On Spectra of the Schrödinger Operator with a White Gaussian Noise Potential

Masatoshi Fukushima ${ }^{1}$ and Shintaro Nakao ${ }^{2}$
${ }^{1}$ Department of Mathematics, Osaka University, Toyonaka, Osaka 560, Japan
${ }^{2}$ Department of Mathematics, Nara Women's University, Nara 630, Japan

§ 1. Introduction

We consider the spectra of the one-dimensional Schrödinger operator $H u=$ $-u^{\prime \prime}+q u$ with the potential q being a white Gaussian noise. More specifically let $\{B(x), x \geqq 0\}$ be the one-dimensional Brownian motion and let $\mathcal{N}(\lambda, a, b)$ be the number of eigenvalues not exceeding λ for the boundary value problem:

$$
\begin{align*}
H u(x) & =\frac{-d \frac{d}{d x}+d B}{d x} u(x)=\lambda u(x), \quad a<x<b \tag{1.1}\\
u(a) & =u(b)=0
\end{align*}
$$

We define the spectral distribution function (or the cumulative density of states in physical term) of H by

$$
\begin{equation*}
N(\lambda)=\lim _{t \rightarrow \infty} \frac{\mathscr{N}(\lambda, 0, l)}{l}, \quad-\infty<\lambda<\infty . \tag{1.2}
\end{equation*}
$$

Frisch and Lloyd [3] and Halperin [5] found that the non-random limit function $N(\lambda)$ takes an exact form:

$$
\begin{equation*}
N(\lambda)=\left(\sqrt{2 \pi} \int_{0}^{\infty} u^{-\frac{1}{2}} \exp \left\{-\frac{1}{6} u^{3}-2 \lambda u\right\} d u\right)^{-1} \tag{1.3}
\end{equation*}
$$

It seems however that no precise formulation of the eigenvalue problem (1.1) has been given and that the derivation of (1.3) in [3] and [5] involves some heuristic arguments on diffusion approximation.

In $\S 2$ of this paper, we show that the problem (1.1) can be formulated by making use of a symmetric form \mathscr{E} on $L^{2}(a, b)$ defined by

$$
\begin{align*}
& \mathscr{D}[\mathscr{E}]=H_{0}^{1}(a, b) \\
& \mathscr{E}(u, v)=\int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x-\int_{a}^{b}\left(u^{\prime}(x) v(x)+u(x) v^{\prime}(x)\right) B(x) d x . \tag{1.4}
\end{align*}
$$

We are indeed led from (1.1) to the form (1.4) by the formal integration

$$
\int_{a}^{b} u(x) H v(x) d x=-\int_{a}^{b} u(x) v^{\prime \prime}(x) d x+\int_{a}^{b} u(x) v(x) d B(x)
$$

and by the interpretation of the last integral as the Wiener integral.
We then give in $\S 3$ a simple derivation of (1.2) and (1.3) by proving that $N(\lambda)^{-1}$ is just the mean soujorn time on $[0, \pi)$ of the diffusion process $X(t)$ satisfying the following stochastic differential equation:

$$
\begin{align*}
d X(t) & =-\sin ^{2} X(t) \circ d B(t)+\left(\cos ^{2} X(t)+\lambda \sin ^{2} X(t)\right) d t \tag{1.5}\\
X(0) & =0 .
\end{align*}
$$

Here the symbol o denotes the symmetric stochastic differential due to Stratonovich ($[6,9]$).

The Equation (1.5) results from the Sturm-Liouville oscillation theorem [2] and a theorem in Kunita [9] concerning the pathwise approximation of the solution of (1.5) by solutions of those ordinary differential equations which are obtained from (1.5) by replacing $B(t)$ with piecewise linear functions.

At the end of $\S 3$ we relate our derivation of (1.3) to that of Frisch-Lloyd and Halperin. In principle our formulation and procedures apply to the case that the Brownian motion $B(x)$ in (1.1) is replaced by other process with stationary independent increments. We further note that the expression (1.3) readily means the asymptotic behaviours

$$
\begin{align*}
& \log N(\lambda) \sim-\frac{8}{3}|\lambda|^{\frac{3}{2}}, \quad \lambda \rightarrow-\infty, \tag{1.6}\\
& N(\lambda) \sim \frac{\sqrt{\lambda}}{\pi}, \quad \lambda \rightarrow \infty, \tag{1.7}
\end{align*}
$$

once we use the Tauberian theorems of exponential type [4] and Hardy-Littlewood type. Halperin [5] obtained a more detailed formula than (1.6). Various asymptotic behaviours of $N(\lambda)$ of the Schrödinger operators with other types of random potentials are studied in [10] and [11].

§ 2. Symmetric Form and the Eigenvalue Problem

Consider a real Hilbert space \mathscr{H} with inner product (,). A symmetric bilinear form \mathscr{E} with domain $\mathscr{D}[\mathscr{E}]$ dense in \mathscr{H} is simply called a symmetric form on \mathscr{H}. It is lower semibounded if $\mathscr{E}(u, u)+\gamma(u, u) \geqq 0, u \in \mathscr{D}[\mathscr{E}]$, for some constant γ. If, in addition, $\mathscr{D}[\mathscr{E}]$ is complete with norm $\sqrt{\mathscr{E}(u, u)+\gamma^{\prime}(u, u)}$ for some (equivalently for every) $\gamma^{\prime}>\gamma$, then \mathscr{E} is said to be closed. Suppose furthermore we can extract a strongly \mathscr{H}-convergent subsequence from any sequence $u_{n} \in \mathscr{D}[\mathscr{E}]$ such that $\mathscr{E}\left(u_{n}, u_{n}\right)+\gamma^{\prime}\left(u_{n}, u_{n}\right)<C$ for some constants $\gamma^{\prime}>\gamma$ and C, then we say that \mathscr{E} satisfies the complete continuity condition.

Given a lower semi-bounded closed symmetric form \mathscr{E} on \mathscr{H}, there is a unique self-adjoint operator A on \mathscr{H} such that

$$
\begin{equation*}
\mathscr{D}(A) \subset \mathscr{D}[\mathscr{E}], \quad \mathscr{E}(u, v)=(A u, v), \quad u \in \mathscr{D}(A), v \in \mathscr{D}[\mathscr{E}] . \tag{2.1}
\end{equation*}
$$

If \mathscr{E} satisfies the additional condition of complete continuity, then the spectrum of A consists of the point spectra of finite multiplicity possessing no accumulation point except for $+\infty$. Therefore we can arrange them as

$$
\lambda_{1} \leqq \lambda_{2} \leqq \cdots \leqq \lambda_{k} \leqq \cdots
$$

and we may call λ_{k} the k-th eigenvalue of A.
In this case we have the following minimax principle of calculating λ_{k} : put

$$
\lambda(M)=\sup _{u \in M,(u, u)=1} \mathscr{E}(u, u)
$$

for $M \subset \mathscr{D}[\mathscr{E}]$, then

$$
\begin{equation*}
\lambda_{k}=\inf \lambda(M), \tag{2.2}
\end{equation*}
$$

where M ranges over all k-dimensional linear subspaces of $\mathscr{D}[\mathscr{E}]$. This can be proved in the same way as in $[12 ; 2.5 .1]$ by noting that λ is an eigenvalue of A with an eigenfunction u_{0} if and only if $u_{0} \in \mathscr{D}[\mathscr{E}], u_{0} \neq 0$ and $\mathscr{E}\left(u_{0}, v\right)=\lambda\left(u_{0}, v\right)$ for any $v \in \mathscr{D}[\mathscr{E}]$.

Let us now consider the real L^{2}-space $L^{2}(a, b)$. We put

$$
\begin{gather*}
H_{0}^{1}(a, b)=\left\{u \in L^{2}(a, b) ; u\right. \text { is absolutely continuous, } \tag{2.3}\\
\left.u^{\prime} \in L^{2}(a, b) \text { and } u(a+)=u(b-)=0\right\} \\
\|u\|_{1}^{2}=\int_{a}^{b} u^{\prime}(x)^{2} d x+\int_{a}^{b} u(x)^{2} d x, \quad u \in H_{0}^{1}(a, b) \tag{2.4}
\end{gather*}
$$

Denote by $\mathbf{B}(a, b)$ the space of all bounded Borel functions on (a, b). In view of (1.4), we are interested in the symmetric form $\mathscr{E}_{(a, b)}^{h}$ on $L^{2}(a, b)$ defined for each $h \in \mathbf{B}(a, b)$ by

$$
\begin{align*}
\mathscr{E}_{(a, b)}^{\mathscr{L}}(u, v)= & \int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x \\
& -\int_{a}^{b}\left(u^{\prime}(x) v(x)+u(x) v^{\prime}(x)\right) h(x) d x \tag{2.5}\\
\mathscr{D}\left[\mathscr{E}_{(a, b)}^{\mathscr{o} h}\right]= & H_{0}^{1}(a, b)
\end{align*}
$$

$\mathscr{E}_{(a, b)}^{\mathscr{e}}$ is also denoted by $\mathscr{E}^{\text {oh }}$ for simplicity.
Lemma 1. (i) For each $h \in \mathbf{B}(a, b)$, $\mathscr{E}^{\text {h }}$ is a lower semibounded closed symmetric form on $L^{2}(a, b)$ satisfying the complete continuity condition.
(ii) Suppose $h_{n} \in \mathbf{B}(a, b)$ converges to $h \in \mathbf{B}(a, b)$ uniformly on (a, b), then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{k}^{n}=\lambda_{k}, \quad k=1,2, \ldots, \tag{2.6}
\end{equation*}
$$

where $\lambda_{k}^{n}\left(\right.$ resp. $\left.\lambda_{k}\right)$ is the k-th eigenvalue of the self-adjoint operator associated with $\mathscr{E}^{h_{n}}$ (resp. \mathscr{E}°).

Proof. Applying Schwarz inequality to the second term of $\mathscr{E}^{h}(u, u)$, we have

$$
\begin{equation*}
\mathscr{E}^{h}(u, u)+\left(M^{2}+1\right)(u, u) \geqq \frac{1}{2\left(M^{2}+1\right)}\|u\|_{1}^{2} \tag{2.7}
\end{equation*}
$$

for any $u \in H_{0}^{1}(a, b)$, where $M=\sup _{a<x<b}|h(x)|$. The first assertion (i) is almost clear from this. Particularly the complete continuity condition follows from (2.7) and the Ascoli-Arzelà selection theorem.
To see the assertion (ii), we note

$$
\begin{equation*}
\left|\mathscr{E}^{h_{n}}(u, u)-\mathscr{E}^{\mathscr{}}(u, u)\right| \leqq C_{n}\|u\|_{1}^{2}, \quad u \in H_{0}^{1}(a, b) \tag{2.8}
\end{equation*}
$$

where $C_{n}=\sup _{a<x<b}\left|h_{n}(x)-h(x)\right|$.
From (2.7) and (2.8), we get

$$
\begin{aligned}
\{1- & \left.\left(2 M^{2}+2\right) C_{n}\right\}\left[\mathscr{E}^{h}(u, u)+\left(M^{2}+1\right)(u, u)\right] \\
& \leqq \mathscr{E}^{h_{n}}(u, u)+\left(M^{2}+1\right)(u, u) \\
& \leqq\left\{1+\left(2 M^{2}+2\right) C_{n}\right\}\left[\mathscr{E}^{h}(u, u)+\left(M^{2}+1\right)(u, u)\right] .
\end{aligned}
$$

Hence, by the minimax principle (2.2)

$$
\begin{aligned}
\left\{1-\left(2 M^{2}+2\right) C_{n}\right\}\left\{\lambda_{k}+\left(M^{2}+1\right)\right\} & \leqq \lambda_{k}^{n}+\left(M^{2}+1\right) \\
& \leqq\left\{1+\left(2 M^{2}+2\right) C_{n}\right\}\left\{\lambda_{k}+\left(M^{2}+1\right)\right\}
\end{aligned}
$$

which means (2.6) because $\lim _{n \rightarrow \infty} C_{n}=0$. q.e.d.
The spectrum $\left\{\lambda_{k}\right\}$ associated with \mathscr{E}^{h} can be identified with the solution of the classical Sturm-Liouville eigenvalue problem when h is smooth. Suppose that h is a piecewise differentiable continuous function on (a, b) and that the derivative $h^{\prime}(x)$ defined at every interiour point x of the differentiable intervals is uniformly bounded on (a, b). Let A be the self-adjoint operator associated with $\mathscr{E}^{\circ h}$. Integrating by part, we see the equivalence of the following.

$$
\begin{align*}
& A u=\lambda u, \quad u \in H_{0}^{1}(a, b) . \tag{2.9}\\
&-u^{\prime \prime}(x)+h^{\prime}(x) u(x)=\lambda u(x), \quad x \in(a, b), \\
& u(a+)=u(b-)=0 . \tag{2.10}
\end{align*}
$$

§ 3. Spectral Distribution Function and a Related Diffusion

Let $\{B(x, \omega), x \geqq 0\}$ be a standard Brownian motion defined on a probability space (Ω, \mathscr{B}, P) such that $B(0, \omega)=0$ and $B(x, \omega)$ is continuous in $x \geqq 0$ for any $\omega \in \Omega$. Together with $B(x, \omega)$, we consider its piecewise linear approximation $\left\{B_{n}(x, \omega), x \geqq 0\right\}$ defined by

$$
B_{n}(x, \omega)=B\left(\frac{\left[2^{n} x\right]}{2^{n}}, \omega\right)+2^{n}\left(x-\frac{\left[2^{n} x\right]}{2^{n}}\right)\left\{B\left(\frac{\left[2^{n} x\right]+1}{2^{n}}, \omega\right)-B\left(\frac{\left[2^{n} x\right]}{2^{n}}, \omega\right)\right\} .
$$

Take $l>0$ and fix $\omega \in \Omega$. As was mentioned in $\S 1$, we formulate the eigenvalue Problem (1.1) on the interval $(0, l)$ by means of the symmetric form $\mathscr{E}_{(0, l)}^{\mathscr{C}_{h}}$ of (2.5) for $h(x)=B(x, \omega), x \in(0, l)$. Let $\mathscr{N}^{\omega}(\lambda, l)$ be the number of eigenvalues not exceeding λ of the associated self-adjoint operator on $L^{2}(0, l)$. We also consider the same quantity $\mathscr{A}_{n}^{\omega}(\lambda, l)$ for $h(x)=B_{n}(x, \omega), x \in(0, l)$. In view of Lemma 1 , we then have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathscr{N}_{n}^{\omega}(\lambda, l)=\mathcal{N}^{\omega}(\lambda, l) \tag{3.1}
\end{equation*}
$$

for every continuity point λ of $\mathscr{N}^{\omega}(\lambda, l)$.
On the other hand, $\mathscr{N}_{n}^{\omega}(\lambda, l)$ is the distribution function of the eigenvalues in the classical eigenvalue problem (2.10) with $h(x)=B_{n}(x, \omega)$ and $(a, b)=(0, l)$, because $B_{n}(x, \omega)$ is piecewise linear in $x \geqq 0$. Hence the Sturm-Liouville oscillation theorem [2] leads us to the identity

$$
\begin{equation*}
\mathscr{N}_{n}^{\omega}(\lambda, l)=\left[\frac{Y_{n}^{\lambda}(l, \omega)}{\pi}\right] \tag{3.2}
\end{equation*}
$$

where $Y_{n}^{\lambda}(x, \omega), x \geqq 0$, is the solution of the ordinary differential equation:

$$
\begin{align*}
d Y_{n}^{\lambda}(x, \omega)= & -\sin ^{2} Y_{n}^{\lambda}(x, \omega) B_{n}^{\prime}(x, \omega) d x+\left(\cos ^{2} Y_{n}^{\lambda}(x, \omega)\right. \\
& \left.+\lambda \sin ^{2} Y_{n}^{\lambda}(x, \omega)\right) d x \tag{3.3}\\
Y_{n}^{\lambda}(0, \omega)= & 0
\end{align*}
$$

Now according to a theorem of H. Kunita [9], the solution of (3.3) converges to the solution $Y^{2}(x, \omega)$ of the following stochastic differential equation:

$$
\begin{align*}
d Y^{\lambda}(x)= & -\sin ^{2} Y^{\lambda}(x) d B(x) \\
& +\left(\cos ^{2} Y^{\lambda}(x)+\lambda \sin ^{2} Y^{\lambda}(x)+\sin ^{3} Y^{\lambda}(x) \cos Y^{\lambda}(x)\right) d x \tag{3.4}\\
Y^{\lambda}(0)= & 0
\end{align*}
$$

which can also be written as (1.5) using the symbol \circ. More specifically there exist $\Omega_{1} \subset \Omega$ with $P\left(\Omega_{1}\right)=1$ and a subsequence $\left\{n_{j}\right\}$ such that, for each $\omega \in \Omega_{1}$,

$$
\begin{equation*}
\lim _{n_{j} \rightarrow \infty} Y_{n_{j}}^{\lambda}(x, \omega)=Y^{\lambda}(x, \omega) \tag{3.5}
\end{equation*}
$$

holds for any $x \geqq 0$ and any rational λ.

Lemma 2. There exists $\Omega_{2} \subset \Omega$ with $P\left(\Omega_{2}\right)=1$ such that the inequality

$$
0 \leqq \frac{Y^{2}(l, \omega)}{\pi}-\mathcal{N}^{\omega}(\lambda ; l) \leqq 1
$$

holds for any $\omega \in \Omega_{2}$, rational $l>0$ and rational λ.
Proof. Combining (3.1), (3.2) and (3.5), we arrive at the above inequality for $\omega \in \Omega_{1}$, real $l>0$ and for any rational λ at which $\mathscr{N}^{\omega}(\lambda, l)$ is continuous. In view of the right continuity of $\mathcal{N}^{\infty}(\lambda, D)$ in λ, we can now get Lemma 2 if, for a fixed $l, Y^{\lambda}(l, \omega)$ is continuous in rational λ for almost all $\omega \in \Omega_{1}$. But the last statement is a result of the next lemma and [1; Theorem 12.4].

Lemma 3. Let a, b and c be bounded Lipschitz continuous functions on R^{1} and $X^{\lambda}(t)$ be the solution of the stochastic differential equation

$$
\begin{aligned}
d X^{\lambda}(t) & =a\left(X^{\lambda}(t)\right) d B(t)+\left(b\left(X^{\lambda}(t)\right)+\lambda c\left(X^{\lambda}(t)\right)\right) d t \\
X^{\lambda}(0) & =0
\end{aligned}
$$

Then, for each $T>0$ and $K>0$,

$$
\begin{aligned}
& E\left[\left|X^{\lambda}(t)-X^{\lambda^{\prime}}(t)\right|^{2}\right] \leqq C\left(\lambda-\lambda^{\prime}\right)^{2} e^{C T} \\
& \quad t \in[0, T],|\lambda|,\left|\lambda^{\prime}\right| \leqq K, \lambda, \lambda^{\prime}: \text { rational },
\end{aligned}
$$

for some constant $C>0$.
Proof. This follows from inequality

$$
f(t) \leqq C \int_{0}^{t} f(s) d s+C\left(\lambda-\lambda^{\prime}\right)^{2}
$$

$f(t)$ being the left hand side of the desired inequality. q.e.d.
Theorem. There exists $\Omega_{0} \subset \Omega$ with $P\left(\Omega_{0}\right)=1$ such that for each $\omega \in \Omega_{0}$

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \frac{\mathscr{N}^{\omega}(\lambda, l)}{l}=\left(E\left(\tau^{\lambda}\right)\right)^{-1} \quad \text { for every } \lambda \tag{3.6}
\end{equation*}
$$

where τ^{λ} is the first hitting time of $\{\pi\}$ of the solution $Y^{\lambda}(x)$ of (3.4):

$$
\begin{equation*}
\tau^{\lambda}(\omega)=\inf \left\{x>0 ; Y^{\lambda}(x, \omega)=\pi\right\} \tag{3.7}
\end{equation*}
$$

More explicitly

$$
\begin{equation*}
E\left(\tau^{\lambda}\right)=\sqrt{2 \pi} \int_{0}^{\infty} u^{-\frac{1}{2}} \exp \left\{-\frac{1}{6} u^{3}-2 \lambda u\right\} d u \tag{3.8}
\end{equation*}
$$

Proof. We take a closer look at the solution $Y^{\lambda}(x, \omega)$ of $(3.4) .\left\{Y^{\lambda}(x), x \geqq 0\right\}$ is a diffusion process (starting from the origin at time 0) possessing the infinitesimal generator

$$
\begin{equation*}
\frac{1}{2} \sin ^{4} z \frac{d^{2}}{d z^{2}}+\left(\cos ^{2} z+\lambda \sin ^{2} z+\sin ^{3} z \cos z\right) \frac{d}{d z} \tag{3.9}
\end{equation*}
$$

with coefficients being periodic with period π. The operator (3.9) takes the canonical form $\frac{d}{d m} \frac{d}{d s}$ on each periodic regular interval with

$$
\begin{aligned}
& d s(z)=\exp \left(\frac{2}{3} \cot ^{3} z+2 \lambda \cot z\right) \frac{d z}{\sin ^{2} z} \\
& d m(z)=2 \exp \left(-\frac{2}{3} \cot ^{3} z-2 \lambda \cot z\right) \frac{d z}{\sin ^{2} z}
\end{aligned}
$$

According to the Feller classification of the boundary [7], $(n-1) \pi$ (resp. $n \pi$) is an entrance (resp. exit) boundary of the interval $((n-1) \pi, n \pi), n=1,2, \ldots$

Furthermore

$$
\begin{aligned}
E\left(\tau^{\lambda}\right) & =\int_{0}^{\pi}(s(\pi)-s(z)) d m(z) \\
& =2 \int_{-\infty}^{\infty} e^{\frac{2}{3} s^{3}+2 \lambda s} \int_{s}^{\infty} e^{-\frac{2}{3} t^{3}-2 \lambda t} d t d s \\
& =2 \int_{0}^{\infty} e^{-\frac{2}{3} u^{3}-2 \lambda u} \int_{-\infty}^{\infty} e^{-2 u^{2} s-2 u s^{2}} d s d u,
\end{aligned}
$$

which is equal to the right hand side of (3.8).
Above observation readily means that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \frac{Y^{\lambda}(l, \omega)}{\pi l}=\left(E\left(\tau^{\lambda}\right)\right)^{-1} \quad \text { a.s. } \tag{3.10}
\end{equation*}
$$

To see this, we put $\tau_{n}^{\lambda}(\omega)=\inf \left\{x>0 ; Y^{\lambda}(x, \omega)=n \pi\right\}, n=1,2, \ldots$. Then $\tau_{n}^{\lambda}=$ $\tau^{\lambda}+\left(\tau_{2}^{\lambda}-\tau^{\lambda}\right)+\cdots+\left(\tau_{n}^{\lambda}-\tau_{n-1}^{\lambda}\right)$ is a sum of independent identically distributed random variables. By the law of large numbers, we have $\lim _{n \rightarrow \infty} \frac{\tau_{n}^{\lambda}(\omega)}{n}=E\left(\tau^{\lambda}\right)$ a.s., which leads us to (3.10) since the following statement holds for almost all $w \in \Omega$: for each real $l>0$, there exists n such that $\tau_{n}^{\lambda}(\omega) \leqq l<\tau_{n+1}^{\lambda}(\omega)$ and hence $\frac{n}{\tau_{n+1}^{\lambda}(\omega)} \leqq \frac{Y^{\lambda}(l, \omega)}{\pi l} \leqq \frac{n+1}{\tau_{n}^{\lambda}(\omega)}$.

Our conclusion (3.6) is an immediate consequence of (3.10) and Lemma 2 if we observe that $\mathscr{N}^{\omega}(\lambda, l)$ is monotone not only in λ but also in l in view of the $\operatorname{minimax}$ principle (2.2). q.e.d.

Remark. The diffusion $\left\{Y^{\lambda}(x), x \geqq 0\right\}$ may be considered by the transformation $w=-\cot z$ as a diffusion process on $[-\infty,+\infty)$ with infinitisimal generator

$$
\begin{equation*}
\mathscr{G} u(w)=\frac{1}{2} \frac{d^{2} u}{d w^{2}}+\left(w^{2}+\lambda\right) \frac{d u}{d w} \tag{3.11}
\end{equation*}
$$

and the boundary condition $u(-\infty)=u(+\infty)$.
Let $p(w)$ be the smooth density function of the invariant probability measure of this process. Then $p(w)$ is the unique bounded solution of

$$
\begin{equation*}
\frac{1}{2} p^{\prime}(w)-\left(w^{2}+\lambda\right) p(w)=-N(\lambda) . \tag{3.12}
\end{equation*}
$$

This can be easily obtained either from formula (3.6) or from its more explicit version (1.3). (3.12) implies the following Rice's formula:

$$
\begin{equation*}
N(\lambda)=\lim _{w \rightarrow \pm \infty} w^{2} p(w) . \tag{3.13}
\end{equation*}
$$

Frisch and Lloyd [3] derived this formula in the case that the process $B(x)$ in (1.1) is the Poisson process instead of the Brownian motion and Halperin [5] started with this formula to get (1.3).

References

1. Billingsley, P.: Convergence of probability measures. New York: Wiley 1968
2. Coddington, E. A., Levinson, N.: Theory of ordinary differential equations. New York: McGrawHill 1955
3. Frisch, H.L., Lloyd, S. P.: Electron levels in a one-dimensional random lattice. Phys. Rev. 120, 1175-1189 (1960)
4. Fukushima, M., Nagai, H., Nakao, S.: On an asymptotic property of spectra of a random difference operator. Proc. Japan Acad. 51, 100-102 (1975)
5. Halperin, B. I.: Green's functions for a particle in a one-dimensional random potential. Phys. Rev. 139A, 104-117 (1965)
6. Ito, K.: Stochastic differentials. Appl. Math. and Optimization 1, 374-381 (1974)
7. Ito, K., McKean, H. P., Jr.: Diffusion processes and their sample paths. Berlin-HeidelbergNew York: Springer 1965
8. Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966
9. Kunita, H.: Diffusion processes and control systems. Lecture Note, Université de Paris VI, Lab. de calcul des probabilités, 1973-1974
10. Nakao, S.: On the spectral distribution of the Schrödinger operator with random potential. [To appear in Japan. J. Math.]
11. Pastur, L.S.: Spectra of random self-adjoint operator. Russian Math. Surveys 28, 1-67 (1973)
12. Ruelle, D.: Statistical mechanics. New York: Benjamin 1969
