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Continuous State Branching Semigroups 
M .  L.  S ILVERSTEIN ~ 

Summary. This paper is concerned with Markov processes with continuous creation where the 
phase space is a general separable compact metric space. The transition probabilities for such a process 
determine a semigroup of operators acting on a function space over the collection of bounded Borel 
measures on the phase space. Such a semigroup is characterized by a particular convolution condition 
and is called a continuous state branching semigroup. A connection is established between continuous 
state branching semigroups and certain semigroups of nonlinear operators and then this connection is 
exploited to establish an existence theorem for the former. 

Introduction 

In a previous paper [7] we studied a class of stochastic processes called 
branching Markov processes. These furnish a model for a collection of indistin- 
guishable particles subject to both annihilation and creation and can be roughly 
characterized by the following two conditions: 

0.1.1. The process as a whole is Markovian and homogeneous in time. 

0.1.2. Conditioned on the past up to time t, the futures (including descendants) 
of all particles alive at time t are mutually independent. 

The instantaneous configurations associated with the processes in [7] were 
represented by integral valued measures #t on the phase space K in which the 
trajectories of individual particles take values. The interpretation of #t was that 
for each x in K there are exactly #t({x}) particles located at x at time t. The con- 
ditional probabilities for the #t determined in a familiar manner a semigroup of 
Markovian operators pt acting on functions over a collection of integral valued 
measures on K. To be precise, 

pt F(#)=~ pt(#, dv) F(v) (0.1) 

where pt (#,.) is the distribution of#t conditioned on the initial configuration #o = #. 
Semigroups arising in this manner can be characterized by the following: 

0.2. Condition of convolution. For each t > 0 and for each pair #, v the tran- 
sition probability pt (# + v,') is the convolution of pt (#,.) and p' (v,'). That is, 

Sp'(#+v, d,~)F(,~)= S p'(#, dal)Sp'(v, d,lz)F(,h +2z). 4~ 

In this paper we begin the study of processes with properties analogous to 0.1.1 
and 0.1.2 but which provide a model for fluids whose total mass changes with time 
rather than for a collection of particles subject to annihilation and creation. The 
independence of individual particles is replaced by the independence of distinct 
portions of the fluid. One possible formulation is suggested by the second part 
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of [7]. We imagine that each portion of the fluid present at time t can be traced 
back through all earlier times to a portion of the fluid present at time 0. Thus if 
0 < t t < . . .  < t n are given times and if Ao, ..., A, are given subsets of the phase 
space K in which the fluid "lives", then it is possible to speak of the portion of the 
fluid which is present at time t, in the set A,, which was in the set Ai at each earlier 
time ti and which was initially in the set Ao. With this formulation, a typical sample 
points is a collection {aT: t > 0} with each at a measure on the collection of trajec- 
tories taking values in K and defined up to time t. The interpretation is that 

~t({ca: co(0)EAo, co(tl)~A t . . . .  , co(tn)eAn} ) 

is the mass of that portion of the fluid described above. In particular the instan- 
taneous configuration #t, defined by 

flt(A)=~t({r o)(t)~A}) 

gives the amount of mass in each subset of K at time t. The transition operators pt 
defined by (0.1) now act on functions defined on a collection of general measures 
on K (not necessarily integral valued) and continue to statisfy the Condition of 
convolution 0.2. In this paper we concentrate our attention on these semigroups 
which we call continuous state branching semigroups. 

We also include an informal description of the underlying process for the sake 
of motivation. But we do not attempt to put the discussion of the underlying 
process on a rigorous basis, nor do we consider the problem of recovering this 
process from its associated continuous state branching semigroup. The reader is 
referred to [7] where these points are treated for branching Markov processes. The 
results obtained there can easily be modified to make sense in the present context, 
although a rigorous translation seems to raise certain technical problems. 

The special case when the phase space K reduces to a single point gives much 
insight into the general situation. The collection of bounded measures over K is 
the half line [0, oo) and so the operators pt act on functions defined on [0, oo). The 
condition of convolution 0.2 requires that for fixed t > 0  the probabilities pt(x,') 
form a semigroup with respect to convolution as x varies. In general such a semi- 
group can be quite pathological (see [2, p. 296]), but it is known that if the pt(x,.) 
satisfy reasonable regularity conditions as x varies (for example, if they are 
continuous in law), then they are all roots of a single infinitely divisible distribution. 
(See [2, Chap. 9].) In this case it follows from well known results of Paul L6vy on 
nonnegative infinitely divisible distributions (see for example [2, Chap. XIII, 
Sect. 7]) that the spatial Laplace transforms can be represented 

~ pt(x, d y) exp { - y a }  
(0.2) 

= exp { - x @F (00} 

with each ~t a function of ~ > 0 having the form 

@t (e) = 0b e + Y ~'~ (d/) (1 - exp { - l c~}) (0.3) 

with 0~ > 0 and with 0 ,  a measure on (0, oo) satisfying 

IG(d0y +t <~ 
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Lamperti has shown in [4] that the underlying Markov process can always be 
recovered via a random time change from a process with independent increments 
which cannot jump to the left and which has been stopped upon first reaching 0. 
From this it follows readily (see [8, Sect. 4]) that the functions 0 r satisfy an equation 
of the form 

d 
dt O'(c~) = f2 [O'(c~) ]  ; #J~ = c~ (0.4.1)  

where O is a function which can be represented 

1 + oO 

f2(e)--ae-bc~2+ ~ ~(dl)(1-exp{-lc~}-Ic~)+ ~ rc(d/)(1-exp{-le}).  (0.4.2) 
0 + 1 + 

Here ~, the "L6vy measure," is concentrated on the half line (0, oo) and satisfies 

12 
S (dl) oo; 

a, the "deterministic rate," can be any real number; and b > 0  measures the 
Gaussian contribution. 

More generally, the phase space K can be any separable, compact metric space. 
A continuous state branching semigroup is a semigroup of Markovian operators 
pt acting on functions defined over the collection ~U(K) of bounded regular Borel 
measures on K and such that the corresponding transition probabilities pt(#,.) 
satisfy a condition analogous to (0.2) where now the functions ~,t are replaced by 
operators ~'  acting on nonnegative functions defined on K. This condition is 
equivalent to the Condition of convolution 0.2 plus a regularity condition. We 
will prove that the individual operators ~t necessarily admit a representation 
analogous to (0.3). The study of continuous state branching semigroups pt is 
essentially equivalent to the study of semigroups of (in general nonlinear) operators 
~t mapping nonnegative functions on K into nonnegative functions and admitting 
such a representation. We will refer to such operators ~,t as completely concave 
operators. To avoid technical complication, we impose an additional condition 
of boundedness on the operators pt by postulating that the associated operators 
~t map bounded functions into bounded functions. 

The main result of this paper is an existence theorem for continuous state 
branching semigroups which we establish by solving an integral equation (for the 
associated operators ~t) which generalizes (0.4). This result is stated in Section 3 
and proved in Section 5. The associated underlying process is discussed in Sec- 
tion 4. Some basic facts about completely concave operators are collected in 
Section 1, and the concept of a continuous state branching semigroup is formally 
introduced in Section 2. 

The special case when K has only one point seems to have been first treated 
in any generality by Jirina [3], and quite recently is has been studied extensively 
in a series of papers by Lamperti [ 4 -  6]. The case when K has two points will be 
treated in a forthcoming paper by Watanabe [9]. 

My thanks to W. Feller who from the first urged me to consider processes with 
continuous creation. 



Continuous State Branching Semigroups 99 

Notations. The phase space K is a separable compact metric space. The 
collection of bounded Borel measures on K is denoted by ~/r(K) and is referred to 
as the configuration space. This configuration space is given the usual weak 
topology so that it is a locally compact Hausdorff space. The collection of bounded 
Borel functions (p>0 on K is denoted by ~(K). The total mass of # in ~/r(K) is 
denoted by [~l and the action of # on a function (p in ~(K) is denoted by g(~o); 
thus, #((p) = ~ #(dx) (p (x). 

We will use the special notations 

g" {cp} = 1 - exp { - # ((p)} 

= ~ l - e x p { - l x }  for l > l ,  
g~{x} [ 1 - e x p { - I x } - I x  for 1 > l > 0 ,  

for these particular functionals on N(K) and functions on (0, ~).  

The expectation notation E.[ . . . ]  and the integral notation ~p.(dco)... will be 
used interchangably depending on whether or not we wish to emphasize the 
dependence on co. 

Section 1. Completely Concave Operators 

When treating probabilities p on the half line [0, oe) it is often useful to work 
with the Laplace transform f(2) defined for 2 >0  by 

f(2) = ~ p (dx) exp { - x 2}. 

An analogous tool is available when treating probabilities p on the collection gr(K) 
of bounded Borel measures on the phase space K. The role of 2 > 0 is played by 
functions (p > 0 on K and the function f(2) is replaced by the functional 

@ ((o) = ~ p (d#) exp { - # ((p)}. 

We begin this section by generalizing the result of Paul L6vy quoted in the intro- 
duction. 

1.1. Definition. A nonnegative functional @ on ~)(K) is infinitely divisible if 
for each l>  0 there is a Baire probability p~ on U(K) such that 

[cb(~o)]l= ~ pl(dv) exp { - v(cp)}. 

1.2. Definition. A nonnegative functional 7 ~ on ~(K) is completely concave 
if it can be represented 

c~ (~0)= ~ ~, (dr) ~v {~o} + ~o (~0) 

with ~0 in U(K) and with ~, a Baire measure on ~U(K)- {0} satisfying 

4~ (1.1) 

Theorem 1. Let cb be a nonnegative functional on ~ (K). A necessary and suffi- 
cient condition for q~ to be infinitely divisible is that ~ = - l o g  4~ be completely 
concave. 
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Theorem 1 is the desired generalization of Paul L6vy's result. The proof 
depends on the following lemma which is itself a special case of the theorem. The 
first part of the lemma can be established by generalizing in an obvious way the 
proof given in [2, Chap. XIII, Sec. 7] for the case p = 1. The second part can be 
established by examining the behavior along one dimensional subspaces in 
2-space. We omit a formal proof. 

Lemma 1.1. The following two conditions are equivalent for f a nonnegative 
function defined on the collection [0, ~)P of nonnegative p-tuples 

2 = [21, . . . ,  2p] .  

(i) For every l> 0 there is a probability ff on the collection [0, ~)P of nonnegative 
p-tuples x-= {xl . . . . .  xp] such that 

[f(2)] z= S P' (dx) exp { - x. 2} 

where x. 2 = xl 21 +. ' .  + xp 2 v. 

(ii) The function - l o g f  admits a representation 

- log f(2) = I ~ ,  (dx) [1 - exp { - x. 2}] + ~o" 2 

with ~o in [0, oo)P and with ~ ,  a measure on [0, m)P - {0} satisfying 

Ixl < (1.2) 
I~k*(dx) l + l x l  ~ "  

Here 0 denotes [0, ..., O] in [0, ~)P and Ix I denotes x 1 +. . .  + Xp. 

When ~o and ~ ,  exist, they are unique. Moreover each of the probabilities pZ 
is concentrated on a closed subcone cg of[O, ~)P if and only if ~9 o belongs to cg and 
~ ,  is concentrated on cg. 

Proof of Theorem 1. Suppose that ~b is infinitely divisible and fix ~Pl . . . .  , (pp in 
(g (K), the collection of nonnegative continuous functions on K. Let the mapping 
J of ~ (K)  into [0, c~) p be given by 

J ( v ) =  [v(~ol) . . . .  , v(~0p)]. 
Then 

[q~ (21 ~Ol +'-" + 2p gOp)] l = ~ pZ (dv) exp { - (J v). 2} 

and so by Lemma 1.1 there are unique ~h o and (p, respectively belonging to and 
concentrated on the closed subcone J [ ~ ( K ) ]  and such that 

- l o g  ~(21 (Pl + "'" +2pgOp)=~h,(dx)[-1 - e x p { -  x.2}] + fro.2. 

Thus there is a unique measure T ~ with domain the sigma algebra on ~(K)  
generated in the obvious sense by the functions r ~Op and a nonnegative 
linear functional ~o ~ with domain the linear span in cg (K) of the functions go1, ..., gop 
such that for any function ~o in this linear span, 

- log ~o (q~) = ~ ~,o (dv) g~ {~o} + ~o ~ (~o). (1.3) 

The system of 7 ~~ and 7Jo ~ thus defined as ~ol,..., r vary_satisfies the necessary 
consistency conditions for there to be a unique measure 7J, on the Baire algebra 
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of ~U(K) (since ~ (K)  is locally compact) and a unique bounded measure ~0 on 
the Baire algebra of K such that (1.3) is satisfied for all continuous ~o in ~ (K). The 
extension to general ~0 in ~(K) goes by passage to the limit. Condition (1.1) on ~, 
follows from the corresponding conclusion (1.2) of Lemma 1.1. This establishes 
necessity, and sufficiency follows upon tracing back the above argument in an 
obvious manner. 4~ 

1.3 Definition. An operator ~ on ~(K) is completely concave if for each x in 
K the mapping: ~o ~ ~ ~o (x) defines a completely concave functional on M (K). 

Proposition 1.1. Let ~ be a completely concave operator on M(K). Then for each 
measure i1 in ~U(K) there is a unique probability p" on r such that 

p" (dr) exp { - v (~o)} = exp { - ~t (~q))}. (1.4) 

Moreover pIU+x) is the convolution of p u and pZ in the sense that 

p(U + z)(dr) F (v) = ~ pU (dvl) ~ pX (dv2) F (v 1 + v2). (1.5) 

Proof For each x in K we can write 

~ o ( x ) = ~  ~,(x, dr)d~ {~0} +~ ~o(X, dy)(p(y). 

The boundedness of ~1 yields 

sup ~ ~o (x, dy) < ov (x in K), 

sup ~ ~, (x, d v ) ~  < ov (x in K), 

and so the measure ~#(dx) ~o (x,.) on K is bounded while the measure ~ ~(dx). 
~, (x,.) on ~(K)  satisfies (1.1). Now the existence of the probability pU on ~/r(K) 
follows from Theorem 1 and the relation 

#(~o)---~#(dx) ~ ~,(x, dv) Ev (q)} +~#(dx)~ ~o(X, dy)cp(y). 

The convolution condition (1.5) is immediate when F has the special form F(v)= 
exp{-v(cp)}; but such functions generate the full Baire algebra on ~U(K). 4~ 

An obvious computation establishes 

Proposition 1.2. I f  ~1 and ~2 are completely concave operators, then so is their 
composite ~ =  ~1 ~2. Moreover 

pU(')=~ p~(dv) ~ p~2(') 

It v where pU, Pl, P2 are the probabilities determined by (1.4)for gt, ~a, and ~2. #e 

Finally, we will need 

Proposition 1.3. Let ~o(K) be the subcollection of functions ~ in ~(K) satisfying 
m<= qo < M where 0 < m < M are given positive constants. I f  ~" is a sequence of 
completely coneave operators which are uniformly bounded on ~o (K) and such that 
lira ~" ~0 exists pointwise for all~o in ~o (K), then there is a unique completely concave 
operator ~ such that ~ = l i m  ~"~o for all ~o in ~(K). 
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Proof By the uniform boundedness of the UP" on No (K), there is a constant 
C > 0 such that 

S 2(x,d ) ' dy)<=C 

for all n and x. Therefore by the separability of K and the local compactness in the 
weak topology of ~U(K), there are measures UP, (x, d#) on ~(K)  and ~o(X, dy) on K 
such that 

lira ~" q~ (x) = ~ ~,  (x, d#) g" {q)} + ~ ~o (x, dy) q) (y) (1.6) 

for all (p in N(K) as n runs through an appropriate subsequence depending on x. 
Thus_ the prop__osition will be proved if we show that the limiting measures 
~,  (x, d#) and ~o (x, dy) are in fact independent of the choice of such a subsequence. 
For this it suffices to show that the right side of(1.6) is uniquely determined for all 
q~ in N (K) by its values for q~ in No (K). To see this, fix constants ml, M1 satisfying 
m< ml <M1 < M  and consider (Pl . . . .  , ~0k in ~o(K) satisfying ml < q01, ..., q~k<M1. 
The right side of (1.6) with q0 = 21 ~ol + . . .  + 2, q~r is an analytic function of 21, ..., 
2r > 0 which is uniquely determined as 21, .-., 2, vary over a nonempty open set 
in complex r-space. Therefore it is uniquely determined for all 21 . . . . .  )~r > 0 and 
so the right side of (1.6) is uniquely determined for all ~0 which can be represented 
in this way. But this includes all rp in N(K) that are bounded away from 0. Thus 
the right side of (1.6) is uniquely determined for all q~ in N(K) that are bounded 
away from 0, and the last restriction can be removed by a passage to the limit. 

Section 2. Continuous State Branching Semigroups 

2.1. Definition. A continuous state branching semigroup is a semigroup of 
Markovian operators pt mapping bounded Baire functions on ~(K) into bounded 
Baire functions and such that each pt can be represented 

e'  dv)F(v) (2.1) 

where pt(#,.) is determined by (1.4) for some completely concave operator ~t on 

We will refer to the operators Upt as the logarithmic Laplace transform of 
the continuous state branching semigroup pt. The next two propositions are a 
direct consequence of Propositions 1.1 and 1.2. 

Proposition 2.1. The operators Up, defined by (2.1) form a semigroup under 
composition: ~t ~s = ~t+s s, t> O. ~: 

Proposition 2.2. I f  Upt is a semigroup of completely concave operators acting 
on ~(K), then there is a unique continuous state branching semigroup pt with lItt 
the logarithmic Laplace transform. 

Thus the study of continuous state branching semigroups is equivalent to 
the study of semigroups of completely concave operators acting on ~(K). Just 
as in [7], it is possible to introduce a related semigroup of operators which 
describe the time evolution of the expected mass in various subsets of the phase 
space K. We define them here for the record, although they play no role in what 
follows. 
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2.2. Definition. The mass transition operators Lt associated with a continuous 
state branching semigroup pt are defined by 1 

Lt~p(x)=~ ff(6x, dv) v(~o). 44: 

We state without proof the obvious 

Proposition 2.3. The mass transition operators L t associated with a continuous 
state branching semigroup pt form a semigroup of  linear operators mapping non- 
negative Baire functions on K into nonnegative Baire functions (not necessarily 
finite). Moreover if ~t is the logarithmic Laplace transform for the pt, then 

L,~(x)=j �9 -, ~'~ (x, d~).(~)+ ~ ~(x, dy) ~(y). 

Example. Let {P~:x in K} be a single particle Markov process and let {st} 
be a multiplicativc functional on the underlying trajectory space W. (Scc para- 
graphs 3.1 and 3.2 below for definitions.) It is well known (sec for example [I, 
p. 282]) that the operators R t defined by 

R' e (x) = G [9  (X,); ~3 

form a semigroup of linear operators mapping ~(K) into itself and that each R t 
can bc represented 

R t ~ (x) = S r~(x, dy) ~ (y) 
K 

with / (x ,  ") a bounded Borcl measure on K. The adjoint scmigroup, acting on 
~(K), is denoted and defined by 

w ( . )  = ~ ~(dx) r'(x, .). 
K 

Obviously the operators pt defined on bounded Baire functions F on the configu- 
ration space V(K) by 

Pt F(tt ) = F(tt R t) 

form a continuous state branching semigroup with logarithmic Laplace trans- 
form and mass transition operators both given by Re; that is, pt~p = E q)---R t q). 
The underlying process describes a fluid living in K which is evolving dcter- 
ministically with time and which nccd not be conserved - that is, the total mass 
can fluctuate with time. Each infinitesimal portion of the fluid follows a particular 
trajectory co in W. More precisely, if A is a subset of W depending only on co- 
ordinates X, with u_< t (that is, if A belongs to the past 4), then we can identify 
the portion of the fluid at time t which has followed a trajectory lying in A. The 
mass of this portion is given by ~#(dx)E~[A;~t] where # is the initial con- 
figuration. Thus the measure ~ ,u(dx)E~['; st] on the past ~ gives the complete 
history up to time t of the fluid present at time t. Letting A = {co:c~ it)~A}, wc have 

tt (dx) Ex [X, eA; st] = # R t (A) 

and therefore # R t is the instantaneous configuration at time t. 

1 Here 6~ denotes the unit mass  concentrated at x. 
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It will be convenient in Section 4 to have in mind the following picture for 
the above process. We imagine an "ideal" fluid evolving deterministically as 
above with the same single particle Markov process as above but with the multi- 
plicative functional being identically 1; thus the total mass is conserved. The 
"physical" fluid of the above paragraph is somehow carried by this "ideal" fluid 
and has a mass density given by the multiplicative functional {at}; that is, at(co) 
is the density of the physical fluid at time t in the infinitesimal portion of the ideal 
fluid which has followed the trajectory co up to time t. More precisely, a, is the 
Radon-Nikodym derivative of the measure on the trajectory space W describing 
the past history of the "physical" fluid present at time t with respect to the cor- 
responding measure for the "ideal" fluid. In the special case when at can be 
represented t t 

at =exp {J p(Xs)ds- S n(Xs)ds p,n>=O 

the ordinary differential equation 

d 
dt at=p(Xt) at-  n(Xt) at 

is satisfied for almost all t along each trajectory. Thus it is reasonable to think 
of p(Xt) and n(X~) as the local rate of creation and the local rate of annihilation 
of the "physical" fluid. However in general, it is not possible to represent log a~ 
as the difference of two increasing additive functionals (see paragraph 3.3 for 
a definition) and such an interpretation is not available. :~ 

Section 3. Statement of the Existence Theorem 

The trajectory space W is the collection of maps co(-) from the half line [0, ~ )  
into the phase space K which are right continuous and have left hand limits 
everywhere. The coordinates co(t) are denoted by Xt(co) or simply X~. The sigma 
algebra on W generated by the sets {XseA} with s<t and A a Borel subset of 
K will be denoted by ~ and will be referred to as the past. The sigma algebra 
generated by the set theoretic union of the ~ will be denoted by ~ For each 
t > 0 the shift transformation Ot is defined on co in W by 

0, co (s) = co (t + s).  
We are given 

3.1. A single particle Markov process. This is a collection {~3x:x~K } of prob- 
abilities on f f  which satisfy the following three conditions. 

(i) For each x in K, 
~3x [co (0) = x] = 1. 

(ii) For each A in Y the function ~3~(A) is Borel measurable in x. 

(iii) For each set A belonging to the past ~ and for each bounded ~- measur- 
able function f 

9~x(dco) f(Ot co)= ~ ~(dco) ~ ~o~,)(dco') f(co'). 
A A 



Continuous State Branching Semigroups 105 

3.2. A rnultiplicativefunctional. This is a collection {c(:t > 0} of strictly positive 
functionals defined on the trajectory space W and satisfying: 

(i) For each x in K the functionals a t vary continuously with t > 0  and a ~  1 
with ~3x probability one. 

(ii) For each t > 0  the functional a t is measurable with respect to the past 
~ ,  and the expectation Ex [a ~] is uniformly bounded and uniformly bounded 
away from 0 for s < t and for x in K. 

(iii) For each pair s, t with 0 < s < t and for each x in K, 

~s, t(co)= o:t-s(o~ co) 

with ~3 x probability one. (Here ~,t  denotes the ratio at(a~)-l.) # 

3.3. An additive functional. This is a collection {fit: t > 0} of finite, non-negative 
functionals defined on the trajectory space W and satisfying: 

(i) For each x in K the functionals fit increase and vary continuously with 
t > 0  with ~3x probability one. 

(ii) For each t > 0 the functional fit is measurable with respect to the past ~t.  

(iii) For each pair s, t with 0-< s_< t and for each x in K, 

/~, (co) - /~  (co) =/~t-s (0s co) 
with ~x probability one. # 

3.4. A creation kernel. This is a collection {n(x,'): xeK} of Baire measures on 
the configuration space ~U(K) such that n(x, A) is Borel measurable in x for each 
Baire subset A of ~U(K). # 

3.5. A local creation kernel. This is a collection {no(X,'): xeK} of Borel 
measures on the half line (0, ~ )  such that no (x, A) is Borel measurable in x for each 
Borel subset A of (0, oe). # 

3.6. A nonnegative Borel function 7 on K. 

These quantities are assumed to satisfy the following two technical conditions: 

3.7. Technical Condition. The quantity 

(lul=<l M>[ 

+ S rco(X'.,,dl) 12+ no(X,,,dl)+7(X,,) 
0 1 + 

decreases to 0 uniformly in x as t$0. # 

3.8. Technical Condition. For each t > 0 the quantities 

E~ du)a" [. no(X,.,,dl)l 2 
0 + 

decrease to 0 uniformly in x as kT ~ .  # 
8 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 14 
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We formally state our existence theorem in 

Theorem 2. There is a uniq_ue continuous state 
logarithmic Laplace transform ~t satisfies 

t 

[ ,o ( s lxu' 
)] + ~ =o(Xu, dl)g~ {CP'-uq~(Xu) }-?)(xu) {~'-Uq~(X,,)}2 �9 

0 

branching semigroup whose 

(3.1) 

Section 4. Informal Description of the Underlying Process 

We restrict our attention to the special case when all of the creation measures 
re(x,-) are probability measures. The case when the re(x,.) are bounded can be 
reduced to this by redefining the additive functional {fit}, and the general case can 
then be understood by truncation and passage to the limit. We think in terms of 
successive generations of fluid and we invoke the artifice of Section 2, imagining 
that each generation of "physical" fluid is carried by an auxiliary "ideal" fluid 
which is governed by the conservative deterministic process corresponding to the 
given single particle Markov process {~3x: x~K}. 

The density of the 0 th generation of physical fluid along an individual trajectory 
co is, except for time homogeneity, a continuous state branching process {Nt} with 
phase space having only one point. (See the introduction for a discussion of the 
time homogeneous case.) By the logarithmic Laplace transform of the process 
{N~} we mean the family of functions tO ~'' defined for 0 < s < t by 

~s't (2) = - log E [exp { - 2 Nt} INs = 1]. 

The law for the density process {Nt} (depending on co) is determined by the con- 
dition that the Os,, are the unique solution of 

t 

= + fl (du) no (Xu, d l) e l  - ( x , )  2).  
s 

The densities ~ for distinct trajectories are identical for t in the initial time segment 
[0, a] (if any) on which the trajectories agree; the ratios Nt NZ 1 are independent 
for t >_a. 

Discrete amounts of secondary fluid are created at successive random "creation 
times" zl, z2 . . . .  and are associated with certain random "creating trajectories" 
col,co2,.... The portion of secondary fluid created at each creation time z is 
represented by a random point in the configuration space ~U(K), with the usual 
interpretation. Conditioned on the 0 th generation, on the creation times zi, and 
on the creating trajectories coi, the portions of secondary fluid created at the 
various creation times are mutually independent and the portion created at a 
particular creation time z has the distribution zc(eg(z),-) where co is the associated 
creating trajectory. Conditioned on the 0 th generation (and in particular, on the 
densities Nt for the 0 th generation), the number of creation times in the time interval 
Is, t], associated with creating trajectories belonging to a particular subset A of 
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the trajectory space W in the past Ft, is a Poisson variable with mean 

~#(dx)E~[A; I fl(du)N(u)]. 
[s, t] 

(Here/~ is the initial configuration for the process.) The numbers of creation times 
associated with trajectories in a fixed subset A in the past fftt but occurring in 
disjoint subintervals of [0, t] are mutually independent. The distribution of the 
numbers of creation times associated with trajectories in distinct subsets of W 
does not admit a simple description in general, but can be understood by finite 
additivity and a passage to the limit from the following special situation. If 
0 < tl < . . .  < t, are given times and if 

A 1 = {co: r c~(tl)~A 1 . . . .  , a~(t,)~A,} 

A2 = {co: ~(0)~S0, c~(tl)~B1 . . . . .  a~(t,)EB,} 

are given subsets of the trajectory space W such that A o = Bo, Aa = Ba . . . .  , Ai_ 1 = 
Bi_ 1 but A~ and Bi are disjoint, then the numbers of creation times associated with 
trajectories in A 1 and A 2 and occurring in the time interval [0, ti_~] are identical 
while the numbers occurring in the time interval Its, t,] are independent. The 
obvious generalization of this statement holds if several sets Ai of this special form 
are considered. [We can describe the distribution of the creation times and asso- 
ciated creating trajectories in a less precise but more suggestive manner as follows. 
The number of creation times occurring for a fixed trajectory o~ in a time interval 
[s, t] is a differential Poisson variable with infinitesimal mean ~ fl(du) N,. The 

[s, t] 
numbers occurring in disjoint time intervals are independent. The numbers 
associated with distinct trajectories are identical for the initial segment of the time 
axis on which they agree (if any) and are independent for all later time intervals.] 

The portion of secondary fluid corresponding to a fixed creation time z evolves 
from time ~ onward according to the same process which governs the 0 'h genera- 
tion. The 1 st generation of fluid is the sum of the portions of secondary fluid 
corresponding to all of the creation times. Succeeding generations are triggered in 
a similar manner: the creation times and creating trajectories which trigger the 
(n § 1) st generation depend on the n th generation just as the corresponding quan- 
tities which trigger the 1 st generation depend on the 0 th generation. 

Section 5. Proof of the Existence Theorem 

We begin by establishing a result on local existence and uniqueness. 

Lemma 5.1. For each pair m, M satisfying 0 < r n < M  there is a z > 0  with the 
property that whenever ~p in ~(K) satisfies 

m<=q~<=M, 

there is a unique family of functions ~Pt cp in ~ (K) defined for 0 <-t <_ z and satisfying 
(3.1). Moreover there are positive constants ml, M1 such that 

ml =< ~t ~p ~ M1 (5.1) 
for t<~. 
8* 
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Proof. For  any z > 0 there are positive constants a, A, B such that  

a<= Ex[o~t] <=A 

[/ Ex fl(du)c~"{y(X.)+ ~ ~(X. ,d~t)[#l+ J" rc(X.,dlt) 
[u[ < I I~1 > I 

1+ }1 + ~ no(X,,dl)12+ no(X,,dl) <B 
0 + 1 + 

for all x in K and for all t____z. Also the constant  B J,0 as z$0. We define t ~,)q) by 
induction on n as follows whenever it makes sense: 

[r (x,)] 

+ I no (X,, d l) eo ~ { ~ ; "  (p (X,)} - y (X,) { ~(~-" (p (X.)} 2)]. 

Clearly 
(x) ____ M A  + B 

and therefore 
~t)  q~ (x) > m a - B ( M A  + B) 2 (5.3) 

for all t < z  and for all x. (In establishing (5.3) we have used the elementary 
inequality 1 - exp { - x} - x > - x 2.) Since B (MA + B) 2 < m a for sufficiently small 
~, we conclude that  for such z the definitions (5.2) make sense and that  there are 
constants ml, M1 such that  

ml _-< ~t) ~o (x)_-< Ma 

for all t__< �9 and for all n. Next we note the inequalities 

- - t  - -  t [{~.+1) q~(x)} 2 - {~.)rP (x)}21 < 2 M ,  - t  

[g" {~,+~) ~o} - gu {~',) q~} I < C SUpx I ~o(x)- ~ )  to(x)l (5.4) 
- - t  - - t  C I ~,+l)q0 ( x ) -  ~.) q0 (x)l for 1, 

~oo~#~r r176 l =  [ 2 1 ~ ,  +1) q~ (x)-- ~,) q) ( x ) l - - '  t for l<l,l> 

where C, depending on m~, is defined by 

C=sup(lexp{-lml}) 1 < / < o o .  

The first inequality is obvious and the others follow upon applying the Mean  Value 
Theorem to the functions 1 - exp {x} - x and 1 - exp { - x}. Applying these inequal- 
ities to (5.2) and letting 

a,,=supl~+~)q~(x)-~)r (x in K, 0 < t < z ) ,  
we deduce 

a, + a < a,  B (2M1 + C). 

But B(2Ma + C)<  1 for z sufficiently small; thus a,$0 and the converge to 
the desired solution ~t r Uniqueness of ~t rp follows by a similar argument.  + 
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Lemma 5.2. The following statement is true along a set of trajectories oo in W 
having ~3 x probability one for all x in K. For each positive integer k there is a unique 
family of positivefunctionals ~,t defined for 0 < s < t and satisfying 

t f 1+ } 
~:~,'=~:s,'-f~(du)~," ~ ~ ~o(X,,,dOl+k~,(X,,) ~'~. (5.5) 

s ( .  (l/k) + 

Moreover 
. . . . .  ' -  ~,~ (5.6) ~k (Xk - -  (Xk 

whenever 0 < r < s < t. 

Proof It follows easily from the Technical condition 3.7 that for all k > 0  the 
integral 

S fi(du) ~" ~o (x., dl)l + k ~ (X,,) (5.7) 
0 k(1/k)  + 

is finite and varies continuously for a set of trajectories in W having ~3~ probability 
one for all x in K. Thus it suffices to consider one such trajectory. Since ~ ' " =  
( a s ) - l  ~xu also the integrals 

( 1+ ) 

yfi(du)cd'"{ y rco(X,,,dl) l+k?(X,,  ) 
s [ .  (l/k) + 

are bounded. Choose z > 0  such that (5.7) is __<�89 for t<_z. For O<_s<t<r, let ~'(]) 
be defined inductively on n by the iteration: 

s, t __ ~xs, t 
~k(O) - -  

~ k ( n + l ) i ( x s ,  t s,t__ ffl(du)~S.~ ~ ~ o ( X , . d l ) l + k ? ( X .  ) C~k(,) . . , ,  
s (1/k) + 

8 , t  Arguments similar to those in the proof of Lemma 5.1 show that the ~k(,) converge 
boundedly to functions ~,t satisfying �89 ~'~__< ~'~__< ~s,t and the Eq. (5.5) and that 
the ~,t are unique. The semigroup property (5.6) for 0 < s < t__< z follows from 

. . . . .  ,_o:,.,so:~,~_~(dul~r,,, ~o(X.,dt)l+k~(X.) .,s s,, (Xk ~k - -  ~k ~k 
r t (l/k) + 

t ( 1 + 

s ( O / k )  + 

=~" - I /~ (du )~  ~,~ I ~O(Xu,dl)l+k~(X.) ~ . . . . .  ~ 
r (1/k) + 

t ( 1 + ") 

- ~ ( d u ) ~ r , " ~  ~ ~o(X, , ,d l ) l+k~(X.)~, '  
s [ .  (l/k) + 

and from the uniqueness of solutions to (5.5). The extension of our local solution 
to a global solution goes in a straightforward manner, using the semigroup 
property (5.6) to make the extension and the last computation to verify the Eq. (5.5) 
for the extension. # 
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For fixed k we define inductively on n: 

~'~o~ ~o (x)= Ex [~;  ~o (x,)] 
t 

(5.8) 
+ ; rco (X , ,d l ) [1 -exp{ - l~ t~"rP(X , ) } ]  

(l/k) + 

] + k2 7 (X,) [1 - exp { - l ~k}~)" q~ (X,)}]) . 

It is clear that the operators ~(,) increase with n to operators ~k * satisfying (5.8) 
with the subscripts n deleted. These operators ~k t satisfy in addition the equation 

+ ~ r~o(Xu, dl)e~o{'~'-"q~(X,)} (5.9) 
(l/k) + 

- 2 k  2 ~(X~) ~ l / k ~ , - u  )] ~'o ~ -k  q~(X.)}  

as can be verified by a straightforward computation after substituting (5.5) into 
(5.8) (with ~ , )  ~o replaced by ~t q0. Now it follows easily from (5.9) and from the 
proof of Lemma 5.1 that (5.1) is valid not only for ~ but for ~t which, together 
with the defining iteration for ~ ,  implies that ~ is com_pletely concave. Further- 
more,_ the estimates (5.4) are valid with ~ ,  + 1) replaced by ~ +  1 and with ~,~ replaced 
by ~k'. Letting 

bk=SUpl~' q)(x)-- ~kt (p(X)[ (t<=z, xeK),  

applying these estimates to the difference of the integral Eqs. (3.1) and (5.9) and 
using the notation in the proof of Lemma 5.1, we get 

I- t 
bk < bk( C + Ma) B + sup~ E x [ !  fi(du) c~ u 7 (Xu)[ { ~t-u  q~ (Xu)}2 

- 2 k 2 ~;1 / k )  { ~kt - u  q) (Xu)} ] ] 

+SUpxEx ~(du)~ ~ ~ ~o(X.,dl)~{~'-"~o(X.)}. 
0 + 

Using the elementary inequalities 

[x 2 - 2k 2 g(ol/k) {x}]< 2x3/k 

]~{x}l<x2/2 for I<1, 
we deduce 

b k <= b, (C + M~) B + 2M~ B bk + (2BM3)/k 

+(M2/2)supEx fi(du)c~, ~ rco(X,,dl)l 2 . 
0 + 
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Choosing z and therefore B small enough so that (3Mx + C)B < 1 and applying 
the Technical condition 3.8 we see that bk~0 as kj" oc. Now it follows from Propo- 
sition 1.3 that the operators ~t defined in Lemma 5.1 for t <z  and (p satisfying 
m < qo _< M extend uniquely to completely concave operators (also denoted by ~,t) 
defined for all q~ in N(K). Letting ~o=2~(p~+...+2~0, in (3.1), we easily see 
(using Technical condition 3.7) that both sides are well defined and analytic for 
21 . . . . .  2~> 0; thus the reasoning of Proposition 1.3 shows that (3.1) is valid for all 
q) in ~(K). This establishes the existence and uniqueness of a family of completely 
concave operators ~ '  defined for t<~ and satisfying (3.1). An argument exactly 
analagous to that in the proof of Lemma 5.2 establishes the semigroup property 
for 0 < s < t < �9 and extends our local solution to a global solution satisfying both 
the semigroup property and the Eq. (3.1). The proof of Theorem 2 is complete. @ 

Remark. The informal discussion of the underlying process in Section 4 
suggests that an alternative proof of Theorem 2 might be available at least when 
there is no nonlocal creation, that is, when ~z(x,.) for all x. This proof splits 
naturally into two steps: 

(i) Define the logarithmic Laplace transform O~;t for the density processes {Nt} 
along individual trajectories o2 by solving the integral equation 

(o; ) . (5.10) 
S 

(ii) Construct the logarithmic Laplace transform ~t required in Theorem 2 by 
"piecing together" the ~k ~ in a manner consistent with the informal description 
in Section 4. 

The first step easily be carried out by generalizing the argument of [8, Sect. 4]. 
To carry out the second step, we proceed as follows. For each partition P =  
{0, t~ . . . . .  t,} with 0 < t~ <-..  < t, = t we define a completely concave operator ~ by 

= j % (  

~o2 o , t - t , , - ~  X 6o �9 [ ,_,~ ( , ) ] ) .  

The operator ~ corresponds to the following way of"pasting" together the density 
processes {Nt}" 

The densities {N~} corresponding to distinct trajectories are identical for  0 <- s <- t i 
if  the trajectories are identical on the time interval [0, ti]. The ratios {Ns(Nt,_,) -1 } 
are independent for  ti_ ~ ~ s < t unless the trajectories are identical for  0 < s < ti. 

A straightforward application of Jensen's inequality for concave functions. 
shows that if/]1 contains Pz in the obvious sense, then ~ q~ > 7~]2 (p for all q~ in 

(K). The upper envelope of the ~P~ as P varies over all possible partitions of [0, t] 
is the natural candidate for the desired operators ~t. The semigroup property for 
this upper envelope can be established without any difficulty. However the verifi- 
cations of complete concavity and of the Eq. (3.1) raise certain technical problems 
which we cannot resolve at present without imposing conditions which are much 
too restrictive. A simple computation using (5.10) and the simple Markov property 
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establishes the following equation for the operator ~ :  

[ " . . ,  q,(X.)} 
o 

0 tl -- u - - t - -  tl 2 
-7(Xu){Oo; ~g~, q)(Xtl)} )] (5.11) 
- q - .  , .  

] 2) 
In 1 

where P~ = [0, t 2 - t l , . . . ,  tn-tt ]  etc. This suggests that we should consider first 
the restriction envelope of the ~ as P runs through a suitable sequence of parti- 
tions and then pass to the limit in (5.11) to verify that the restricted upper envelopes 
satisfy the Eq. (3.1). The uniqueness of solutions to the Eq. (3.1) would then 
guarantee that the restricted upper envelope is in fact the full upper envelope. This 
would prove that the full upper envelope is completely concave and that it satisfies 
(3.1). Our problem is that we cannot justify the passage to the limit in (5.11). We 
can establish convergence along individual trajectories in W but not convergence 
of the expectations. # 
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