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w 1. Introduction 

We consider the spectra of the one-dimensional Schr6dinger operator H u= 
-u" +qu with the potential q being a white Gaussian noise. More specifically 
let {B(x), x>0}  be the one-dimensional Brownian motion and let Jff(2, a, b) be 
the number of eigenvalues not exceeding 2 for the boundary value problem: 

_ d d + d B  

Hu(x) -  dx u(x)=2u(x), a<x <b, (1.1) 

u(a)=u(b)=O. 

We define the spectral distribution function (or the cumulative density of states 
in physical term) of H by 

Y(,~, 0, l) 
N(2)--- lim - oo < 2 <  oo. (1.2) 

Frisch and Lloyd [3] and Halperin [51 found that the non-random limit 
function N(2) takes an exact form: 

N(2)= u-~exp{ -~u3-22u}du  . (1.3) 

It seems however that no precise formulation of the eigenvalue problem (1.1) has 
been given and that the derivation of (1.3) in [3] and [53 involves some heuristic 
arguments on diffusion approximation. 

In w of this paper, we show that the problem (1.1) can be formulated by 
making use of a symmetric form o ~ on L 2 (a, b) defined by 

[g]  = H i (a, b) 

b b (1.4) 
o ~ (u, v) = S u' (x) v' (x) d x - ~ (u' (x) v (x) + u (x) v' (x)) B (x) d x. 

a a 
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We are indeed led from (1.1) to the form (1.4) by the formal integration 

b b b 

u (x) H v (x) d x = - ~ u (x) v" (x) d x + ~ u (x) v (x) dB (x) 
a a a 

and by the interpretation of the last integral as the Wiener integral. 
We then give in w 3 a simple derivation of (1.2) and (1.3) by proving that N(2) -1 

is just the mean soujorn time on [0, n) of the diffusion process X(t) satisfying 
the following stochastic differential equation: 

dX(t)  = - sin 2 X(t) o dB (t) + (cos 2 X(t) + 2 sin 2 X(t)) dt 
X(O)=O. (1.5) 

Here the symbol o denotes the symmetric stochastic differential due to Stratono- 
vich ([6, 9]). 

The Equation (1.5) results from the Sturrn-Liouville oscillation theorem [2] 
and a theorem in Kunita [9] concerning the pathwise approximation of the 
solution of (1.5) by solutions of those ordinary differential equations which are 
obtained from (1.5) by replacing B(t) with piecewise linear functions. 

At the end of w 3 we relate our derivation of (1.3) to that of Frisch-Lloyd and 
Halperin. In principle our formulation and procedures apply to the case that 
the Brownian motion B(x) in (1.1) is replaced by other process with stationary 
independent increments. We further note that the expression (1.3) readily means 
the asymptotic behaviours 

- 2 ~ (1.6) log N(2) ~ 8 - 3 l l ,  2 ~ - ~ ,  

N(2)~ ]/2 , 2 ~ oe, (1.7) 
w 

7~ 

once we use the Tauberian theorems of exponential type [4] and Hardy-Little- 
wood type. Halperin [5] obtained a more detailed formula than (1.6). Various 
asymptotic behaviours of N().) of the Schr/Sdinger operators with other types of 
random potentials are studied in [10] and [11]. 

w 2. Symmetric Form and the Eigenvalue Problem 

Consider a real Hilbert space ~f  with inner product ( , ). A symmetric bilinear 
form ( with domain ~ [g] dense in J f  is simply called a symmetric form on ~ .  
It is lower semibounded if g(u,u)+7(u,u)>O,  u ~ [ g ] ,  for some constant 7. If, 

~t in addition, @ [g] is complete with norm ] /g  (u, u) + ~ (u, u) for some (equivalently 
for every) y '>  7, then g is said to be closed. Suppose furthermore we can extract 
a strongly ~-convergent  subsequence from any sequence u ,m~ [ g ]  such that 
g (u,, u,) + 7' (u,, u,) < C for some constants 7'>7 and C, then we say that g 
satisfies the complete continuity condition. 

Given a lower semi-bounded closed symmetric form 8 on ~ ,  there is a 
unique self-adjoint operator A on ~ such that 

~ ( A ) ~ [ g ] ,  g(u ,v )=(Au,  v), u ~ ( A ) ,  v ~ [ g ] .  (2.1) 
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If ~ satisfies the additional condition of complete continuity, then the spectrum 
of A consists of the point spectra of finite multiplicity possessing no accumulation 
point except for + oo. Therefore we can arrange them as 

and we may call 2 k the k-th eigenvalue of A. 

In this case we have the following minimax principle of calculating 2k: put 

(m)= sup C(u,u) 
ueM, (u, u)= 1 

for M ~ @ Idol, then 

2 k = inf2 (M), (2.2) 

where M ranges over all k-dimensional linear subspaces of ~ [o~]. This can be 
proved in the same way as in [-12; 2.5.1] by noting that 2 is an eigenvalue of A 
with an eigenfunction uo if and only if u o ~ [ g ] ,  Uo+0 and g(Uo, v)=2(Uo,V) 
for any v e ~  [C]. 

Let us now consider the real L2-space L 2 (a, b). We put 

H i (a, b) = {u~L z (a, b); u is absolutely continuous, 

u' ~L2(a, b) and u ( a + ) = u ( b - ) = O } ,  (2.3) 

b b 

[llultlZ=~u'(x)2 d x +  ~u(x)2 dx, u~H~(a,b). (2.4) 
a a 

Denote by B(a, b) the space of all bounded Borel functions on (a, b). In view of 
(1.4), we are interested in the symmetric form on g(~, b) L 2 (a, b) defined for each 
h~B(a, b) by 

b 

~o, b~ (u, ~ ) :  ~ u' (x) ~' (x) d x 
a 

b (2.5) 
- S (u' (x) v (x) + u (x) v' (x)) h (x) d x 

a 

@ [g{a, b)] = Ho ~ (a, b). 

Sih~, b) is also denoted by d ~ for simplicity. 

Lemma 1. (i) For each h6B(a,b), E h is a lower semibounded closed symmetric 
form on L 2 (a, b) satisfying the complete continuity condition. 

(ii) Suppose h, EB(a, b) converges to h~B(a, b) uniformly on (a, b), then 

lira 2~ = 2 k, k = 1, 2 . . . . .  (2.6) 
n ~ o o  

where 2~(resp. 2k) is the k-th eigenvalue of the self-adjoint operator associated with 
E h" (resp. gh). 
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Proof. Applying Schwarz inequality to the second term of gh(u, u), we have 

1 
gh (u, u) + (M z + 1)(u, u) > ~ (M 2 + 1~) Hlu 11112 (2.7) 

for any ueH~(a, b), where M =  sup [h(x)l. The first assertion (i) is almost clear 
a < x < b  

from this. Particularly the complete continuity condition follows from (2.7) and 
the Ascoli-Arzel~ selection theorem. 
To see the assertion (ii), we note 

I~h~ u)-~h(u, u)l_-< c. Illulll~, ueH~ (a, b), (2.8) 

where C, = sup [h , (x)-  h(x) l. 
a < x < b  

From (2.7) and (2.8), we get 

{1 - ( 2 M 2  +2) C,} [gh(u, u) +(M2 + 1)(u, u)] 

=< #h. (u, u) + (M 2 + 1) (u, u) 

< { 1 + (2 M 2 + 2) C,} [gh (U, U) + (M 2 + 1)(u, u)]. 

Hence, by the minimax principle (2.2) 

{1-(2M2 +2)C.}{,~k+(M2+I)}<,~+(M2+I) 
< { 1 + (2 M 2 + 2) C,} {2k + (M 2 + 1)}, 

which means (2.6) because lim C ,=0 .  q.e.d. 
n~oo 

The spectrum {2k} associated with gh can be identified with the solution of 
the classical Sturm-Liouville eigenvalue problem when h is smooth. Suppose 
that h is a piecewise differentiable continuous function on (a, b) and that the 
derivative h'(x) defined at every interiour point x of the differentiable intervals 
is uniformly bounded on (a, b). Let A be the self-adjoint operator associated 
with gh. Integrating by part, we see the equivalence of the following. 

A u = 2 u, u e HA (a, b). (2.9) 

-u"(x)+h' (x)u(x)=2u(x) ,  xe(a, b), (2.10) 

u(a+)=u(b-)=O. 

w 3. Spectral Distribution Function and a Related Diffusion 

Let {B(x, co), x>0}  be a standard Brownian motion defined on a probability 
space (O, ~ ,  P) such that B(0, co)=0 and B (x, co) is continuous in x > 0  for any 
c0e(2. Together with B(x, co), we consider its piecewise linear approximation 
{B,(x, co), x>=0} defined by 

/ [2"x] ~ [ [2" x]S f 1 /[2"x] ~l 
( \ z" ! 
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T a k e / > 0  and fix coef2. As was mentioned in w 1, we formulate the eigenvalue 
Problem (1.1) on the interval (0,/) by means of the symmetric form g~h0, t) of (2.5) 
for h (x)= B (x, co), x e (0, l). Let ~A/''~ (2,/) be the number of eigenvalues not exceeding 
2 of the associated self-adjoint operator on L 2 (0, l). We also consider the same 
quantity JVs ~ (2,/) for h (x) = B, (x, co), x ~ (0, l). In view of Lemma 1, we then have 

lira ~AFo~ (2, l) = ~ (2, I) (3.1) 
n ~ c o  

for every continuity point ,t of ~42 ~ (2, 1). 

On the other hand, ~ ' ( 2 , / )  is the distribution function of the eigenvalues 
in the classical eigenvalue problem (2.10) with h(x)=B,(x,  co) and (a,b)=(0, I), 
because B,,(x, co) is piecewise linear in x > 0. Hence the Sturm-Liouville oscillation 
theorem [2] leads us to the identity 

where Y~ (x, co), x > O, is the solution of the ordinary differential equation: 

d Y~(x, co)= - s i n  2 Y~(x, co) B'n(x, co) dx+(cos  2 Y~(x, co) 

+2 sin 2 Y~(x, co)) dx (3.3) 

co)=o. 

Now according to a theorem of H. Kunita [9], the solution of (3.3) converges 
to the solution Y;~(x, co) of the following stochastic differential equation: 

d Y~ (x) = - sin 2 Y~ (x) dB (x) 

+ (cos 2 YX (x) + 2 sin 2 Y~ (x) + sin 3 Y~ (x) cos YX (x)) d x (3.4) 

Yx(O)=O, 

which can also be written as (1.5) using the symbol o. More specifically there 
exist Qa cf2  with P(~21)= 1 and a subsequence {nj} such that, for each coE~x, 

lim Y~(x, co)= Y~(x, co) (3.5) 
n j ~  O0 

holds for any x > 0 and any rational 2. 

Lemma 2. There exists ~'~2 ~'~ with P(Q2)= l such that the inequality 

O< Y;(I, co) ~A/'~ l )< l  
7~ 

holds for any coe~22, rational I>0  and rational 2. 

Proof. Combining (3.1), (3.2) and (3.5), we arrive at the above inequality for 
c0sO1, real / > 0  and for any rational 2 at which ~ ( 2 , / )  is continuous. In view 
of the right continuity of oY~ (2,/) in 2, we can now get Lemma 2 if, for a fixed 
l, YX(1, co) is continuous in rational 2 for almost all coef21 . But the last statement 
is a result of the next lemma and [1 ; Theorem 12.4]. 
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Lemma 3. Let a, b and c be bounded Lipschitz continuous fimctions on R 1 and 
X ~ (t) be the solution of the stochastic differential equation 

d X  ~(t) = a ( X  ~ (t)) dt~(t) + (b (X  ~(t)) + 2 c ( X  ~ (t))) d t 

X ~ ( 0 ) = 0 .  

Then, for each T > 0 and K > O, 

E [ IXa (t) - X ~' (t)l 2] < C(2  - 2') 2 e cr, 

t~[0, W], 12[, 121<K, 2,2': rational, 

for some constant C > 0. 

Proof. This follows from inequality 

t 

f (t)< C 5 f (s) ds + C ( 2 -  2') 2, 
o 

f ( t )  being the left hand side of the desired inequality, q.e.d. 

Theorem. There exists ~2oCf2 with P(f~0)= 1 such that for each (oef~ o 

r d~'(2,  lm ~ 1)=(E(z~)) - t  for every 2, (3.6) 
l ~ o o  

where z* is the first hitting time of {=} of the solution Ya(x) of (3.4): 

~ (co) = inf {x > 0; ya (x, o)) = re}. (3.7) 

More explicitly 

E(zX)= 21/~ - ~u -~ exp { - ~ u  3 - 2 2 u }  du. (3.8) 
0 

Proof. We take a closer look at the solution YZ(x, co) of (3.4). {Y*(x), x>0}  is a 
diffusion process (starting from the origin at time 0) possessing the infinitesimal 
generator 

d 2 d 
�89 sin 4 z d .~  + (cos2 z + 2 sin 2 z + sin 3 z cos z) dzz (3.9) 

with coefficients being periodic with period n. The operator (3.9) takes the ca- 
d d 

nonical form ~ ~ on each periodic regular interval with 

dz 
ds(z)=exp (2 cot 3 z + 2.~. cotz) sin2 z' 

dz 
dm (z) = 2 exp ( -  ~- cot 3 z -  2 2 cot z) sin2 z' 

According to the Feller classification of the boundary [7], ( n -  1)r~ (resp. nn) 
is an entrance (resp. exit) boundary of the interval ( (n -1)n ,  nn), n = l ,  2 . . . . .  
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Furthermore 

E ('c A) = ~ (s (re) - s (z)) dm (z) 
0 

2 3 ao 9 3 

=2 }o e ~* +2;~ y e-  ~` -2.~tdtds 
- -oo  s 

- - 2 u 3  - - 2 2 u  

=2 S e 3 ~ e-2,,2s-2,,S2dsdu, 
0 - -co  

which is equal to the right hand side of (3.8). 
Above observation readily means that 

lira YX (~/', c~ = (E ('c~))- 1 a.s. (3.10) 
l ~ o o  7 ~ /  

To see this, we put r2(co)=inf{x>0; YX(x,o))=nrc}, n = l , 2 , . . . .  Then %-~- 
+ - + . . .  + rn_l) is a sum of independent identically distributed 

random variables. By the law of large numbers, we have l i m - - = z : t r  ) a.s., 
n ~ o o  n 

which leads us to (3.10) since the following statement holds for almost all wef2: 
for each real l>0,  there exists n such that ~ ~, (co) < 1 < z, + 1 (co) and hence 

n yX (1, co) < n + l 
= ' 

Our conclusion (3.6) is an immediate consequence of (3.10) and Lemma 2 if 
we observe that JV "~~ (2,/) is monotone not only in 2 but also in l in view of the 
minimax principle (2.2). q.e.d. 

Remark. The diffusion {YX(x), x>0}  may be considered by the transformation 
w = - c o t z  as a diffusion process on [ - 0 %  + oo) with infinitisimal generator 

Nu(w)=�89 dzu 2 du 
~w~wZ + (w +2)~w w (3.11) 

and the boundary condition u ( -  oo)=u(+  oo). 

Let p (w) be the smooth density function of the invariant probability measure 
of this process. Then p (w) is the unique bounded solution of 

�89 p' (w)-  (w 2 + 2) p (w) = - N(2). ( 3 . 1 2 )  

This can be easily obtained either from formula (3.6) or from its more explicit 
version (1.3). (3.12) implies the following Rice's formula: 

N(2)= lim w2p(w). (3.13) 
w~_--+ao 

Frisch and Lloyd [3] derived this formula in the case that the process B(x) in 
(1.1) is the Poisson process instead of the Brownian motion and Halperin [5] 
started with this formula to get (1.3). 
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