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Necessary and sufficient conditions for the functional central limit theorem 
for a double array of random variables are sought. It is argued that this is a 
martingale problem only if the variables truncated at some fixed point c are 
asymptotically a martingale difference array. Under this hypothesis, necessary 
and sufficient conditions for convergence in distribution to a Brownian motion 
are obtained when the normalization is given (i) by the sums of squares of the 
variables, (ii) by the conditional variances and (iii) by the variances. The results 
are proved by comparing the various normalizations with a "natural"  normal- 
ization. 

1. Introduction 

Since the final solution of the classical central limit problem through the works 
of L6vy, Lindeberg, and Feller, research on the convergence in distribution of 
sums of random variables has developed in two directions. Firstly the classical 
results have been extended to the random processes obtained by interpolating the 
partial sums. Secondly, results have been obtained also for dependent summands. 
In this context perhaps the most important dependence property is that of a 
martingale. 

The purpose of the present paper is to find conditions that are necessary and 
sufficient for the functional central limit theorem for martingales. Unfortunately 
it is not possible to give as clearcut a solution to this problem as in the classical 
situation with independent summands. One reason for this is that a number of 
different normalizations (or time-scales) all seem reasonable, but that they lead 
to different results. Another reason is that any array of random variables with 
finite means can be made a martingale difference array by adding random variables 
that are zero except on a set of asymptotically negligible probability. This altera- 
tion would then not change the convergence or non-convergence of the distribution 
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of the summation processes based on the array, so any such array could be regarded 
as a martingale difference array, which would make the problem of getting 
conditions for convergence to a Brownian motion rather meaningless. Hence one 
has to introduce some restriction to make the problem not only superficially a 
martingale problem. An appropriate restriction is given as Condition (1) of 
Section 2. Once this condition is introduced, our approach is very simple. We 
show that there is a "natural"  time-scale that makes the summation process 
converge in distribution, and then get conditions for convergence when using 
other time-scales by comparing these time-scales with the natural one. 

We have not attempted to find necessary conditions for the convergence to 
normality of the one-dimensional distribution of a normalized martingale, and 
in fact it seems to be difficult to find non-trivial conditions for this (cf. Dvoretsky 
(1972), Section 6). However, from a pedogogical point of view it may be preferable 
to get necessary conditions for the functional central limit theorem, since this 
avoids the extra assumption that the summands are asymptotically small. 

Successively weaker sufficient conditions for the central limit theorem for 
martingales have been obtained by a number of authors. Early important results 
were proved by P. L6vy (see e.g. his 1937 book; ref. /-9]) and much of the sub- 
sequent work has relied on methods developed by him. Billingsley (1961) and, 
independently Ibragimov (1962), proved convergence to normality when the 
martingale differences are stationary, ergodic and with finite variance. Further 
weakening of the conditions were made by Dvoretsky (1972), Brown (1971), and 
Scott (1973). Drogin (1972) considered random time-scales and also got results 
on necessity. Our point of view is similar to that of Drogin. The most recent 
results known to the present author are those of McLeish (1974) and from the 
sequel it can be seen that his sufficient conditions are rather close to the necessary 
o n e s .  

The plan of this paper is as follows; in Section 2 the necessary notation is 
developed and the natural time-scale is found. In Section 3 normalization by 
means of sums of squares and by means of conditional variances are considered, 
while in Section 4 the normalization is given by variances. Finally, Section 5 
contains a comment on a remaining problem. 

2. The Natural Time-Scale 

For n=  1, 2 . . . .  let {X,, i}i% ~ be a sequence of random variables on a probability 
space (~ , ,  N,, ~,), let ~, , i  be the sub-sigmaalgebra of ~ ,  that is generated by 

k 

X,,1 . . . . .  X,, i and put S,(k)= ~ X, ,  i. Furthermore let z,(t); te l0 ,  1] be stopping 
i=1  

times of {X,,g}~~ that are increasing and right continuous in t a.s. In the sequel 
we will without further comment assume that 

%(1)< oo a.s., n ~  1. 

Then {S, oz,(t): te[0,  1]},~_1 is a sequence of random variables in D(0, 1), the 
space of functions on [0, 1] which are right-continuous and have left-hand limits. 
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We let D(0, 1) be endowed with the Skorokhod topology and let B be a Brownian 
motion on D(0, 1). For brevity we abuse notation slightly and write S o z, for 
S, o z, and Ei(.  ) for E ( .  lib,,i) when the expectation is taken of variables in the 
n-th row (Eo(-)  = E( �9 )). The object of this paper is to find conditions for S o v, d, B 
when {X,,i} is a martingale difference array (m.d.a.) i.e. when Ei_I(X,,O=O, i>2, 
n > 1, so that the partial sums in each row form a martingale. 

However, as was noted in the introduction, if the X,, ~'s have finite means then 
any array {Xn, i} can be made a m.d.a, by adding variables which take large values, 
but with low probabilities, in such a way that the asymptotic distribution of S o % 
is not changed. For i > 0  put X'n,i=Xn, iI(lXn, i[~c) and Xn',i=Xn, i-X~, i. Con- 
vergence of the distribution of S o z, to a Brownian motion entails that the maxi- 
mum of the summands tends to zero in probability and hence, with a probability 
tending to one, all the X", ~, 1 <i<= z,(1) are zero. Thus we are essentially concerned 
only with the distribution of the array {X',, ~}, and if tile problem is to be a martin- 
gale one {X', ~} has to be, at least asymptotically, a m.d.a. Formally this can be 
written as 

k 

max V E . . ( X '  ) e 0 as n ~ o o .  (1) < < ~ t --• n, 
1 _ k _ v ~ ( l l l i =  1 i 

However, once this condition is assumed to hold there is no need to require that 
the original array, {X~, i}, is a m.d.a, and this will not be done unless explicitly 
stated. Moreover, it is no restriction to assume that e.g. c = 1 so that 

xL,~=x~,zI(IX~,zl~l) 
and 

X'.',z= X.,g I(lX.,,l > l ). 

Furthermore introduce 

mXt t r .,i-E~ l(X'~.i). 

Then lg~, i[ ~ 2  a.s. and {~n, i} is a m.d.a. Our first result is that the sum of squares 
of {~n,~} gives a natural time-scale for the summation process. To state the result 
we need the further notation M~ = m a x  IX~.i[. 

1 __<i_<~O) ' 

Then S o ~, d , B if and oniy if M~ e , 0 .  

Proof From S o z ,  d~B it follows immediately that M~ P , 0 ,  so only the 
reverse implication remains to be proved. Assuming that M~ e ~ 0 it follows from 

(1) that max ~ X,, i -  P ~ 0 and thus, putting S~,(k)= y, ~,, ~ i, it is 
1 --<k---<zn(1) i----~l i = 1  i = 1  

, d , B and since 1~,,~1<2 a.s. it follows from e.g. enough to prove that S~ o z, 
Theorem 1 of Drogin (1972) that this holds. (We might as well have used the 
results of [3, 11], or [ 10], the proof  in McLeish (1974) perhaps being the easiest one. 
Furthermore,  that proof  can be somewhat simplified in the present case.) D 
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Remark 2. It is easy to see that an equivalent time-scale is given by 

T,(t) =inf{k;  i=li E,-l(~2, i) > t }  

(c.f. Theorem 5 below). Furthermore it should be noted that for these time-scales 
~.(t) 

E 42, i 1 , t as n ~ o e ,  for teE0, 1]. 
i = 1  

The main tool for the rest of the paper is Lemma 3 below which shows that 

z , ( t )=inf  k; 4, , i> t  is not only a natural time-scale, but that it is also in a 
i = l  

certain sense minimal. 

Lemma 3. Let %(0 be stopping times of {X,,  i} that are increasing and right con- 
tinuous in t a.s., and assume that (1) is satisfied. Then S o z, d--A~ B if M ,  r > 0 and 
i f furthermore 

~.(t) 

e > t as n re[0, 1]. (2) 
i = 1  

Conversely, if S o z,  d ~ B and if furthermore 

lim sup E \,~1 ::,i < t, ts[0,  13,* (3) 

then M,  ~ 0 and (2) holds, also if convergence in probability is replaced by con- 
vergence in the mean. 

Proof. For the first part it is as in the previous proof sufficient to show that 
k 

S', o z, e ~ B, where S;(k) = ~ 4,,i. This is easy to do by comparing the time- 
i = 1  

scale z, of this lemma with the natural time-scale of Theorem 1 above. However, 
since S', o z,  d , B is also implied by Theorem 3.2 of McLeish (1974) we omit the 
details. 

For the converse part we first note that M, P > 0 again follows immediately, 
, e B. Next it has to be proved that and that we then also have that S, o z , -  

~.(t) 

-,,i t, te(0, 1] (that (2) holds for t = 0  follows from (3)), and by dividing 
i = l  

both members by t it is seen that it suffices to show that 
~.(i) 

42 .,,, P , 1 as n-~ oe. (4) 
i = 1  

Now the functional x ( .  ) - .  x - x  is a.s. B-continuous and hence 
/ = l l  

i=i i=i 

* A c t u a l l y  it is e n o u g h  t h a t  (3) h o l d s  f o r  t = 1 
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as n ~ oo. Fur thermore  the latter sum has mean 1 and variance 2/k so 

B - B  ~ P  1 as k - , o o .  

It follows that it is possible to find a sequence n '=  n'(n) of integers with n ' -* oo 
as n ~ ~ such that 

e , 1 as n -~ oo. (5) 

To see this, write 2(n, k)= S'.o % - S'o % - 1, Z(k)= ~ ~B - 
2 i=1 i=1~  \ h i  

B ( 2 T k * ) ~ - 1 ,  and note that P({]Z(k)[>k ~/4})<2k-~/2, and hence that 
\ -~  t )  

P({[Z(n,k)[>2k-1/4})<4k -1/2 for all n greater than some integer n(k). It is no 
restriction to assume that l < n ( 1 ) < n ( 2 ) < . . . .  Thus if n ' (n)=l  for 0 < n < n ( 1 ) ,  

2 for n(1) < n < n(2), etc. we have P({[Z(n, n')t > 2 n'-1/4}) ~ 0 as n ~ oo.) n'(tl) 

(i) 
To simplify notation we will for the rest of the proof write z(i) for % ~ when 

dealing with variables from the n-th row, 1 <_i< n' (z(0)=0). Again suppressing 
the row index, let r'(/) be the minimum of z(i) and of 

i n f { k > z ( i - 1 ) ;  i=~( i~l )+l~n,  i >1}  

and denote the event that  z (i) = z' (i), 1 __< i < n', by A,. Let 

Y,= max sup S'o%(t)-S ' ,o%(J~,  1 ] 
l<_i<_n" i~rl<t<_~l \ gl / 

so that A~,c{Y,>I}  and introduce the D(0, 1) modulus of continuity co,(6) 
= i n f  max sup [S',oz,(t)-S',o%(s)[, where the infinum is taken over {ti} 

{ti} 0<i=<r ti l <=t,s<=li (1) 
satisfying O=to<t l< . . .< t r=l ,  t i-t i_l>(~ , i = 1  . . . . .  r. Then Yn<2co, ~- 

+ max [~, ~[ and since n'--+ oo it follows from Theorem 15.2 of Billingsley 
l < i < r n ( 1 )  ' 

(1968) that  c~ ( 1 )  ~ 0 '  As alsO l~i_<~,(1)max ]d, i ] ~ 0  we have t h a t , ,  

P(A~,)<P({Y,>I})---,0 as n-~oo.  (6) 

~'(i) 
Hence, putt ing ~,, i = ~ 3,, k, it follows from (5) and (6) that  

k = z ( i - - 1 ) + l  

n '  

P 1 a s  n ~ o o .  
i=l  

(7) 
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Since max [~.,il< II. we have by the reasoning above that max ](.,il e ,0  as 
I <=i<~n" 1 <i<-n ' 

n---, or. Moreover, as 1~., i] < 2  for all n and i, it follows from the definition of z'(i) 
that 1max, 1~., ~1< 3. 

t ~o For n fixed {S,,(k)}k= ~ is a martingale, and as r'(i) is a stopping time, also 

{S'.(k/x v'(i))}2=1 is a martingale. Since ~ (S'.(k A z ' ( i ) ) -S ' . ({k-  1} A z'(i)))2< 
z~(1) /~.(1) \ k= 2 

~.~ and since E [ ~  42 ) k=l =~ "'~ <OO for n large enough by (3), the martingale 

{S'.(k A z'(i))}k% ~ is square integrable for large n. Then, by the optional stopping 
theorem {S'.({'c(i-1)+k} A z'(i))}[=o is a square integrable martingale and hence 
mean square convergent. Since lira S'.({z(i- 1) + k} A r'(i)) -- S'.(z(i - 1) A "c'(i)) = ~., 

k ~  oo 

a.s. by definition, it follows that 

k ~ z ( i - 1 ) + l  

we t ., ~ <__ 1 + O(1). Together with (7) this 
i 

shows that ~, ~ is uniformly integrable (see e.g. Chung (1968) Theorem 
4,5.4). i=1 ,=1 

~(1) n" n' ~'(i) n' 
Let d. = ~ 2 2 ' - -  ~.,k-- ~ ~.,~ and let d. = Z Z ~.2,k ;~,i for n = 1, 2 . . . . .  2 

k=l  i=1 i=1 k = z ( i = l ) + l  i=1 
Equation (8) and the inequality (a + b) 2 ~ 2 a 2 + 2 b 2 imply that 

n' ( ~'(i) ' "  2 , ~2 

- -  i=1 L k = ~ ( i = l ) + l  ' \ k = z ( i - - 1 ) + l  ' " -- 

n t 

+ 2 ~ E  2 2 2 {(.,i-E((.,ill~.,~(i 1))} =$1 +$2,  say. 
i=1 

n '  

Here E{~, , -  E((. 2 2 . �9 ,~ll~.,~t~_l))} __<E(.,~ so Sj __<E ~ (., f, and similarly 
i=1 

E f  ,r~) 2 / r'(i) , ) 2  ( z ' ( i )  }2. 

~k=~(i- -1)+l  k=z(i 1)+1 ) ( . k = z ( i - - 1 ) + l  

By a wellknown martingale inequality (see Burkholder (1974), Theorem 3.2) there 
is a universal constant c such that 

~'(i) i, N 

Remember that ~ ~.,k converges almost surely as N---, ~ and thus, since 
k=z(i--1)+l 

"((i~ N ~n, k < 3, also converges in the 4'th mean./] Hence 
k=r( i - -1 )+ l  
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n' 

gd12<2( l+c)E  ~ (4,~ 
i = 1  

__<2(l+e)E~max ( 2  ~ ( 2  }--+0 
( 1<1<# i = 1  i 

as n-~oo, since ~2,i is uniformly integrable and since max,~.2,j<9 and 
i n = l  1 <j<n 

max (2. v , 0. Thus d'. e , 0, and combining this with (6) we have that for l<j<n' "J 
arbitrary e > 0 

P( {[d.[ > g})< P({ ]d.] > e} c~ A.) + P( A~.) 

< P({Id~l > d )  + P(A~)--~ 0 

as n -~ oo. By (7) this proves that (4) holds and thus that (2) is satisfied. It now only 
�9 . (t) 

remains to be observed that (2) and (3) together give that ~ ~2 i 1 ) t, also. 
i = 1  

It should perhaps be noted that in the converse part of the lemma, the condition 
(3) cannot be deleted entirely, not even if {%(0} is non-random. 

3. Random Time-Scales 

In Section 2 above it is shown that a natural time-scale is given by the sums of the 
squares of the truncated and recentered summands. In this section some ways of 
expressing this time-scale more directly in terms of the original array {X,, i} will 
be investigated. The first result shows when it is possible to normalize directly by 
sums of squares of the X,, i's. 

Theorem 4. Let z.(t)= inf k; X~, i>t  , t~ [0, 1], and assume that (1) is satisfied. 
i=l 

Then S o z . ~  B if and only {fboth M. e , 0 and 

rn(1 ) 
2 ~ P Ei_l(X',,i) , 0 as n--,ov. (9) 

i = 1  

Proof. By definition 

X 2 2 2 t . ~ , , 2  t / , ., i=  Ei_l(x' , 3 + 

Either by assumption, or else since So % d , B we have that M. P ) 0 and thus 
~:~(t) 

X".,i e , 0. Furthermore, by considering %(0 A N and letting N-+  0% Fatou's 
i = 1  

lemma gives that 

E~ 2 (X 'n , i -Ei- l (X~, i ) )Ei  . . . . .  l(Xtn, i ~ E  2 (Xtn, i - E l  l ( X n ,  i) )2 El2 1 (Xn,t i) 
t i = 1  i = 1  

rn(1 ) 

i = 1  

zn(1 ) 

__< E y, xZ,  
i = 1  

< 2 E  max X~2i--~0 as n--*oo. 
1 _-< i-< ~.(1) ' 
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where the last inequality holds since 
te  [0, 1] 

~n(t) r,,(t) 
E 2 2 2 , Xs 2 (X',i))+r., (~..i+Ei_l 

i = 1  i = 1  

where r n P ,  0 as n-+ oo. Thus 
T.(t) r.(t) 

E r E ' ,-E,_~(X'.,3)-r. 
i = 1  i = l  

~( t )  

t + O X  2 -- X '  , . . . .  . )  Z EL ( ~ 
i = 1  

~.(1)-I 

E 
i = 1  

,2  t 
X ' n , i < l  and IX'.,~.(I)I<I. Hence for 

~.(t) 

P ~0 we have that ~ ~2,i 
i = 1  

for some 0; 0 < 0 < 1 .  Since X/,,~.(t)<M ~ 2  2 e t for all 
t e  [0, 1] if and only if (9) holds. Now 

~,, (t) ~,, ( t )  

E E e E x; 2,, 
i = 1  i = 1  

__<t+0(1) 

so Lemma 3 is applicable and the theorem follows. 
As seen above, under weak conditions the sums of squares of the X,, is give 

the natural time scale. This normalization has the further advantage that it is 
readily available and that it does not depend on the underlying probability 
measure. However, in analogy with the case of independent summands it might 
also be interesting to normalize by the conditional variances (cf. Remark 2). This 
possibility was introduced by L6vy, and is the random normalization that has 
been most investigated. 

Theorem5. Let z.( t )=inf  Ei 1 (Xs > t  and assume that (1) is satisfied. 
.= 

Then S o z. ~ B if and only if both M. ~ 0 and 
r , (1)  - 1  

{Ei-1 (X'..,)+ as oo, E 2 t i t 2  E,_I (x'..~)} + r . - ~  0 n ~  (10) 
i = 1  

rn (1) --1 

where r. = 1 - ~. El_ 1 2 (XZ ,). 
i = 1  

2 __ ,2  Remark 6. By definition O<r.<E.o(1)_I(X/,.~.(1))-E~.a)_I(X'..~.(1))+ 
E~.(1) - 1 ~.,tv"z~.(xv.~ IfM. P ~ 0 then X'.,~.(~) ~ 0, and since IX'., ~.(~)[ < 1 it follows t h a t =  

(X .. . .  (1))} =E(X'.2~.m) ~ 0 -  Hence a simpler condition that together E{E~.(1)_I ,2 
~ (1) 

with M , ~ O  implies (10)is ~ {E2~ (X',,3+E,_I (X"2)} -e+ 0. If already the 
i = 1  

Ei_l (X'.,i)=E~_, (X~,i)< Ei_~ ,-- . , , .  so in original array {X.,i} is a m.d.a, then 2 t t t  (yt,2] 
that case (10) is equivalent to 

z ~  ( t )  - 1 

{ X  , '2 '  ' P) ( 1 0 ' )  E E l _  1 t n,i}-I-rn 0 a s  n - +  o o .  
i = 1  
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Moreover, together with M, ~ 0 this also implies (1). 

Proof We first prove that (1); (10), and M, ~ 0 are sufficient to ensure S o r n ~ B. 
By definition 

_ , ( y , ,  2 ]  Ei-1 (Xn2i)=Ei-1 (~2, i) + E 2  1 (X'n,i)-J-Ei-1 , - - n , i /  

and hence for te[0,  1] 

~.(t)-~ ( ) 
-- E E i - l (X2 ,  i ) 

i = 1  i = 1  

~ (t) - 1  

- Z . 2  ' ( 1 1 )  
i = 1  

~,~ (t)  - 1 

It follows that if M,-~e  0 and (10) hold then ~ E i _ ~ ( ~ 2 ~ ) ~  t and thus, 
i = l  

since (1) and M , ~ 0  together imply that max I~.,il~0, also 
1_< i_<v~ (1) 

~ (t) 

E Ei-1 (~2, i) ~ t a s  n ~ c~ .  (12)  
i = 1  

Letthenaturaltime-scalebe(.(t)=inf{k: i=1 ~' ~2n, i> t} A %(1), te  [0, 1] and observe 
r;~ (t) 

2 1 that ~ ~, i  < t +  max ~. , i--~t .  Now 
i = l  l ~ i ~ r n ( 1 )  

-<E max ~ . 2  ~2i --+0 as n - , o o ,  (13) 
- -  ( l < j = < r n  (1) '1i= 1 ' J 

/ ~;, (t) \ 2 ,  / Z  since 4 >  max ~. i~-+0,  so also P Ei_l(~2i)<t+~ -+1 for any ~>0.  ) 
1 - < i - < z n  (1) " \ i = 1  - -  

Hence, combining this with (12) we have, for e>0,  that P(%(t)<z'~(t-@< 
e 2 ~ �9 t E 2 0asn ov.InpartmularP(%(t-e)<%(1))--,1 P ,-~({,,i) < ~ i-l(~.,,) 

i = l  i ~ l  
~;, (t - e) 

and thus ~ ~2.,i~ee t - ~ s o  
i=1 

P {,2,~<t-2g _ - < P  {2 ,~< t -2e  +o (1 ) -+0  (14) 
t 1 \ i 

as n ~ m. Furthermore 
~ (t) ~,, (t)  - i 

E ~. 4 2",,--E ~ E i_2(.,i)+o(1)<_t+o(1),_ (15) 
i = 1  i = 1  

~n (t) 

and since ~>0 is arbitrary, it follows from (14) and (15) that ~, ~2 q~, i t for 
i = 1  

re[0, 1] (cf. e.g. Lemma 2.11 of McLeish (1974)), which by Lemma 3 proves that 
So% a~ B. 



2 0 8  H .  R o o t z d n  

Conversely, suppose So % a, B as n ~ oo. Then M, ~ 0 and since (15) holds 
~.  (1) 

Lemma 3 is again applicable and thus, in particular, ~,, C 2, i-k~ * 1. Moreover, (13) 
i = 1  

�9 c. (1) 

then holds also if z',(t) is replaced by Tn(1 ) and it follows that ~ El_  1 2 (~,, i)-s e 1 
i = 1  

as n-+ c~, which by (11) proves that (10) holds. 

4. Non-Random Time-Scales 

If the summands are independent it is sufficient to consider deterministic time 
scales, the most obvious one being given by the variances. In this section we will 
treat non-random time-scales. First, in Theorem 6 below, we will assume that the 
original array {X,, i} is a m.d.a., and then a more general case is treated in Theorem 
8. 

The~ 6" get {X"'i} be a m'd'a" put zn(t)=inf {k; E ~ X2"'i> t} and assume 

(1) is satisfied. Then Soz.J4+ B if and only if both M. ~ O  and 

~. (t) 

E --n,Y2"~t, as n---~o% t~[O, 13. (16) 
i = 1  

max ~ i )=  max ~Ei_l(X'n, ~ Remark 7. If {X, i} is a m.d.a, then Ei-1 (X',, " 
' 1-<k-<'~n(1) i = 1  l ~ k = < z n ( 1 )  i=---1 

~ (1) 
= ( y , ,  2 ]  < ~ Ei_l ,--,, i,. In Scott (1973) it is shown that Mr, P~ 0 and (16) together imply 

i = 1  
~,, ( i )  

E E i_tiY''2.~O,__.,~, and hence that (1) is satisfied, so for sufficiency it is not 
i = 1  

necessary to assume that (1) holds. A number of equivalent sufficient conditions 
are given by Scott. 

Proof. It is easy to show that if M, ~ 0  and (16) holds then the conditions of the 
first part of Lemma 3 are satisfied and hence S o % ~ B. However, since the result 
is wellknown we omit the details. 

For the reverse implication, assume that S o%-A~B. Then M , ~ 0  and 
moreover 

tn (t) tn (t) - - I  

E E E 
i = 1  i = 1  

~. (t) - 1 

__<E Z 
i = 1  

<t+o(1 ) .  

C~,,+o(1) 

x.2 i+o(1) 
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r, (t) 
Hence, from the converse part of Lemma 3, ~ ~2 1 c, , i--~ t as n -,  o% t~[0, 1]. Now, 

i=1  

~ (t) - l  ~,~ (t) ~ (t) - l  

[_>~_E 2 X2n, i :E E ~2, i-~-O(I)'~-E S {E2_l(Xn, ( X n ,  i)},, ,2 
i=1  i = l  i=1  

~ (t) --1 

SO E 2 2 , Ei_l(X'.,i)-+O as n-~ oo. 
i=1  

Proceeding as in the proof of Theorem 4, it is enough to note that hence also 

E 2 ~,, E}_~ (X',,)<E max E2_t (X',,j) Z ~2 ~ 0  as n-~oo to conclude n, i 
i = I  \ l < j ~ r ~  (1) i=1  

r .  (t) ~. (t) 
that ~ X 2 . - ~  2 e .,, ~,, z ~--~ 0, t E [0, 1], and thus that (16)holds. D 

i = l  i = l  

The~ 8" Let % (O = inf { k; E Li=I ~2' i > t} " and assume that (1) h~ Then S ~ zn ~ B 

if and only if M, ~ 0 and furthermore 

r~ it) 

2 -~ ~ te[o, i ] .  gn, i [ a s  H ---+ 0 0 ,  
i=1 

Proof. Theorem 8 is just a special case of Lemma 3. 

5. A Concluding Remark 

We have argued the condition (1) is needed to make the martingale property 
come into play. However, the necessary and sufficient conditions of Theorem 6 
and, if it is assumed that {X,, i} is a m.d.a., of Theorem 5 imply that (1) holds. 
Hence one might hope to obtain the results of those theorems without assuming 
(1). Sufficiency is of course obvious, but as regards necessity the best the present 
author has thus far been able to do is to replace (1) by the requirement that {M,Z}[= 1 
is uniformly integrable. 
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