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A Note on Convergence to Mixtures
of Normal Distributions*

Holger Rootzén

University of Lund and Lund Institute of Technology, Department of Mathematical Statistics,
Box 725, $-22007 Lund, Sweden

Double arrays of random variables obtained by normalizing a sequence that is
asymptotically close to a martingale difference sequence are considered, and
conditions ensuring that the row sums converge in distribution to a mixture
of normal distributions are found. The main condition is that the sums of
squares in each row converge in probability to a random variable.

1. Introduction

Let {X,;: 1Zi<£k,, n=21} be an array of random variables on a probability
space (.Q % P) and let 4, be the sub-sigmaalgebra that is generated by
Xn,lﬂ"'? ('@n 0_{¢ ‘Q} If E(X Hgn,z—-l), 07 2:<=l§kna ngl then {Xn,z} s
a martlngale difference array (m.da) and if furthermore it is obtained by
normalizing a single sequence of martingale differences then

B, SB,.,; for nzl, 1=Zi<min(k,,k, ). (1)

It is well known that if ) X2, converges in probability to a constant (=o, say)
i=1 kn

and certain other conditions are satisfied, then the distribution of ) X, ,
converges to a normal distribution with mean zero and variance ¢ (;::é e.g.
McLeish (1974)). In this note it is shown that if Z »; converges in probability to
some random variable &, then under similar cond1t1ons the distribution of Z
converges to a mixture of normal distributions. Eagleson (1975) observed that 1f

¢ is measurable 4, = ﬂ 4, , then {X, l} is a martingale difference array (m.d.a.)

also after conditioning on ¢ and thus Z X, —>® /]/_ )1 under P(o| ) (at least
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! ¢ is the standard normal distribution function
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kn
along subsequences satisfying ) X7 ,-25»¢). By taking expectations it follows
i=1

that Z X, %> [ ®(+/}/x) dF(x), where F is the distribution of £. Hence the main

i=

result of this note is that the restriction that ¢ is measurable 4, is shown to be
superfluous, but also our other conditions are somewhat weaker than those of
Eagleson. (In fact Eagleson’s results are phrased in terms of conditional vari-
ances instead of sums of squares, but the translation is straight-forward.) In a
somewhat different context interesting results on the present problem have also
been obtained by Chatterji (1974). Finally, it is perhaps worth mention that the

condition that z X?, converges in probability cannot be weakened very much:
Dvoretsky (1972) has given an example which shows that it is not enough that
k

n
Y. X}, converges in distribution.
i=1

2. Convergence to Mixtures of Normal Distributions

We are mainly concerned with sums of martingale differences, but as is argued
in Rootzén (1975) the interesting case is when the truncated variables asymptoti-
cally are martingale differences. Thus we initially do not assume that {X, ;} is a
m.d.a., but only that e.g.

kn
Y E{X, 00X, {<D|B,; ,}—>0 as n-c. @

i=1
Furthermore define

Coi =X, JIX, S - E(X,  I(X, | S OIS, 1)
Then {¢,;} is a m.d.a. and [, ,|£2 as.

Theorem 1. Assume (1) and (2) are satisfied. If furthermore max |X, ;[-*~0 and

there is a random variable & with distribution F such thatr ~ 15!k
n
Y& g as noomo, (3)
i=1

kn
then Y X, ,~% [®(/)/x)dF(x) as n—oo.
i=1

Proof. By definition

kn

kn ks kn
Z X,i— Z Eni= z E{Xn,i1(|Xn,i|§1)”g‘?n,i—1}+ Z Xn,iI(an,il>1)
i=1 =1 _ o1

i=1



A Note on Convergence to Mixtures of Normal Distributions 213

kn kn
» . v
and thus from (2) and max [X, |—0 we obtain ) X,,— Y & ,—0 as
1Zigk, i=1 i=1

n—o0. Hence it is enough to prove

kn

4
Y & [O(/Yx)dF(x) as n—oo. (4)
i=1
Write X, =X, (X, | <1). Then 1> max [X, |—0 and thus also
15igkn
E{( max X, )} >0 as n—o0.
1<iSky
Since
max |E(X;1,i”gn,i—1)|§ max E( max |Xy,,,j| ”'%n,i—-l)
1<5i<ky 1=isk, 1=5jsky

and since E( max |X, |[4,; ), i=1,...,k, is a martingale it follows from

1£jsky

n

Kolmogorov’s inequality for martingales that max |E(X, |4, i_1)|—i>0 and

p 12iZkn
thus also max ¢, ;— 0 as n—co.
1<i<ky,
To facilitate the remainder of the proof we will without loss of generality

. e , 1
assume that each row in the m.d.a. {{, ;} is infinite and that for i>k,, {, ;= +—

n
with probability 4 each and independently of %, ;_,. Hence we have m<ax|£,, ;|
1<i ;

k k
#0 as n—>co and ) & 2500 as k—oo, for each n. Let S (k)= ) &, and
i=1 i=1

k
introduce “the natural time-scale” t,(t)=inf {k: Y €f,i>t} of the summation
process based on {¢, ;}. Then =1

fen kn
'Zlén,i:‘snorn (—21 érzl,i) _én,k,ﬁrl’ (5)

. 1
and by construction [£, , . ,|=——0 as n- 0.
Ko n

The next step is to prove
kn »

d =S -1, (z éf’i)—Snorn(é)l—HO as n-»co. (6)
i=1

For >0 choose K such that P({£>K})<¢ and observe that for any 6>0

P({d,>€})<P ({dn>8}ﬂ{ i & =& §5}ﬂ{€§K})
PIY &2 —¢l>5\)+e
+ <{ i;é"’l &> })—ke
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Here
kn
P ({d,,>s}m{ > &2, —¢ ga}m{ng}) <P sup [S,7,(0)~S,0 5, ()
=1 oliiZ s
>e}) =P, say.
Since max |§n’i|§max|én,i|:;>0 as n—oo it follows from Theorem 1 of
1Zigty(K+1) 1<i

Rootzén (1975) that {S, o ,(f); te[0, K+ 1]} ,, considered as random variables
in D(0, K+1) endowed with the Skorokhod topology, converge in distribution
to a Brownian motion on [0, K +1]. Hence, by Theorem 15.2 of Billingsley
(1968) we can make lim sup P, <& by choosing J small enough. Furthermore, by

n—oo

kn
(3), P ({ PR SHETS >5}) -0 as n— 0, 50
i=1 :
lim sup P({d,>¢})<2e,

which since ¢ is arbitrary proves (6).
We now need the following lemma, the proof of which is given on p. 215.

Lemma 2. If for some integer k, the random variable £, 20 is measurable %, . for
all large n then

S,0 (&)~ [ O(-/Yx)dF(x) as n~oo, (7)
where F, is the distribution of £,.

Since we have assumed (1) it is for £>0 possible to find an integer k, and a
random variable ¢, >0, which is measurable with respect to 4, ,_ for all large n,
such that P(¢—¢,|>e)<e (see e.g. Doob (1953), p. 607). From Lemma 2 we
obtain that (7) holds and since F,—%— F as ¢—0 also

§ (~/1/x) dF (x) %> [ B(+/y/x) dF(x) as &—0. (8)
Moreover, by arguments precisely analogous to the proof of (6) above, we have
for 6 >0 that

lim lim sup P({IS, o 7,(&) —,° 7,(£)| > 6}) =0. ©)

e—0 n—o

By Theorem 4.2 of Billingsley (1968) it follows from (7), (8), and (9) that
Suo T (&)~ [ B(-/)/x)dF(x) as n—oo,
which by (5) and (6) proves (4) and thus the theorem. [

Proof of Lemma 2. The lemma can be reduced to the corollary on p. 561 of
Eagleson (1975), but as it does not involve more work to give a direct proof we

k
will do that instead. Put £, ;=¢, ;if i>k, and , ;=0 otherwise, let S,(k)= Y &
i=1

and let P(s)=P(+}|£,) be a regular conditional probability given &,. Since
¢,eA,,, for all large n, the rows of {{, ;} are martingale differences for such n
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also under P, (a.s.), cf. [4]. Moreover, for t=0

Tnlf)

Z afi_
i=1

As maxlfn’il——>0 we can for every subsequence of {1,2,...} find a further
1=i

(infinite) subsequence {n'} such that maxlén | =%*>0. Thus also under P, we

l

Z & it er oSk, +1)(maxlé 2 (10)

()

have a.s. that max |, ;|-2*>0and ) &y %> t. By Lemma 3 of [5] this proves
1<i i=1

(1)~ B /Y/1)
under P, (as.). Since £, is a constant under P, we have in particular that
Sy o Tl @ (/YE)

(P), a.s., and thus by taking expectations that

Sy o ty(&) - [O(-/)/x)dE(x) as n'—oo. (11)

Since a subsequence {n'} satisfying (11) can be extracted from any infinite

sequence of integers it follows that S, 07,(¢,) % | &(- /]/;) dF,(x) as n— oo, which
since

18,0 T(E) = She (€ Sk, max &, |0
15i
proves (7). [

Corollary 3. Assume {X, ;} is a m.d.a. and that it satisfies (1) If max |X, X, 150,

1<1<k,,

kn
if ZE(X (X, A>DISB, - 1)—>O and lffurthermore ZX ——>£ for some

random variable & with distribution F, then Z X, S /]f) dF(x) as n—oo.

Proof. We only have to show that (2) and (3) hold. Recall the notation
A,i=X, (X, 1=1)

and put X, ;=X, ;—
E(X, |18, -1)* SIEX,, | By i )= E(X; B, ) SEXAS, )

it follows immediately that (2) holds. Moreover, by definition

X, ;- Since

kn kn kn
Z 63,;': Z Xii"" Z {X”2+E(X H%,i—l)z}
=1 =1 i=1

kr
-2 Z Xn,i{X:'t,,i_*_E(X;l,iH '@n,i—l)}

i=1

ki

— 2

- z Xn,i+rn_2rr/n say.
i=1
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Here r,-250 as n— oo and using Cauchy’s inequality we obtain
kn 1
|r,:|§{2rn Y X,f,l} -2,0 as noow,
i=1

so (3) follows. [

Finally, it should perhaps be mentioned that the results of this note hold also
when {k,} are stopping times.
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