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Double arrays of random variables obtained by normalizing a sequence that is 
asymptotically close to a martingale difference sequence are considered, and 
conditions ensuring that the row sums converge in distribution to a mixture 
of normal distributions are found. The main condition is that the sums of 
squares in each row converge in probability to a random variable. 

1. Introduction 

Let {X,,i 1 <_iNk,, n> 1} be an array of random variables on a probability 
space (f2,~,P)  and let N,,i be the sub-sigmaalgebra that is generated by 
X~, 1 .. . .  ,X, ,  i (~ ,o={r  If g(x~,~]l~,,~_l)=0 , 2<i<=k~, n>l then {X~,~} is 
a martingale difference array (m.d.a.) and if furthermore it is obtained by 
normalizing a single sequence of martingale differences then 

~ ,~-~:~+1, i  for n = l ,  l<_i<_min(kn, k,+l). (1) 

k~ 
It is well known that if ~ X,  2,i converges in probability to a constant (=  a, say) 

i =  1 kn 

and certain other conditions are satisfied, then the distribution of ~, X~, i 
i = l  

converges to a normal distribution with mean zero and variance cr (see e.g. 
k~ 

X 2 McLeish (1974)). In this note it is shown that if ~ ,, i converges in probability to 
i= 1 k~ 

some random variable 4, then under similar conditions the distribution of ~ X~, 
i=1 

converges to a mixture of normal distributions. Eagleson (1975) observed that if 

is measurable ~ = (~ N,, 1 then {Xn,~} is a martingale difference array (m.d.a.) 
n =  1 kn d 

also after conditioning on ~ and thus ~ X,,i---.  ~ ( ' /1~)  1 under P(o II ~.) (at least 
i=1 
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kn 

along subsequences satisfying ~ X 2 ,,i .... ' 4). By taking expectations it follows 
kn i= 1 

that ~ X , , ~  ~ ~(./lf~)dF(x), where F is the distribution of 4. Hence the main 
i - - 1  

result of this note is that the restriction that 4 is measurable ~ is shown to be 
superfluous, but also our other conditions are somewhat weaker than those of 
Eagleson. (In fact Eagleson's results are phrased in terms of conditional vari- 
ances instead of sums of squares, but the translation is straight-forward.) In a 
somewhat different context interesting results on the present problem have also 
been obtained by Chatterji (1974). Finally, it is perhaps worth mention that the 

kn 

condition that ~ X 2,i converges in probability cannot be weakened very much: 

Dvoretsky (1972) has given an example which shows that it is not enough that 
kn 

X2,,i converges in distribution. 
i = 1  

2. Convergence to Mixtures of Normal Distributions 

We are mainly concerned with sums of martingale differences, but as is argued 
in Rootz6n (1975) the interesting case is when the truncated variables asymptoti- 
cally are martingale differences. Thus we initially do not assume that {X~, i} is a 
m.d.a., but only that e.g. 

kn 

~E{X. , i I ( IX. , , t<I) I[~ , , ,_I}~O as n ~ .  (2) 
i = 1  

Furthermore define 

4.., = x~, ,  l(IX~. ,I = < 1) - E(X~,, I(IX,, ,I ~ 1)IIM~,,_ 1 }. 

Then {4~,i} is a m.d.a, and 14,,i1N2 a.s. 

Theorem 1. Assume (1) and (2) are satisfied. I f  furthermore max IX.,,l~0 and 
there is a random variable ~ with distribution F such that ~ <=~k. 

kn 
Z ~  2 ~ 

~n,i ~ a s  n~oo, 
i = I  

kn 

then ~ X~, i ~  ~ Cb(o/lfx) dF(x) as n~  oo. 
i = l  

Proof. By definition 

kn kn kn kn 

~, X . , i -  2 4.,~= 2 E{X.,~I(IX.,~I<I)IIM.,~-I} + 2 X.,~I(IX.,iI>I) 
i = i  i = 1  i = i  i = i  

(3) 
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and thus f rom (2) and max  IX.,il p k. k. p , 0  we obtain  ~, X., i - ~ 4,~, i - - - '  0 as 
l <-i <-kn i= l i= l. 

n.~ c~. Hence  it is enough to prove  

kn d 

E ~.,~---~ ~ q~('/l~) dF(x) as n-* o9. 
i = 1  

Write X'., i=X.,iI(tX.,il  < 1). Then 1 > max  [X'..il P, 0 and thus also 
1 <=i<=kn 

E {( max  IX'.,il)} - '  0 as n ~ co. 
1 <-i<-kn 

Since 

max  IE(X'.,ill~.,,_,)l< max  E( max  IX'.,j] IIN.,I_z) 
l <=i<=kn l <--i<--kn l <=j<=kn 

(4) 

and since E( max  IX'.,jl I]N.. i- t) ,  i= l , . . . , k ,  is a mar t ingale  it follows f rom 
1 < j < k ~  

p 
K o l m o g o r o v ' s  inequali ty for mart ingales  that  max IE(X'.,ilIN'.,~_0]---,0 and 

l <=i<=kn P 
thus also max  ~. , i - -~O as n ~ o e .  

l<=i<kn 

To facilitate the remainder  of  the p roof  we will wi thout  loss of generali ty 

1 
assume that  each row in the m.d.a. {~,~} is infinite and that  for i>k. ,  4.,~= +_ 

n 

with probabi l i ty  1 each and independent ly  of N.  i-1. Hence  we have max  14.,~1 
' l _ _ < i  

k k 

A.O as n-+oe and ~ ~2 .... ;, .,i oo as k ~ o o ,  for each n. Let  S~(k)= ~ 4~,i and 

int roduce " the  natura l  t ime-scale"  r . ( t ) = i n f  k: 4 2 . > t  of the summat ion  n, t 

process based on {4.,i}. Then i 

2 ~.,,=S.oz. 4 ~ .,i - ~ . , k . + l ,  (5) 
i = 1  i=  

and by const ruct ion [(.,kn+l] =--1--+0 as n -~  c~. 
t/ 

The next step is to prove  

. , i - S .  ov.(~)l---~0 as n-~oo. (6) 
i=  

For  e > 0  choose K such that  P({4 > K } ) < e  and observe that  for any c5 > 0  

~_~ 4 2 _ P({d.>E})<=P {d.>~} .,, { < 6  c~{4<K}  

'~'k~l 4 2 +~. 
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Here 

P {d,>e}c~ i ~,z,i- 6 c~{~NK} =<P({ Is-tl=<~ 
O<s,t<=K+6 

>e}) =P.,  say. 

Since max I~.,il<maxl~.,il P,0 as n--*oo it follows from Theorem 1 of 
1 <-i<-vn(K+ 1)  1 _-< i 

1 0~ considered as random variables RootzOn (1975) that {S, o %(0; re[-0, K + ]},= 1, 
in D(0, K +  1) endowed with the Skorokhod topology, converge in distribution 
to a Brownian motion on [ 0 , K + I ] .  Hence, by Theorem15.2 of Billingsley 
(1968) we can make lim sup P, < e by choosing 6 small enough. Furthermore, by 

(3), P ~2 ~ 0  as n~oo,  so 
i 

lim sup P({d, > e}) < 2e, 
n ~ o o  

which since e is arbitrary proves (6). 
We now need the following lemma, the proof of which is given on p. 215. 

Lemma 2. I f  for some integer k~ the random variable ~ >0 is measurable ~,,k~ for 
all large n then 

So  z . ( ~ ) ~  ~ q)('/l~)dF~(x) as n ~  oo, (7) 

where F~ is the distribution of ~.  

Since we have assumed (1) it is for e>0  possible to find an integer k~ and a 
random variable ~ > 0 ,  which is measurable with respect to N.,k~ for all large n, 
such that P ( l ~ - ~ l > e ) < e  (see e.g. Doob (1953), p. 607). From Lemma 2 we 
obtain that (7) holds and since F~ d , F as ~--,0 also 

~b(./]/~) dF~(x)~ ~ ~(./]f~) de(x) as e~0.  (8) 

Moreover, by arguments precisely analogous to the proof of (6) above, we have 
for 6 > 0 that 

lim lim sup P({IS. o z . ( ~ ) -  S. o %(01 > 6})= 0. (9) 

By Theorem 4.2 of Billingsley (1968) it follows from (7), (8), and (9) that 

S.o ~.(r S ~(./1/~) dV(x) a s  n - - ,  oo, 

which by (5) and (6) proves (4) and thus the theorem. [] 

Proof of Lemma 2. The lemma can be reduced to the corollary on p. 561 of 
Eagleson (1975), but as it does not involve more work to give a direct proof we 

k 

will do that instead. Put ~'.,i = ~., z if i > k~ and ~'., i = 0 otherwise, let S'.(k) = ~ ~'., i 
i = 1  

and let P~(.)=P(.II~) be a regular conditional probability given ~.  Since 
4' ~ . , k ~  for all large n, the rows of { .,~} are martingale differences for such n 
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also under P~ (a.s.), cf. [-4]. Moreover ,  for t > 0  

~ ( t )  - -  t k~ 
= , , ,+~  .... (0<(k~+l)(max]~,,~l) 2. (10) 

i = 1  i = 1  l < i  

As maxl~,,~] P ~0 we can for every subsequence of {1,2 . . . .  } find a further 
l < i  

(infinite) subsequence {n'} such that max]~,,,il .... ,0. Thus also under  P~ we 
1 < i  

~,,(t) 

~' "~-, 0 have a.s. that  max I , ,  il and ~ ~,, i .... , t. By Lemma  3 of [5] this proves 
1__<i i = l  

s',. o ~,.(t) ~-~ ~('/1//) 

under  P~ (a.s.). Since ~ is a constant  under P~ we have in part icular  that  

s',.o ~ , . G ) ~  e ( ' / l /~ )  

(P~), a.s., and thus by taking expectations that  

S',,oz,,(~)e-~Sq~('/l/~)dF~(x) as n ' ~ o e .  (11) 

Since a subsequence {n'} satisfying (11) can be extracted from any infinite 

sequence of integers it follows that S', o % (~)e_~ ~ ,i)(. ~I/x)dF~ (x) as n -~  0% which 
since 

IS,, o "c.(~)-S'. o %(~)1 <k~ max IG, gl ~, 0 
1 < i  

proves (7). [ ]  

Corollary 3. Assume {X,,i} is a m.d.a, and that it satisfies (1). I f  max IX,',i I~0, 
kn kn l <- i <= kn 

if ~ E(X2,iI([X,',~I>I)H~,',~_I) P~O, and if furthermore ~ Xz~,~ P-~ for some 
i = 1  kn i - -1  

random variable ~ with distribution F, then ~ X , , i ~  S ~(./]/x)dF(x) as n--~ oe. 
i = 1  

Proof We only have to show that (2) and (3) hold. Recall the nota t ion 

X', , = X ,  , I(]X," ,[ <__ 1) 

and put  X ~ ' i = X ,  i - X '  Since , , , ' , i "  

/ 2 , ,, ,,2 E(X.,~I[~,',~_~) <lE(X,,,~ll~,',i_l)l=lE(X,',ill~,,,~_l)l_-<g(x.,~l[~.,~ 1) 

it follows immediately that (2) holds. Moreover ,  by definition 

kn kn kn 
~ 2  - -  X 2  i "~- E ( X " 2  -Jr" ' 2 Z ,'.,- Z ,', .--,'.,_E(x,.,ll~,',_O } 

i = 1  i = 1  i = 1  
k~ 

-2  Z x.Ax'.'.,+E(x',',~ld~,',,-O} 
i - -1  

k .  

2 2 X,',~ + r , -  2r,', say. 
i = 1  
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Here  r, ~ 0 as n ~  ~ a n d  us ing  Cauchy ' s  i n e q u a l i t y  we ,obta in  

Ir~l< 2r ,  X , ,  i P , 0  as n ~ o o ,  
i 

so (3) follows. [ ]  

F ina l ly ,  it  shou ld  p e rh ap s  be m e n t i o n e d  tha t  the  resul ts  of  this n o t e  h o l d  also 

w h e n  {k,} are  s t o p p i n g  times. 
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