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1. Introduction 

Let X, X 1, X 2 ,  . . .  be i.i.d, random variables such that E X = O  and E]XI >0. Let 
S, =X~ +.. .  +Xn and define 

N=inf{n> 1: S, <0}. (1) 

If E X  were negative, then ES N would be finite and ES N = ( E X ) ( E N )  by Wald's 
lemma. However, since E X = O  and E N =  0% what can be said about ESN? In 
1960, Spitzer [3] proved the following remarkable result concerning ESN: 

E X  2 < oo~EISNI =(�89 ~- exp n-  I (P[S,  > 03 -�89 < o0. (2) 

Spitzer's method is analytic in nature and involves certain generating functions 
associated with the fluctuation theory of the random walk {Sn} and a Tauberian 
argument. His approach was recently extended by Lai [2] to prove that for k 
=1,2,. . . ,  

EIXI k+l < o0~EISNIk< 00. (3) 

(An explicit expression for EISNI k was also obtained in [2], but it is quite 
complicated for large k.) In this paper, we shall use a probabilistic approach to 
obtain the following theorem, which is considerably sharper than (3). 

Theorem 1. Let  X,  X~, X2 ,  ... be i.i.d, random variables such that E X = O .  Let  Sn 
= X I + . . .  + X n and define N as in (1). Then for  every p>0,  

E ( X -  )P + 1 < oo ~ E[ SNJP < oo. (4) 
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While (3) only considers integral moments of the (weak descending) ladder 
variable S N, p in Theorem 1 need not be an integer. Moreover, it is natural to 
think that the finiteness of EISy  should be related to the negative tail rather 
than the positive tail of the distribution of X, and therefore (4) is a significant 
improvement over (3). The proof of Theorem 1 will be given in Sect. 3. Our 
method is to replace the driftless random walk {Sn} by the negative-drift random 
walk {S~-en} whose descending ladder variable Z~ is much easier to handle 
than the ladder variable S N. In Sect. 2 we shall obtain some simple estimates for 
the moments of Z~ and of a related quantity involving the maximum M, 
--max (S~-e n). These estimates are then applied in Sect. 3 where Theorem 1 is 

n>0 
proved by letting e;0. 

2. The Maximum and the Descending Ladder Variable 
of a Negative-drift Random Walk 

Throughout this section we shall use the following notations. Let Y, 111, Y2, ... be 
i.i.d, with a common distribution function F(y) such that EY=-e<0 .  Let U n 

- Yi (Uo=0) and define 
1 

M = m a x  U,, z_ = inf{n> 1' U,<0}, (5) 
n>0 

(x)=number  of strict ascending ladder points (for the random walk {U,}) 
in the interval (0, x], 

O(x)=l+E#(x), x>O. 

Since EY<O, E r < o e .  The following properties, which can be proved by 
relatively simple arguments, are basic results in fluctuation theory: 

P[M =01 = 1/Ez_ >0, (6) 

P[M<x] = P [ M = 0 ]  0(x), x > 0 ,  (7) 

and 

P [ U ~ _ < x ] =  ~ F(x-y)O(dy), x<O, (8) 
[0, oe) 

(cf. (2.3), (2.6), and (3.7a) in Chapter XII of [1]). An important observation in 
our proof of Theorem 1 is the following 

Lemma 1. For p > O, 

E((M + Y)- )P = P[M = O] El U~ _ I p, (9) 

P[M=O]E(Y-)P<E((M+ Y)-)P<P[M<I]{E(Y-)P+E(Y-)P+I}. (10) 

Proof. From (7) and (8), for x < 0, 

P [ M = 0 ] P [ U ~ _ < x ] =  ~ F(x-y)P[M~dy]=P[M+ Y<x]. 
[0,~) 
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Hence (9) follows. Since ( M +  Y ) - >  Y-I[M=O 1, the lower bound in (10) is 
obvious. To establish the upper bound in (10), we need only note that for y >0 ,  

E [((M + Y)-)" I Y = - Y] = E((M - y)-)P 

<-- S 
[o,y) 

[yl 

<y" ~ r [ n < M < n + l ]  
n~O 

<y,(1 +y)  P f M  < 11. 

The last relation above follows from 

P[n< M < n +  1] <P[z(n)< ~ ,  U~(,) < n + 1] P [M < 1], 

where z(n)=inf{j: Uj>n} (inf,3= oo). (11) 

3. Proof  of  Theorem 1 

For notational convenience we shall sometimes use Vinogradov's symbol 
instead of Landau's 0 notation. Making use of (7), we obtain 

Lemma 2. Let X, X t ,  X2, . . .  be i.i.d, with E X = O  and EJXI>0. Let Sn=X~ +...  
+ X ,  (S o = 0). For e > O, define 

M s = sup (S n - e n). (12) 
n>O 

Then for every fixed x > O, as ~ $ O, 

P[M~ <__ x] ~P[M~ = 03. (13) 

Proof Choose a > 0  such that P [ X > 2 a ]  =c~>0. By an argument similar to that 
in (11), we obtain that 

[x/a] 

P [ M ~ < x ] <  ~ P [ n a < M ~ < ( n + l ) a ]  
n=O 

< (1 + x/a) PEM~ < a]. (14) 

Let U , ( O = S n - e n  and let z=inf{n:  U,(e)>0} ( in f0=  oo). Let #~ denote the 
number of strict ascending ladder points in the interval (0,a] for the random 
walk { U,(e)}. We now show that 

E#~ =0( 1 )  as e$0. (15) 

To prove (15), we obtain by the independence of the successive ladder heights 
that for n = 1, 2,. . . ,  

P[ #~ >= n I <-_ P~ [z < 0% U~(~) ~ a I < { 1 - P['c < 0% U~(e) > a] }". (16) 
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By the choice of a, for 0 < a < a, 

P[z < o% U~(a)>a]>P[XI-~>a]>P[X>2a]=(5>O. (17) 

From (16) and (17), (15) follows. 
By (7) and (15), P[M~__<a] ~P[M~=0] .  Therefore in view of (14), the desired 

conclusion (13) follows immediately. 
We now make use of Lemmas 1 and 2 to give a simple probabilistic proof of 

Theorem 1. 

Proof of Theorem 1. If X =0  a.s., then N = 1 and SN=0 a.s. Now assume that 
P [ X + 0 ]  >0  and that E(X-)P+I < ~ .  For e>0, let 

U,(a)=S,-an, ~_ =z (e)=inf{n: U,(e)<0}, (18) 

and define M~ by (12) and set Y~=X-e.  Obviously, as e$0, 

U~ (e )~S  N a.s. (19) 

Therefore by Fatou's lemma, 

EISN] p < lim infEI U~ (e)l p. (20) 
e,.O 

Since P[M~=0]  >0  by (6), it follows from (9) and the upper bound in (10) that 

p P[M~<13 {E(y-)p+E(y-)p+l}  
elU~_(~)l < P[M~ =03 

~P[M~<IJ/P[M~=O], since E(X )P+1<o% (21) 

-= O(1), by Lemma 2. 

From (20) and (21), the finiteness of EISNI p follows. 

4. Remarks and Ramifications 

The upper bound in (10) and the estimate (13) have played a key role in the 
preceding proof of Theorem 1. In this section we shall show that these estimates 
are asymptotically sharp and so is the lower bound in (10), and we shall also 
give some interesting consequences of these estimates. 

With the notations of Section 2, we note that by Wald's lemma, 

e E z _ = - E U ~ _ > E Y - ,  

and therefore by (6), 

(22) 

Applying this result to Lemma 2 and then to the upper bound in (10), we obtain 
the following interesting result on the order of magnitude of P[M~__<x] and of 
E((M~ + ~)-  )~. 

P [M = O] < e/E Y- .  (23) 
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Corol lary 1. With the same notations and assumptions as in Lemma 2, let Y~=X 
- s. Then for every f ixed x > O, 

P [ M ~ < x ] ~ s  as e~,O. (24) 

Moreover, if E ( X  -)P + 1 < oo for some p > O, then 

E((M~+ Y~)-)P~s as sj.O. (25) 

In the p roof  of  Theo rem 1, we have shown that  EU~_(s) is bounded  as s$0 
under  the assumpt ions  E X = O ,  E[Xt>0 ,  and E(X  ) 2 < w  (see (21) with p = l ) .  
Since EU~_(s)= - s E z _  (s) by Wald 's  lemma,  the boundedness  of  EU~ (e) implies 
that  E~_( s )~e  i, which by (6) in turn implies that  P [M~=0]>>e .  Put t ing this 
result into the lower bound  of (10) completes  the p roof  of  the following 

Corol lary 2. With the same notations and assumptions as in Lemma 2, assume 
further that E ( X - ) 2 <  oo. Then as ~.~ 0, 

P[M~ = 0 ]  >> s, (26) 

and 

E((M~+ Y~) )P>>s for every f ixed p > 0 ,  (27) 

where Y~ = X - s. 
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