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Let {~k} be a sequence of rv's with E ~ k : O  , 2 E~k = 1 (k= 1, 2,...). Assume that 
with some functions q)l(k) and (p2(k) defined on the non-negative integers we 

have either (1) suprE(~n~n+k)[<q)l(k) or (2) supE ~ ~i <~~ 
n n - - 1  n i = n + l  J 

2, ...; (pi(0)= i), and set w(n)= ~ (pl(k)(n= 1, 2, ...). The main results read as 
follows: k: o 

Theorem 1. Suppose that (1) holds with a (pl(k) for which w(n) satisfies the 
w(2n) > 

condition ~ - ~  = q > 1 (n > no), furthermore, a sequence {2,} of positive num- 

o2 w(n)< oo. Then bers is such that 22 w(n) is non-increasing and ,~, 
n = l  

2, ~ ~k~O a.e. (n-~oo). 
k = l  

Theorem 2. Let ~/(k) be a positive and non-decreasing function defined on the 
oo 1 

positive integers for which ~ < oo. I f  one of the conditions (1) or (2) 
/ \ 1  k lk~= 1 ~ 

 here o r 2  
k = l  

(n-~ ~). 
The rate of convergence in the conclusions of Theorems 1 and 2 as well as 

the convergence properties of weighted averages are also studied. 

w 1. The Main Results 

Let {~k} be a sequence of random variables (in abbreviation" rv's) having finite 
variances. Assume that 

E~k=O, E ~ = I  (k= l ,  2, ...). (1.1) 
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The sequence {r is said to be quasi-stationary associated with a function ~o(k) 
defined on the non-negative integers if 

sup IE(g, g,+k)l < ~0(k) (k=0, 1 . . . .  ; (p(0) = 1). (1.2) 
n 

Furthermore, {{g} is said to be stationary (in the weak sense) if 

E({ ,{ ,+k)=R(k  ) (n= l ,  2, ...; k=0,  1 . . . .  ), 

where R(k) is called the covariance function of this sequence. 
By (1.2) it easily follows that for every sequence {ak} of numbers and for 

every b > 0 and n_>_ 1 we have 

._.. = ak+2Zqo(k)  ~ la~aj+kl 
E\k=b+a ~=b+l k=l a=b+l 

b+n 
<2w(n) 2 a~, (1.3) 

k = b + l  

where 

n - - 1  

win)  =  o(k) 
k = O  

(n = 1, 2, .. .). 

The main purpose of this note is to provide strong laws of large numbers as 
consequences of restrictions imposed upon ~o(k). One possible way to obtain 
strong laws is that first we prove the a.e. convergence (that is, with probability 1) 
of the series 

c~ 

2 ~k(k, ( 1 , 4 )  

k = l  

where {2k} is a non-increasing sequence of positive numbers tending to zero, and 
hence we infer via the well-known Kronecker lemma that 

n 

2 , s ,~0  a.e. (n-~oe), where s ,=  ~ ~k. (1.5) 
k = l  

The following theorem of Gapo~kin [2, Theorems 1-3] covers a lot of earlier 
results relating to the a.e. convergence of (1.4). 

Theorem A. Let {~k} be a quasi-stationary sequence of rv's associated with some 
~o(k). Then any one of the following conditions ensures that the series (1.4) 
converges a.e. : 

(i) {2,} is a sequence of numbers for which 

)~2 w(n)(log n) 2 < o9 ; (1.6) 
n =  2 

(ii) q~(k) is non-increasing, 

I < P l <  qo(k) <P2<  2 (k>ko) ' 
= (p(2 k) = 
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and 
oo 

22 w(n)(log log n) 2 < oo ; 
7 l - - 4  

(iii) ~0(k) is non-increasing and for 2k=k -1 we have 

~ o ( k )  , , 
k ~ s / - ~  log ~: (log log log k) 2 < oo. 

Gapogkin pointed out that these results are best possible even for stationary 
sequences. 

Theorem A immediately implies, among others, the following strong laws: 

(i) I f  {2,} is a sequence of positive numbers satisfying (1.6), then (1.5) holds. 

(ii) I f  (p(k)=O[k-~(logk) ~] (which is equivalent to w(n)=O[nl-~(logn)P]), 
where 0<c~<1 and fl is arbitrary, then for each e>0  we have 

Sn 
,0 a.e. (n~oo). (1.7) n (2- ~)/2(log n) (1 +B)/2(log log n) (3 +~)/2 

(iii) I f  for an e > 0 we have 

( 1 +~), (1.8) qo(k) 0 
\(log k) 2 log log k(log log log k) 3 

then 

n-ls,--,O a.e. (n~oo). (1.9) 

We note that the assertion under (i) was obtained by Petrov [-6, Theorems 2 
and 41 in a slightly more special form as follows: Let {~k} be a stationary 
sequence with the covariance function R(k). Then, for each ~ > O, 

Sn 
~0 a.e. (n--*oo). 

n -  1 1/2  

The result under (i) is sharp if for every 6 > 0  we have w(n)=O(n~). Thus, for 
example, /f ~o(k) = O [-k- 1(log k) ~- 11, or equivalently w(n) = O [-(log ny], where c~ is 
an arbitrary number, then 

S n 
90 a.e. ( e>0 ;n~c~) ;  nl/2(log n) (~+ 3)/2 (log log n) (1 +~)/2 

if qo(k) = O[-(k log k)- 1(log log k) ~- 11, or equivalently w(n) = 0[-(log log nY], then 

s, ~0 a.e. (e>0;n~oo) .  
nl/Z(log n)3/Z(log log n) (~+ 1 +~)/2 

On the other hand, the strong laws under (ii) and (iii) are not sharp in 
general. In fact, we will prove below that a factor log log n in the denominator of 
(1.7), and a factor log k(log log log k) 2 in the denominator of (1.8) are superfluous. 
Similar observations can be made also in the cases when we start with Theorems 
6 and 7 of Gapogkin [21 in order to obtain strong laws for stationary sequences. 
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We mention one more result. The proving technique of Serfling gives a 
somewhat sharper result than that in [9, Theorem 2.1]: I f  for an e > 0  we have 

(p(k) = O (log k) a log log k(log log log k) 1 +~ ' (1.10) 

then (1.9) holds. 
Although (1.10) requires less than (1.8), from our Theorem 2 below it follows 

that here a factor logk in the denominator can be omitted without weakening 
the conclusion. 

Our reasoning is based on a moment inequality for the maximum cumulative 
sum. Before stating it in an explicit form, set 

b + n  

Sb,,= ~ ak~ k and M b ,  n = maX lSb,kl , 
k = b + l  l<-k<-n 

where {ak} is a sequence of numbers, b > 0  and n > l  integers. In the particular 
case b = 0 we set 

S,=So,n= ~ ak~ k (n>l ) .  
k ~ l  

Furthermore, set W(1)= w(1) and, for n > 2, 

W1/2(n) --- Wl /Z(m-  1) + wile(m), (1.11) 

where m denotes the integral part of �89 It is obvious that W(n), together 
with w(n), is positive and non-decreasing for n = 1 , 2  . . . . .  Furthermore, from 
(1.11) it follows that if 2 k < n < 2  k+l with some k>=O, then 

k 

Wl/2(n) =< Wl/2(2k+ 1 _ 1) = ~ wl/2(2~). 
j = 0  

The results below are obtained by adapting more or less standard arguments 
[8] to make use of a recent result [4] which gives bounds for the v-th moment o f  
Mb, . in terms of assumed bounds on the v-th moment of [Sb, n[, where v~  1. The 
following theorem is a special case of Theorem 4 of I-4]. 

Theorem B. Suppose that (1.3) holds for all b>_O and n>_l, and let W(n) be 
defined by (1.11). Then we have 

b + n  

2 (1.12) E(M  ,) < 2 w(n) ak 
k = 5 + 1  

for all b >= 0 and n >= 1. 

We note that if w(n)=-1, then W(n)<= (log 2 n) 2, which follows from 1 +log  2(m 
- 1 ) < l o g 2 n ,  the latter being true since n > 2 m - 2 .  Further, if w(n)=nP with 
some fl > 0, then W(n)< (2 n)e/(2 ~ -  1) l/e, etc. From this it is seen that in the latter 
case (1.12) provides a bound for E(M~.,,) which is asymptotically optimal as 
n ~ o9 in the sense that it is of the same order of magnitude as the bound 
obtained for E(S~,~). We will show that the situation is the same, whenever w(n) 
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increases so "fast" that 

w(2n) 
w(n) > q > l  (n>no). (1.13) 

(See Lemma 1 in Section 2.) 

Theorem 1. Suppose that the quasi-stationary sequence {~k} is such that w(n) 
satisfies (1.13), furthermore, the sequence {2,} of positive numbers is such that 
22 w(n) is non-increasing and 

oo 

22 w(n) < oo. (1.14) 
n - - i  

Then 

2, ~ ~k~O a.e.  (n-+oo). (1.15) 

k=1 

We note that if (1.14) holds, then 2,Zw(n) tends to zero as n~oc,  thus the 
assumption that 2,2w(n) is non-increasing does not mean a strong condition. 

Let us introduce the following notation. For a positive and non-decreasing 
~O(k) defined on the positive integers write ~ e T  C if 

k=l kO(k) < oo. (1.16) 

Further, we say that O(k) increases "slowly" if 

0(2 k) < 
0(k) = r < 2  (k>ko). (1.17) 

We remark that (1.17) does not contain any strong restriction, since the only 
case interesting for us is O(k)=O[(logk) TM] with an e>0  (owing to (1.16)). 

Theorem 2. Suppose that O~Tc, tp(k) satisfies (1.17), and the quasi-stationary 
sequence {~k} is such that 

~o(k)=O ~ . (1.18) 

Then 

! 
a.e. (1.19) 

n k = l  

For stationary sequences a slightly finer result was proved by Qapogkin [1] 
as follows: Let {~k} be a stationary sequence with the covariance function R(k). I f  

. ~ R(k) 

then (1.19) holds. However, his proof cannot be extended to quasi-stationary 
sequences, since it is based on the spectral representation of the covariance 
function. 
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The following consequences of Theorem 1 are interesting in themselves. 

Corollary 1. I f  w(n) satisfies (1.13), then (1.15) holds for 

1 
2,-[nw(n)O(n)]l/2 with any O~T c. 

Corollary 2. I f  (p(k)= O [k-~(log k) p] where 0 < ~ < 1 and fi is arbitrary, then (1.15) 
holds for 

1 
2,-[n2_~(logn)/~ O(n)]l/2 with any OET~. 

The case e = 0 coincides with the most general case when (p(k)= 1, i.e., when 
we require nothing on {~k} but (1.1). 

Corollary 3. Let {~k} be an arbitrary sequence of rv's satisfying only (1.1). Then 
(1.15) holds for 

1 
2,-ngO(n)~]l/2 with any ~ T c .  

Now Theorem 2 improves (1.8) and (1.10), while Corollary 2 improves (1.7). 
In the meantime, Gapogkin [-3] announced without proof a number of 

results on the strong laws of large numbers for stationary and quasi-stationary 
sequences, among others, the above Theorem 2. A version of Theorem 2 is also 
stated in [3], when the condition (1.2) is replaced by 

E ~ ~k[ <~0(n) (for all b>0 ,  n> l ) ,  (1.20) 
k = b + l  A 

where q~(n) satisfies (1.18) with a 0 e  T~. More precisely, the following holds. 

Theorem 2". Suppose ~eT~, tp(k) satisfies (1.17), and the sequence {~k} of rv's is 
such that (1.20) and (1.18) hold. Then (1.19) follows. 

Theorem 2' can also easily be proved by making use of Theorem B. 
Furthermore, Gapogkin states that Theorems 2 and 2' are best possible in 

the following sense: if 0(k) is a non-decreasing sequence of positive numbers 
such that 

i 1 
k= 1 k 4 , ( k )  = oo,  

then there exists a quasi-stationary sequence {~k} for which 

tg(~b~b+,)l=O and E =O 
k = b +  

for all b > 0 and n > 1, but n-  1 s, diverges a.e. 

w 2. The Proofs of Theorems 1 and 2 

We need some auxiliary results, which seem to be known; however, we could 
not find any reference and thus we carry out their proofs here. 
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L e m m a  1. Let w(n) be positive and non-decreasing for n=l,  2, ... and satisfy 
(1.13). Then we have 

w(U) = O [w(2~)]. (2.1) 
j=0  

Proof We may suppose that  n o = 1 in (1.13). A repeated use of (1.13) gives that  

w(2J ) <(_l]m j w(2m) (j -- 0, 1, ..., m), 
\q !  

whence, on account  of q > 1, we obtain that  

= o  m w(2 j) < w(2") j 2  = 0 [w(2m)], 
j=O 

in accordance with (2.1). 

Remark 1. In particular,  setting Lp, ~, ~(n)-  1 for 1 < n < 8 and 

L~, ~, ~(n) = (log n) ~ (log log n) ~ (log log log n) ~ 

for n > 8, by virtue of L e m m a  1 any sequence 

W ( ~ )  = - -  
L~, ~, a(n) 

satisfies condit ion (2.1) for 0 < ~ < 1  and for arbi t rary fl, ? and 6; and con- 
sequently, for the sequence W(n) defined by (1.11) we have W(n)= O[w(n)]. 

L e m m a  2. Let 6(k) be positive and non-decreasing for k= 1,2,. . .  and satisfy 
(1.17). Then we have 

i22) 

Proof We may suppose again that k o = l  in (1.17). For  any n > l  let us define m 
> 0  by 2 r e < n < 2  m+*. Now using (1.17) repeatedly, we find 

< ( j=o ,  t, m). 
0(2 ~) = 0(2 m) .... 

Since 6(k) is non-decreasing, hence we get that  

k = 1 ~(k) = j'----'o 0(2a) = ~b(2 m) j= 

In the last equali ty we took  into account  that 

~(n) < 6(2 m+ *) < r 6(2m). 

Thus the p roof  of (2.2) is complete. 

Remark 2. By L e m m a  2 it follows immediately that  

k= 1 k ~ L ~ ,  7 ,a (k )  = 0 - -  , \Lp,,,a(n)] 
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provided that 0 < e < 1 and/3, 7, ~ are arbitrary, but the first non-zero member of 
c~, fi, 7 and 6 is positive. 

Lemma 3. Let O~g c, O(k) satisfy (1.17), and set 
n--1 1 

w(n) = 1 + F_, (n = 1, 2 , . . . ) .  
k= 1 O(k) 

Then n-2w(n) is non-increasing, w(n) satisfies (1.13) and 

E <o0. 
n = l  

Proof The fact that n-2w (n) is non-increasing easily follows from n-10  (n)=_< w (n), 
which is obvious. 

By Lemma 2 we have 

Cn 
w ( n ) < ~  (n= 1, 2, ...), (2.3) 

where C is a positive constant. Hence 

w(2n) 1 2,-1 1 1 
>1 = 1 + ~  2 0(k) = + w(n) 

i.e., (1.13) holds for q = 1 +(r  C)-1 
Finally, (2.3) and (1.16) yield 

,~'1 ~ w(n)< co C 

= n n = l  nO(n) 

After these preliminaries we turn to the 

Proof of Theorem 1. Set s ,=  ~ ~k and let e>0.  By (1.3) and by Chebyshev's 
k = l  

inequality, 

2 2 
P [2, ]s,] => e] _-< ~- E(s 2) = O(n w(n) 22). 

Hence 
o~ 

P [2 2, Is2,1 => ~] = 0(1) ~ 2 i w(2 i) 222,. 
/ = 1  i 1 

Since 22.w(n) is non-increasing, by a well-known theorem of Cauchy the series 

~2,Zw(n) and ~2~w(2/)22, 
n = l  i = 1  

simultaneously converge or diverge. In virtue of (1.14) and the Borel-Cantelli 
lemma, with probability 1, 

22, Is2,1 < ~ for all i large enough. (2.4) 
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Now we want to apply Theorem B. (1.13) implies via Lemma 1 that W1/2(n) 
= 0 [wl/2(n)], where W(n) is defined by (1.11). Thus (1.12) provides 

1 2 2 i i 2 e [22, M2,, 2, >= e] <=~ 22, E(M2,, 2,) = 0(2 w(2 ) 22, ). 

Using again the Borel-Cantelli lemma, we can see that, with probability 1, 

22, M2,. 2, < e for all i large enough. 

Taking into account the relations (2.4), (2.5) and that 

Is, l<=ls2i]+M2,,2, if 2i<_n<_2 i+1, 

we have, with probability 1, 

2,1s,[<2e for all n large enough. 

Therefore, (1.15) holds. 

(2.5) 

1 
Proof of Theorem 2. Without loss of generality, we may assume that c p ( k ) = - -  

0(k) 
for k =  1,2, . . . .  Lemma 3 shows that the present w(n) satisfies all conditions of 
Theorem 1 in the special case 2, =n-1 .  The application of Theorem 1 provides 
(1.19), which was to be proved. 

Proof of Theorem 2' is almost immediate after the proofs of Theorems 1 and 
2. In fact, by (1.20) we have 

E [ ~ 'r <ne(~ =0 (for all b_>O, n_>l). (2.6) 
k = b + l  J - -  - -  

Hence, for any 8 > O, 

t 
and consequently, 

0 (1 )~  1 1 P[2-ils2,[ >=el = < ~. 
i = l  "= 

Thus 2-iS2i--~0 a.e. (i--~ oo). 
n 

After this we apply Theorem B starting with (2.6), where now w(n)=0~) and 

ak'-1. Here w(n) satisfies (1.13) owing to (1.17), and afortiori,  by Lemma 1 we 
have W(n) = O [w(n)]. Thus 

P[2-iM:~,2,>c]=O(1) ~ <  oo, 
i = 1  i =  

whence 2-~M2, ' 2, ~ 0 a.e. (i ~ oo), which makes the proof complete. 
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w 3. The Rate of Convergence 

The method used in proving Theorems 1 and 2 is suitable to provide infor- 
mation on the rate of convergence in (1.15) and (1.19). For simplicity, we 
concern ourselves with the estimation of convergence rates in (1.19). 

We begin with 

Lemma 4. Let w(n) be positive and non-decreasing for n = 1, 2,... and satisfy 

w(2n) < r < 2  (n>no). (3.1) 
w ( n )  - 

Then 

2 j - O  . (3.2) 
j = m  

Proof (3.2) immediately follows from the following elementary consequence of 
(3.1): 

w(2J)<=rJ-mw(2m) (j=m, re+l ,  .,.). 

Theorem 3. Suppose that the quasi-stationary sequence {~k} is such that w(n) 
satisfies (1.13) and (3.1). Then, for each e>0, 

P,=P[supk-llskl>e]=o (W--~-). (3.3) 
k>n 

Proof Obviously we have 
c o  

P,<__ ~ P[  max+ k-~ls~l>~]__< ~P[Mo,  NJ+l>2Je], 
j = m  2J<=k<2J 1 j = m  

where m>0 is defined by 2re<n<2 r~+l. On the one hand, (1.13) ensures that 
Theorem B can be applied. By (1.12) it follows that 

P,=O(1) ~, w(2J+l) 
J=,, 2 - j ~ .  (3.4) 

On the other hand, by (3.1) we can use Lemma 4, according to which 

/w(2m+~] P.=o ,5 7,=o ) 
This completes the proof of (3.3). 

Thus we have 

Corollary 4. I f  qo(k)= O([n~L~, ~,~(n)]-1) or equivalently 

w(n) = 0 

where 0 < c~ < 1 and ~, 7, (5 are arbitrary, then for each e > 0 we have 

P[supk_llsk]>=~]=O ( 1 ) 
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The case c~=0 is of special interest. As in this case (3.1) is not satisfied, we 
have to treat it separately. 

Theorem 4. Suppose that t~7~c, r satisfies (1.17), and the quasi-stationary 
sequence {~k} is such that (1.18) holds. Then, for each e>0,  

ct)  

p_=P[supk_l[Skl>e]=O(1)k~=, 1 (3.5) 
k ~ .  = k O ( k ) "  

Proof Lemma 3 shows that w(n) satisfies (1.13). Thus, as in the proof of Theorem 
3, we come to (3.4). Then making use of (2.3), we complete our reasoning as 
follows: 

P.=O(1) ~ w(2;+1) 0 (1 )  ~ 1 ~ 1 
j=m 2 ;+1 - -~,, q(2J+l)=O(i)k~ , kr 

where 2 re<n<2  m+l. The last equality in this chain is obtained by the Cauchy 
theorem mentioned above (6(k) is non-decreasing). The proof of (3.5) is finished. 

The implications of Theorem 4 are of some interest. 

Corollary 5. For any e > 0, 

1 
(P(k)=O (kLl,l,l+~(k)) 

1 +~) 
(p(k) = 0 (k log k(log log k) ~ 

1 

implies /9, = 0 ((log 1 
log log n)~) ' 

1 
implies P,=O((loglogn)~ ), 

(1) 
implies P~=O (l~gn) ~ . 

w 4. Weighted Averages 

Let {ak} be a sequence of numbers, a 140.  We are interested in the convergence 
properties of 

S,= ~ ak~ k (n= l ,  2 . . . .  ), 
k = l  

where we assume that 

An = ~ 2 ak ~oO (n~oo). (4.1) 
k = l  

Starting with Theorem A of Gapogkin, (1.6) implies 

Corollary 6. If (4.1) holds, then for any O~Pc 

S, 
*0 a.e. (n~oo). (4.2) 

Ew(n)A,~(A,)] 1/z log n 

In fact, this immediately follows via the Kronecker lemma from the fact that the 
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series (1.4) converges a.e. for 

2k = [w(k)A k 0(Ak)] - 2/2 (log k)- 1 (k > 2). 

The latter assertion is a simple consequence of (1.6) and the following lemma, 
applied widely in the theory of numerical series (see, for example, [5, Lemma 
1]): Let dk >O be the terms of a divergent series with partial sums D, (d 1 >0). Then 
the series 

n= 1 D , , ~ ( D n )  

converges for any ~,e ~ .  
We remark that for independent rv's (when w(n)-1) a stronger result was 

proved by Petrov [5, Theorem 1]: I f  {~k} is a sequence of independent rv's 
satisfying (1.1), and if {ak} is a sequence of numbers satisfying (4.1), then, for any 

S, ~0 a.e. (n~oo). 
[A,O(A,)] 1/2 

The result (4.2) is sharp in the case w(n)= O(n ~) for every 6 > 0 (cf. Gapo~kin 
[2, Theorem 8]), in particular, in the case of orthogonal rv's (when again 
w(n)- 1) (see Tandori [10] and Petrov [7]). Nevertheless, it is very probable that 
if w(n) increases "fast" in the sense of (1.13), then in the denominator of (4.2) the 
factor log n is unnecessary. More precisely, we set up the following 

Conjecture. Suppose that the quasi-stationary sequence {~k} is such that w(n) 
satisfies (1.13), furthermore, the sequence {ak} of numbers is such that (4.1) and 
perhaps some more requirements on the "regular" behaviour of A, are satisfied. 
Then, for any (ps 7Jc, 

S, .0 a.e. (n~oo). (4.3) 
[w(n) A, ~(A,)] 1/z 

In case a k -  1 (i.e., when A,=n) the conjecture coincides with Corollary 1. 
For the sake of simplicity, we present here a possible generalization of Theorem 
2 and Corollaries 2 and 3, respectively. 

Theorem 5. Suppose that the quasi-stationary sequence {~k} is such that w(n) 
satisfies (1.13), furthermore, the sequence {ak} of numbers is such that (4.1) and 

) w(n)=O 

are satisfied, where Oe ~P~. Then 

A~IS ,~O a.e. (n~oo). (4.5) 

Theorem 6. Suppose that {~k} is such that w(n) satisfies (1.13), furthermore, {ak} is 
such that (4.1) and 

w(n) = O [A, ~ -~(log A,) ~] (4.6) 
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are satisfied, where either 0 < e < l  and fl arbitrary or c~=fl=0. Then, for  any 

S,  ~.0 a.e. (n---,oo). (4.7) 
[A, 2- ~(log A,) ~ 0(A,)] 1/2 

It is obvious that  (4.4) and (4.5), further, (4.6) and (4.7) are special cases of 
(4.3). 

P r o o f  As the proofs of Theorems 5 and 6 run along the same lines as that of 
Theorem 1, we concern ourselves only with the proof  of Theorem 5. 

To  this effect, define a sequence of integers 1 __<n 1 < n 2 < . . .  in such a way that  

A , i _ l < 2 i < A , ~  ( i=1 ,  2 . . . .  ; A o = 0  ). (4.8) 

This choice is possible by (4.1), and obviously n i~oo  as i--,oo. 
By (1.3) and Chebyshev's inequality, 

P [IS, I > e A , ]  <~2~0 E(S,)2 < 2w(n)~. 

Hence, by (4.4) 

~1 w(nl)= O(1),~1 1 P[IS..I>eAj<~ 
i= i ' i= A, ,  .= O(A,,)" 

The series on the r ight-hand side is convergent  since by (4.8) 

oo 

i= 0 ( A , , ) = , =  O(2i) ' 

and the latter series converges if and only if #JeT c (by the Cauchy theorem). 
Hence  the Borel-Cantell i  lemma implies, with probabil i ty  1, that  

A,~- 1 IS,~ ] < ~ for all i large enough. (4.9) 

Now we are going to apply Theorem B. By (1.13) Lemma  1 implies that  W(n)  
= 0 [w(n)]. Therefore,  with v i = ni+ 1 - ni - 1, 

1 2 P[M ..... >eA,,,] < ~ E(M ..... )=0  t~w(vi)(A"~t!: 1-  A.,)), / __ \ 

provided that i is such that  n i < n~+ 1 -  1. Observing that  

A,,  + ~ _ ~ - A,~ < 4 
A 2 = A ' 

n i 7 1 / + 1 - - 1  

we get that  

P[M,. 
,, - -  i \ A . ~ + ~ _  i �9 

Hence (4.4) implies that  

Z ' P [ M , , , ~ , > e A , , ]  =0(1 )  ' 1 
i=1 i=l O(A,,+~_ 1) < ~ 1 7 6  
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whe re  ~ '  m e a n s  tha t  the  s u m m a t i o n  is e x t e n d e d  to t hose  i's for wh ich  n~ < n~+ t - 1. 

By the  B o r e l - C a n t e l l i  l e m m a .  

A2 ' 1M,~, v~ < ~ for all  i la rge  enough ,  

which ,  t o g e t h e r  w i th  (4.9), gives  the  w a n t e d  (4,5). 
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