe))dA <
Ko [1gd(AP)+ e <K [Igdi+e=5.

Since & > 0 was arbitrary it follows that supp(p P) C 8.
Proof of theorem 2.1. We may and do assume ¢ = 0. We define inductively
po=gls, 96 = ¢ I,
grrr =gt Pls, 9it1=9f Pls.-

Then
2.4) @PY¥ = @oPY -+ on-1 P o + ¥
follows by induction and |[gz+1] + [@ifii] = || @f| implies ZH or] = o]

Let s > 0 be given. Choose N = N, so large that Z [| o] < eft We shall consider
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p = ¢ PV 5. Since 4 is equivalent to uIs we have

ly — (WAK:D)| < ¢f8
for sufficiently large K. Let 1 = p AK A and g2 = y — y1. By theorem 1 of [16]
Pe is a countable disjoint union P¢= U Xy of sets X with the property
n-1 Z @ Pi (X)) — 0. Let the integer r be so large that 2(4 N (X U -+ U Xp)0) <

< 6/16 K, Let M = M. be = N, and so large that N, ¢ M;' < £/16 and for
n=M,

1 71
= D oPiXy) <ég/ler (k=1,...r).
=0

It follows from the invariance of § that

| PY Is. PEIg| =

z PN +k~f Pi ‘
j=0

for all £ = 0. Finally we observe that ¢ < A implies o P < 1; in fact, denoting
by fo the density of ¢ with respect to u, we have:

P(A)y= [14d{gP)= [1alfe P)dp = [(P* L) fodu <
< [P*14d0 = [ 14dd = A(4).

Let 4y =A N (X1V--v X,)e. For n = M, the following inequalities holds:

= Z l il <ef4
=N-+1

n—1 n—1
LS oPiA) Sregflér+ o > g Ph(A)) <
;=0 i=0

n—N-1

1 N-1
<16+ S|l + > pPYPU4,) =
i=0Q

=0
n—N-—1

&8+ 2 pPiA4y) + — _Z"anNIScPf(Ar) <

n
n— N~1

<s/8+— z {WZPHH— Z zplPi<Af)+e/4<

és/S—}—e/S—}—Ke- /16K8+a/4<s.

An alternative proof of theorem 2.1 may be given using pointwise ergodic
theory and a uniform integrability argument. Let f, be the density of ¢ with
respect to u. It follows from a very general ergodic theorem of CHACON [2] {or by

an extension of the Hopf-Dunford-Schwartz ergodic theorem [12], [9]) that
n—1

n~1 3 fo Pk converges a.e. in S. Proposition 1 of [16] implies that the limit is 0
E=0

in Pc. One uses the following lemma:

Lemma 2.2. Let A = 0 with A € u be a o-finite P-sub invariant measure. Let
A Csupp(l) and A(4} << oo. Then for any gc @ the sequence {14{f,P¥)} is
uniformly vniegrable.

(We call a sequence {fz} uniformly integrable, if for any & > O there is a
gs € 4 (1) such that [ |fx| — (|fx| Age)du < e for all k. This definition is equi-
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valent to the standard one if y is finite, but even in that case it simplifies the
proof.) The proof of lemma 2.2 makes use of the fact that p = A implies p P < 4.
It is similar to the proof of lemma 4 in [16], which treats the special case of a finite
invariant measure A, and is therefore omitted.

‘We now prove a theorem on comparative averaging of fwo measures. .# denotes
the o-field of invariant subsets of C.

Theorem 2.2*, Let Pbe a positive conservative contraction in @ and ¢, v € D. If
(and clearly only if ) (F) = w(F) for all F < # then

n—1

LS p— )P

k=0

(2.5) lim

n—roo

=0.

Remark. For point-mappings theorem 4 was proved by Mrs. DowkEer [7].
The present elegant proof is due to NEvyvu. (The authors original proof was based
onlemma 1 of [3].)

n=1
Proof. Let I denote the identity operator. H n-1 Z o P
=0

to the closure of the image @ (P — I) of @ under (P — I). This is the case iff ¢ is
orthogonal to all P-invariant elements of $.. However, the P-invariant elements
in L, by a theorem of NEVEU [19, p. 179] are just those, which are measurable
with respect to .#. By the usual approximation the condition: (¢ — ¢)(4) =10
forall 4 € .# implies ffd(p = ffdtp for all f € Qoo (F).

Remark. For aperiodie, recurrent and ergodic Markov chains a theorem of
OREY [21] proves (2.5) even without averaging; see also BLACKWELL and FREED-
MAN [1].

The question for ratio limit theorems has already been negatively answered in
section 1. Here we want to point out that one can use example 1.1 to give examples
also in the deterministic case of a point-mapping. This considerably strengthens a
counterexample of DOWKER and ErDOs [&] to a conjecture of HurREWICZ.

Let T be a point-mapping in the o-finite measure space (X, &, u). Assume T
to be 1 — 1, onto, T and T-1 measurable, and nonsingular, T ergodic and conser-
vative, p is assumed to be nonatomic. HurREwIcz asked, whether for any two
normalized measures @1, g2, which are equivalent to u the ratio

S @i (T-*F)
k=0

tends to 0 if p belongs

(2.6) =o
kzofpz('f )

tends to 1 for all ¥ € #. DowkEer and ErDSS showed that this is only so, if T
possesses a finite invariant measure, which is equivalent to u. We shall show, that
(2.6) may diverge even if ¢; and ¢z are bounded by a ¢-finite invariant measure
wand u(F) < oo,

We shall only indicate the method: One first shows that in example 1.1
p = {p;} and ¢ = {g;} may be modified in such a way that all p; and ¢; are strictly
positive. Let X* be the unilateral infinite product space with coordinate spaces
I = {0, +1, ...} = state space from example 1.1. The measures p, ¢ and « induce
measures @7, g5 and u* by the theorem of C. Joxgscu-TuLcEa [13]. Some argu-

* Theorem 2 has independently been proved by SucHESTON (to appear).
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ments of Moy [17, sec. IV] show that ¢f, ¥ and u* are equivalent to each other.
Let j and f§ be the densities of pf and @ with respect to u*. Let X be the bilate-
ral product space and u the measure induced by  in X. If T is the shift, then T is
conservative and ergodic by a theorem of HarR1s and RoBBINs [11]. The densities
f1 and fs are defined by fi(...%—p, ..., 21, %o, %1, ...) = [ (20, 21, ...). The corre-
sponding measures ¢; with dg; = f;du are then bounded by u since p and q were
bounded by u. The example is completed if we take F = {x = (..., zo, 21, ...):
xo € A}, where A is the set constructed in example 1.1. In fact
pi(THF) =2 pipland  ga(T+F) = 209l
€ 2E

The end of this section is devoted to a proof of a pointwise rather than global
limit theorem:

A sequence {f;} of measurable functions on X is said to converge stochastically
to a function ¢ if (4 N {x: |fx — g| > &}) — 0 for any & > 0 and any set 4 with
u(4) < oo. (This is one of two standard definitions which are equivalent if u is
finite.) Let P be an arbitrary contraction in i (u), not necessarily positive, and let
| P| be its modulus (see [27]). The maximal carrier of | P|-invariant u-integrable
functions in X is denoted by P. We may call P the positive part of X and
N = X — P the null part of X (with respect to P).

Theorem 2.3. (Stochastic ergodic theorem ). I f P is a linear operator in 2y (p)

with | P|| = 1 then for any f € Q1 the sequence fn = — z f P% converges stochastically.
The limit vanishes in the null-part N of X. " k=0

Remark. The sequence f, need not converge almost everywhere as shown by
CHacon [25], see also 4. ToxEscu-Turcea [29]. However, for any contraction P in
1 there exists a matrix summation method M, which is stronger than the Cesaro
method and which enforces almost everywhere M-convergence of {f P} for all
f € £1. This was shown for P = 0 by the author [16]. (The assumption P = 0
used in [16] is unnecessary if one uses | P| in the proof.)

Proof of theorem 2.3. Let fe ; be | P|-invariant and supp(f) = P, and let
fel, €>0,0>0 and 4 with u(4) < oo be given. Corollary 2 of CHACON-

n—1 n—1
KrENGEL [27] implies that > jPE/ > f| P|k = f,/f converges a. e. in P, hence fy
=0 5=0
converges stochastically in P. Next we show stochastic convergence of f, to 0in N.
Since |fn] < — Z[]‘[[PI’c we may assume f =0 and P = 0. Again we use the

fact that Nis a countable disjoint union N = U X ; with the property

=1
n—1

lim L S oPEX)=0 (ped,i=12..).

n—>o0 " p=0

[} 1o
Choose ng so large that u (A N U Xi) < 0/2. Let Ng= UXz and let ¢ be the

t=mno+1 =1

1If u is o-finite, then it may happen that X = N and for some & > 0 ( ,u {x:|fn] >¢€})
does not tend to 0. Thus the theorem would be wrong for the stronger version of stochastic
convergence (convergence in measure).
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measure with Radon-Nikodym derivative f. For ny sufficiently large and n = n;
we have

% E PE(Ng) < - 0/2.

Hence
= [ fadut | faduze-pNon{|fa] >s}.
Non{|fn| <e} Non{|fn| >e}
Hence
w(ANNN{|fa] >s})§,u<An U Xi)—|-,u(Nom{]fn] >e})<<d.
t=mno+1

Since § > 0 was arbitrary the theorem follows.

Remarks. (1) For P = 0 the limit can be identified also in P, see e.g. [16]. (2)
The application of corollary 2 of [27] can be avoided. (This is desirable since that
corollary depends on a very deep theorem of Cracon [2]). Using f one may reduce
the proof of almost everywhere convergence in P to the proof of the ergodic
theorem in the case |[P| <1, |P|e = 1; for this technique see Horr [12],
Nevev [19].

3. On the Strong Ratio Limit Property

Following KiNnamax and Orry [23] we say that a recurrent, aperiodic and
irreducible Markov chain has the strong ratio limit property if there exist positive
numbers {u;, ¢ € I} such that
(3.1) lim P57 % p=0,1,...,iel, jel, kel, hel.

t—c0 2o Un

(We shall not need the more general definition of PruITT [25], since we restrict
ourselves to the recurrent case.) KingMaN and OrEY, and OrEY [25] showed that
both the following conditions are sufficient for the strong ratio limit property to
hold:

(I) There exists an N and an ¢ >> 0 such that

N
inf >pP=e.
tel n=1

(II) The chain is reversible, i.e.: there exists a sequence {p;, ¢ € I'} of positive
constants such that g;p;; = g;ps for every ¢ and j. (It follows immediately that
¢ = {pi} is an invariant measure.)

We are interested in the question, whether in (3.1) the probabﬂltles of visits in
single states may be replaced by probabilities of visits in sets of finite invariant
measure. The answer will be negative, though the crucial part of the implication
“(I) implies (3.1)” remains valid for probabilities of visits in arbitrary sets and for
arbitrary initial distributions.

Proposition 3.1. Let (pi;) be the matrizx of transition probabilities of a recurrent,
apertodic and irreducible Markov chain. If it satisfies condition

(1*) infpy; >0,

iel
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then for any A C I and any initial distribution p = {p;} (p; =0, sz =1) it
follows that
Z i p(t+1)

llm %pzp”’ =

{—>co

Proof. The proof of Kixeman and Ormy [23] of the special case “4 = {j},
{p:} = point-mass in one point” remains valid. It follows the lines of the proof of
Cuuxng and Erpos [22] of the strong ratio limit property for recurrent random
walks.

Corollary 3.1. Under the assumptions of proposition 3.1
(3.1) lim P4 — 1

(&)
t—o00 Disa

forall i,jeland AC I.

The proof is obtained in a straightforward way from the usual first-entrance
decomposition.
Corollary 3.2. Let p = {p;} be any initial distribution, then, under the assump-
tions of proposition 3.1 we have
2. pipd
Li tE — ﬂ_
P iEZIPiI)ﬁZ Uk

forall j,kel.
Proof. The fact that the limes inferior of the above ratios is =u;/uy follows

t—1
using the decomposition p = rp? - > P xpl). The other inequality follows
by symmetry. s=1

Example 3.1. We now describe a null-recurrent, irreducible Markov chain
with the properties (I*) and (IT) (and hence (1)) and such that

1O]
Qi 4) = 25
diverges for some state ¢ and some set 4 of finite invariant measure.

The construction is done inductively. At the n-th step we define two natural
numbers ay, and ky > a, and a real number oy, with 0 <« << 1/2. The state space
I will be the union of Jg = {0, 1,2, ...} and the set J; of all ordered pairs (¢, §)
withie {1,2,...}and 0 < j < k;. Let

Poo = 271, pon = Po, (n,0) = 2~(#+D (n=1).
Further for n = 1 let:
Pno = on, Pun = (1 — oa), D, 0),0 = 272, Dn, k), (n, k) = 3[4,
P, i, a5 = 27H0 = § <), P, 1), v, 541 = 272(0 £ § < k),
P, gy, (i-1) = 272(0 < § = k) .

Then all other transition probabilities necessarily are 0. A shall be the union of all
states (n, an) with n = 1. Since o, < 1/2 we have py; = 1/2 for all ¢ € I, so that
(I*) is satisfied. Condition (II) is easily checked: One defines go = 1 and finds all
other g; from the transition probabilities. It follows that > o; = 1, so that A has

finite invariant measure. ted
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We shall consider the ratios @;(0, 4) for certain values ¢ = f,, where
0 =t << # < ---. Before describing the n-th step of the construction we recall
some facts about the familiar coin-tossing random walk: Let 8, = Y1 + Y2 +
4+« + Yy, where Yp(k=1,2,...) are independent random variables with
Prob{Yz=1}=Prob{Yy=—1}=1/2. Let p(t,I)=Prob {S2; =21, min 8, = 0}.
The reflection principle yields for all integers I = 0 1=rs2

~on oo [ 28 2¢ o 26\ 20+1
p(t’l)_z2t{<t+l>_<z+l+1>}_223<t+l+1> =1

Let I; be a sequence of nonnegative integers with I; ~ # (in the sense that
l;t=* —1). An application of Stirling’s formula and two applications of the formula

lim (1 + %)s — ¢t yield

§—> 00
Pt 1) ~ 2 te 1L,
Hence
(3.2) z Pt 1) = o0,
=1

We are now ready to describe the n-th step of the construction (n = 1): Let
Fyp = {n,n -+ 1, ...}. At this point o, and k, are defined for all » << n. Therefore

the taboo-probabilities  p{) are well defined for ¢ < min k,. Since we do not
v Zn
know k, for v = n we let py (t) be that value of p p{} which would arise if &, were

larger than ¢ for all y = n. Since py 7, = 2-*+1) > 0 it follows that

(3.3) 2 Pu(t) <oo.

t=1
Now observe that the transition probabilities p;; for 1, j € {(n, 5), 0 = s < ky} are
the two-step transition probabilities of the coin-tossing random walk. Hence,
assuming k; sufficiently large,
(3.4) 0P 0y npy = Prob {Sg; = 21, min 8, = —1} Z 5 (t,1) .

1<r=2

Because of (3.2) and (3.3) we may choose an integer f, >>#;—; so large that
tn > ltn—l a/nd

(3.5) Pltn — 1,1, _1) =273np, (tn) .

Let ap = l;,_, and ky = t,. Finally for v = »n we choose real numbers a,, with
0 << apy << 1/2 80 small that

(3.6) tn % any < Pn(tn) ,

v=mn

and we put a, = min ags. This completes the construction. Clearly all o, are
1=ksn
strictly positive. Therefore the chain is recurrent. No mass coming from 0 reaches

any state (v, k,) with ¥ = n before time #,. This and (3.6) imply

(3.7) p&‘a‘) = P () +tn zav < 2P (ta) -

y="n
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The inequalities (3.4), (3.5) and (3.7) yield

n, — ~ tn
PO am) = P0,,0) Do nan = 2Dty — 1,1, 1) = 2npn(ta) > n pffp

and hence @;(0, 4) > n. Hence lim sup @;(0, 4) = .

{—>o0

Remarks. (1) Since the chain in example 3.1 is reversible it follows that

0 ZQOP(” _ 29“23‘% Let {p;} be defined by p; = gi(i € 4), p; = 0(i ¢ 4).
acd acA

Then {p;} is an initial distribution which is dominated by the invariant measure.
However Zp@ p0/pH diverges.

el

(2) One may ask whether condition (I} or (II) are strong enough to imply a
global ratio limit theorem as discussed in section 1. The author has checked, that
example 1.1 can be modified in such a way that it satisfies condition (I*) and hence
(I). It seems plausible and easy that the same can be done concerning condition
(IL), and with (I) and (II) simultaneously. The resulting point mapping as con-
structed in section 2 in either case is strongly mixing in the sense of KRICKEBERG 2
[24].

T am indebted to Professors K. L. Caung, D. FrEEDMAN, Y. ITO, D. LinpDAE and J. NEVEU
for various references and some remarks,
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