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1. Introduction 

Let X=(Xt)~>=o be a semimartingale admitting of the canonical representation: 

t t 

I 
0 I x l > l  0 lxl<=l 

where (a) Xc=(X~)t__>o is a null-initial-valued continuous local martingale, i.e. 
the continuous martingale part of semimartingale X; (b) e=(cQ~o is a null- 
initial-valued predictable process of bounded variation; (c) # is the measure of 
jumps of semimartingale X, i.e. the integer random measure 

#(dr, dx)= ~ g(~,a~,~)(dt, dx) I ~:,~. o 
s 

with g(~,~)(dt, dx) as the unit measure concentrating on (s, AXs); (d) v is the 
compensator (predictable dual projection) of #. Set f l= (X c, XC), then (~, fl, v) 
are the predictable characteristics of semimartingale X. Semimartingale X is 
said to have the property of predictable representation, if for each null-initial- 
valued local martingale M=(Mt)t~o, there exist two predictable processes H 
=(Ht)t>=o and W=(W(t,x))~>_o,x~ R such that M can be represented as the sum 
of the two stochastic integrals: 

M = H . X ~ + W . ( # - v )  

where H.  X ~ and W.(#-v)  are respectively the continuous component M c and 
the pure discontinuous component M d of M. 

It is well-known that processes with independent increments and jump 
processes have the property of predictable representation with respect to their 
natural a-fields (see [2]). R.J. Elliot [1] tried to show the property of predict- 
able representation for the following type of semimartingales with respect to 
their natural a-fields: X=B+Y,, where B=(Bt)t~ o is a Brownian motion, Y 
=(Yt)teo is a jump process, and B and Y are mutually independent. However, 
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he did not obtain the property of predictable representation in the form 
described above, what was given was only an integral representation under the 
framework of product spaces. In this paper we consider a more general model 
than [1]. 

Let (X (0, (Fi)t>_o), i=1,2 ,  be two mutually independent semimartingales 
having the property of predictable representation, and (cd ~ fl(0, vi ) be the 
predictable characteristics of X (i~ i = 1, 2. Pose 

X = X O ) + X ( Z ) ,  y=~ivFf, t>0 .  

Using the general results about the property of predictable representation of 
semimartingales in [2], we obtain the necessary and sufficient conditions that 
fl(0 and v~, i=  1, 2, must satisfy in order that semimartingale (X, F) has the 
property of predictable representation under the assumption that predictable 
supports of the jump times of X ~') and X ~2) are disjoint (Theorem 2). Obviously 
the case discussed in [1] is merely a particular example of ours. 

In [2] another predictable representation is also discussed. Let M =(Mr),> o 
be a local martingale. If for each null-initial-valued local martingale L = (Lt)t~ - o 
there exists a predictable process H--(Ht)~> = o such that L can be represented as 
a stochastic integral, L = H . M ,  then the local martingale is said to have the 
property of predictable representation. In order to distinguish the two types of 
the property of predictable representation, we call the latter the strong proper- 
ty of predictable representation of local martingales. Using similar methods, we 
discuss the same problem for the strong property of predictable representation 
of local martingales, and obtain similar results. 

2. Preliminaries 

We shall always discuss problems in a fixed complete probability space 
(O,=F, P) with" the following assumptions: i _  i _F -(_F/)t>o , i= 1, 2, are two filtrations 
of sub-a-fields of =F satisfying the usual conditions, =~F 1 = ~/__F~, and =~F 2 = ~/F~ 
are mutually independent. Pose t => o t_>_ o 

g,=g; vg}, t>=o. 

In this section we shall show that _F=(F~)t> = o satisfies the usual conditions and 
certain necessary lemmas. The concepts and notations of martingale theory 
and stochastic integrals which we adopt are the same as that of [-2]. For 
simplicity, we only deal with real processes (taking values on the real line 
(R, M)). 

Lemma 1. Let  ~ F ~  and t i f F  2 be integrable random variables. Then for  all t >=O 
we have 

E(~ t//=F,) = E(r i) E(t//__F}). (i) 

Proof. Let AeFt I and Be~ 2, in view of their independence 

dp = dpS. dP = e(r dPIe( /F}) dP 
AB A B A B 

= ~ E(~/=Ft ~) E(t//=Ft 2) dP. 
A B  
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Obviously, E(~/__ft 1) E(tl/f__t 2) is Ft-measurable , hence (1) follows. 

Theorem L F = (Ft)t> 0 satisfies the usual conditions. 

Proof It suffices to verify the right continuity of _F. For an arbitrary t o > 0, let t 
St 0 in (1), then by the well-known L6vy's theorem and the right continuity of 
F 1 and F 2 we have 

E (~ ~LVto+ ) = E(~/gtlo ) E(~/_F_t2o) = E(~ t]/gto ). 

Because the random variables having this form and their linear combinations 
are dense in LI(__Fo~), for each ~sLI(F~) 

= 

Hence Fro + =Fro. 

Lemma 2. Let L=(Lt)t> o be an uniformly integrable _Ft-martingale (_Ft-local 
martingale), N=(Nt)~> o be an uniformly integrable _F2-martingale (_FZ-local mar- 
tingale). Then L N  is an uniformly integrable _F-martingale (.F-local martingale). 

If L is a continuous or pure discontinuous _F~-local martingale, then L is 
also a continuous or pure discontinuous _F-local martingale. 

Proof Let L and N be the uniformly integrable .FI_ and _FZ-martingale re- 
spectively. Immediately from Lemma 1 we get for all t > 0 

Therefore, LN is an uniformly integrable .F-martingale. 
The remained conclusions of the lemma are somewhat apparent (see [2]), 

and their proofs are omitted. 
Suppose that X is an adapted r.c.l.1, process (right continuous and with finite 

left hand limits), # is the measure of jumps of X, v is the compensator of #. Set 

D = {(co, t): X,  + 0} ,  (2) 

a~=v([t] • R), J={(~o, t): at(co)>O}, 

v can be so chosen that 0 < a  < 1. For W ~ ,  we denote 

= S W(t, x) v([t], dx), 

[TV t = W(t, AXt) ID(t ) -- l~t 
and 

Gloc(#) = { W ~ :  (y, ~" ~) ~ ~ 0 r  . +  

For each WEG~oo(#) there exists an unique null-initial-valued pure discon- 
tinuous local martingale N such that A N =  ITV,, where N is called the stochastic 
integral of W with respect to (# -v)  and denoted W. (#-v).  

Lemma 3. Suppose that local martingale N can be represented as: 

N = v .  
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There exists an unique W~Gloc(#) (up to indistinguishability with respect to M u 
= My) such that [a = 1] c [ IY=0] and N = W. (#-v) .  (M u is the Ooleans measure 
generated by #.) 

Proof By the definition of N we have 

A N = V - ~ "  a.e. M,. 

] g Y  
A 

Set U = M r ( A N / ~ ) =  V -  V,, W= U + l ~  Ia< 1. By direct computation it can be 

deduced that 

W = V - V I a = I ,  a.e. M r (3) 

W= VI a < 1, W = V, 

so we have [ a = l ]  c [ I~=0]  and N =  W.(#-v ) .  Uniqueness follows from (3). 

Lemma 4. Let # be a El-optional random measure. I f  the Doleans measure M r 
generated by # is a-finite on ~1 and v is Fl-compensator of #. Then v is also the 
F-compensator of #. 

Proof Let (/l,),==_l be a ~l-measurable partition of ~ = f 2  x R+ x R such that 
Mr(A,)<oe.  For each BeM, ~ 1,f dr is the Fl-compensator  of 

[O,t]• 

I x d  #. Hence by Lemma2 ~ Ix  dv is also the F-compensator of 
[0,tl xB [O,tlxB 

Ix. d#. Therefore, v is the F-compensator of #. 
[O,t] • 

Lemma 5. Let T i be a _Fi-stopping time, i= 1, 2. I f  one of T 1 and T 2 is totally 
inaccessible, we have 

[[T1]I n [[T2[~ = 0. 

Proof Denote by F~ the distribution function of T~, i=  1, 2. Because of the 
independence of T 1 and T 2, we have 

P(T 1 = T 2 < ct~) =j  j lx= ydFl (x ) dF2(Y ). 

If [[T1]] (~[[T2]I #0,  i.e. P(T 1 = T2< ~ ) > 0 ,  there must be a constant c such that 
P(TI=T2=c)>O. Hence, none of T 1 and T 2 is totally inaccessible. This is 
contradictory to our assumption. 

Finally, we formulate a simple fact of measure theory. 

Lemma 6. Suppose that #~ and #2 are two a-finite measures on the measurable 
space (E, g), and for arbitrary two bounded measurable functions f l  and f2, 
there exists another measurable function f such that 

f = fi, a.e. #i, i=1,2 .  

Then #t and #2 are mutually singular on g, i.e. there exists a set A 6 ~  such that 

#I=IA'#1, #2=IA~'#2. 
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Proof  Set # = # 1 + # 2 ,  denote b,= , i=  1,2, we have b l + b 2 = l ,  a.e. #, and 

( f - f l )2bi=0,  a.e. #, i=  1, 2. 

Hence, f l  = f = f 2  on {0<b 1 < 1} (=  {0 <b 2 < 1}). Since f l  and f2 are arbitrary, 
it must be #(0<bl  < 1)=0. Therefore 

#1 =/b,= 1"#1, #2"=/bl= O" #2 - 

3. The Property of Predictable Representation 
of the Sum of Independent Semimartingales 

In this section we make the following assumptions: (X (i), _Fi), i=  1, 2, are two 
semimartingales having the property of predictable representation, __F~ and __F~ 
are mutually independent. (cd ~ fi(o, vi ) are the _F~-predictable characteristics of 
X (~ and the canonical representation of X (~ is 

X(i) = X(~ ) + ~ + M(i) + (x Ilxl-< 1)" (# , -  v i) + ( x l Ixl > t ) " #~ 

where #~ is the measure of jumps of X (~ M (~ is the _F~-continuous martingale 
part of X (~ and fl(o = (M(i), M(i)). We also define Di, a i and Ji according to (2). 

Lemma 7. I f  .11.12 = r we have 

(D 1 vo J1) c~ (D 2 vo J2) = O, (4) 

A X ~  A X  (2)=0, 

and for  all Fi-local martingales N (~ i=  1, 2, 

AN(1) A N  ~2) =0. 

Proof  Since D~\Ji is the union of graphs of at most denumerable F~-totally 
inaccessible stopping times, by Lemma 5 we find that 

(D,\Ji)  c~ D s = O, i =j .  

Hence (4) can be easily deduced from J13"2 =0. On the other hand, the follow- 
ing implications hold" 

[AX(i)=t=O]cD~, [ A N ( ~  i=  1, 2, 

so the remained conclusions follow immediately from (4). 
Now we define 

X=X(1)-{-X (2), gt~----gt 1 vEt 2, t~-~O. 

From Lemma 2 it is easily seen that (X,_F) is a semimartingale. If we suppose 
that J1a2=r then D, the graph of jump times of X, and #, the measure of 
jumps of X, are as follows: 

D = D l w D 2 ,  # = # 1 q - # z  
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and (e, fl, v), the predictable characteristics of X: 

c~= cdl)+ ~(2), fl=fl(a)+ fl(2), v=vi +v2. 
Also 

J = [ a > O ] = J l w J  2, [a= l ]=[a l= l ]w[a2=l ] .  

X admits of the canonical representation: 

X = X o  +c~ + XC +(xIl~l<= l ) ' (# -  v) +(xll~l> l). # 

where XC=M ~1) + M (2) is the F-continuous martingale part of X. 

Theorem 2. I f  J1J2 =9, (X, F) has the property of predictable representation if 
and only if the following conditions hold: 

(a) fl(1) and fl(2) are mutually singular on N, i.e. there exists a set A e N  such 
that 

fl(1) = ia.  fi(1), fl(2) = iac ' fl(2). (5) 

(b) vl and v 2 are mutually singular on H, i.e. there exists a set K e H  such 
that 

v~ =IK. vl, ~)2 =IKc" v2. (6) 

Proof Sufficiency. From the relevant propositions given in [-2] it easily follows 
that the assertion that semimartingale (X, F) has the property of predictable 
representation is equivalent to the following proposition: 

If Q is a probability measure on =F such that P~Q,  Q=PIv=o, the derivative 
dQ 
dP is bounded, and (c~, fl, v) are still the predictable characteristics of X with 

respect to Q, then Q=PIt=. 
In our case we shall-show that this proposition is valid, but the proof is 

somewhat involved, and we divide it into several parts. 

First, w e d e n o t e b y Z t = E ( ~ p / F t )  the density process of Q with respect to 

P, then Z=(Z~),>=o is a bounded F-martingale with Z o = l .  Note that (~,fl, v) 
are still the predictable characteristics of X with respect to Q, and therefore, 
from (12.19) of I-2] 

(X  ~, Z )  =0,  Mu(AZ/H)=O, 

but X~=M(1)+M(2), hence for each H e N  we have 

0 = H .  (X ~, Z ) = H .  ( M  (~), Z ) + H .  <M (2), Z) .  

Replacing H by HI A and HIAo in the above equation, from (5) we find that 

( M  (~ Z )  = 0, i = 1, 2. (7) 

For each w ~ H  +, since #=#1 +#2, we have 

0 = M u (A Z W) = M.~ (WMu~ (A Z/H)) + M.: (WM.~ (A Z/H)) 

= M,, (WMu, (A Z/H)) + M~ (WMu: (A Z/H)). 
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Replacing W by WI K and WI~o in the above equation, we find from (6) that 

M,, (AZ/~)  = 0, i=  1, 2. (8) 

Secondly, we show Q=PIF_,~, i=1,2.  By virtue of (7), M (~ remains a con- 
tinuous _F-local martingale vTith respect to Q. Define T~i)=inf{t: IMll)l>n}, 
i=l ,  2. Since M (~ is _F~-adapted, then T~ ~ are _Fi-stopping times, and T~(i)T~ a.e. 
Q as n~oe ,  and I(M(i~)T~l<n. Thus M (~ is also a continuous Fqoca l  mar- 
tingale with respect to Q. 

Let W ~  +. Denote by M, the Doleans measure generated by # with 
respect to Q. Evidently M,(W)=M~(W),  i.e. 

~/~, (W) + M,~ (W) = M~(W)+  M~(W) (9) 

(6) tells us Mu~(WI~o)=M~(WI~:~)=O, Mu~(WIr)=M~(WIr)=O. Because of 
Q ~ P  we have flF,~(Wlr~)=Y4u~(WlIr Putting W= VI~, V ~  1, in (9) 

]17/,~ (V)= ]f/,, (Vlr)= ] ~ ( V I ~ ) =  117/~ (V) 

i.e. v~ is still the FKcompensator of #1 with respect to Q. By the same reason, 
v a is still the F2-compensator of #2 with respect to Q. 

Summarizing above discussion, the canonical representations of (X(~ ~) 
remain unchanged with respect to Q, and therefore, its predictable characteris- 
tics are also unchanged. In view of Q=PIF=g and the property of predictable 
representation of (X (~ Fi), we obtain 

Q =PIF~, i=  1, 2. (10) 

Thirdly, we show that F ~ and F 2 are mutually independent with respect to 
Q just as with respect to P. Let ~ and t /be  F~-measurable and FZ~-measurable 
bounded random variables respectively. Set 

g"~=E(~/_F)), ~(2~=e(~/__r}), t>0. 

The conclusion we wish to prove is E(Zoo ~t/)=E(Zoo ~)E(Z~otl) , i.e. 

E(Z~ ~ y~l) y~2))= E(Zo ~ ytl)) E(Zoo r~2)). (11) 

The property of predictable representation of X (i), i=  1, 2, leads to 

y(i) = }7(0 i) + L(i) + N(i) 
i=1 ,2 ,  

L(O = H(O " M(O, N(i) = Wi " (#i - vl), 

where H ( ~  ~, W ~  *, (Note that stochastic integrals with respect to F ~ and F 
are consistent.) By (7) 

<g (i), Z> ~- H (0. ( M  (0, Z )  = 0, 

hence Z L  (~ i-- 1, 2, are _F-local martingales. 
Since Z is a bounded _F-martingale, (N  (~ Z) ,  i=  1, 2, exist, and by (8) (see 

(7.39) of [2]) 
( g  (~ Z )  = (W~ M,~(AZ/.~)). v~ =0,  i=  1, 2. 
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Hence Z N  (~ i=  1, 2, are also F-local martingales. Consequently, Z Y  (~ i= 1, 2, 
are F-local martingales, and therefore, bounded F-martingales. Thus 

E(Zo~ Y(~))=E(Zo Y(oi))=EY(o ~ i= 1, 2. (12) 

On the other hand, by Ito's formula 

(L (I) + N (')) (L (2) + N (2)) = (L (') + N~)) �9 (L (2) § N (2)) § (L (2) § N(_Z)) �9 (L (I) + N (')) 

+ [L (~) + N ('), L (2) + N(2)]. 

By Lemma2, we have (M(1),M(2))--0, hence (L(1),L(2)>=0, and [-L (1) 
+ N  (~), L(2)+ N (2)] is a pure discontinuous local martingale. By Lemma 7 

[Z, [L(1) + N(1),L(2) + N(Z)]] = ~ AZ~AN~I) AN~Z)=O. 
S 

Hence 

[Z,  (L (1) § N C1)) (L (2) + N(2))] 

= (L (1) § N~)) �9 [Z, L (2) + N (2)] + (L (2) + N(_2)) - [Z, L (1) § N ~1)] 

is a F-local martingale. Consequently, Z Y  (1) y(z) is a _F-local martingale, and 
therefore, a bounded F-martingale. Thus 

E(Zo ~ y~1)y(2))__E(Zo yo(1)Yo(2))_ E(Yo(X)yo(2))_ E(Yo(X)) E (Yo(2)). 

From the above equation and (12), (II) follows. 
Lastly, it is easily seen from (10) and (ii) that P=Q[goo, and therefore, 

(X,_F) has the property of predictable representation. 

Necessity. Suppose that H (0 belongs to {He~i: H2./~(i)ed~r and N (i) 
=H(~).M (i), i=1,2. Then N=N(I)+N (2) is a continuous _F-local square inte- 
grable martingale. By virtue of the property of predictable representation of 
(X,_F), there exists a predictable process HE~ such that 

H (I) �9 M (~) + H (2). M (2) = N (I) + N (2) = H. X C = H- (M (1) § M(2)). 

Hence 
I IH I < n(H (1) - H)-  M r = IIH I < , (H -- H(2)) �9 M (2). (13) 

It follows from that lemma ( I I H I ~ , ( H i l ) - H ) . M  (1), IIHI<=,(H-H(2)).M(2))=O. 
So (13) leads to 

IIHI<,(H(1)-H) 2 �9 fl(1) = 0, IIHI<=,(H-H(2))2. fl(2) = 0. 

Since H (1), H ~z) and n are arbitrary, by Lemma 6 ~(~) and ~(2) are mutually 
singular on ~. 

Suppose that W~ belongs to G~oc(#i) and N (~ = W~. (#~-v~), i=  1, 2. Then N 
=N(1)+N (2) is a pure discontinuous _F-local martingale. According to Lem- 
maS, W i can be so chosen that [-a(i)=l]=[l?~i=0]. On account of the 
property of predictive representation of (X,_F), there exists a predictable pro- 
cess WeGr such that N = W . ( g - v ) .  It follows from Lemma7 that W also 
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belongs to Glloc(/tl) and G~or so 

WI' (#1-Vl)+ W2' (#2--V2) =N(1)+N(2)=N 
= w .  ( ~ -  v) = w .  ( ~  - v~) + w .  ( ~  - v2) 

and 
(w1 - w ) .  (~1 - vO = ( w -  w2). ( u 2 -  v:). 

Again according to L e m m a  5, VV can be so chosen that 

[a = 1] = [a (1)= 1] U [a (2) ---- 1] ~ [17/= 0],  
hence 

[a(1) = I ]  ~ [ I ~  I = 0 ]  c~ [ 17r O] = [W, - - - - ' - 'W= 0],  

[a(2) = i ]  c [17V 2 = 0 ]  c~ [17r O] c [ W  2 - W = O ] .  

By L e m m a 7 ,  ( W 1 - W ) . ( # I - v  0 and (W--W2)-(,/~2--!J2) have no 
jumps,  hence 

(W 1 -- W).  (]'/1 - v1) = ( W -  W2). ( ~ 2 -  v2)-~-0. 

Using L e m m a  5 again, we find that  

c o m m o n  

W 1 -  W = 0 ,  a.e. My1, 

W z -  W = 0 ,  a.e. My2. 

Again by L e m m a  6, v 1 and v 2 are mutual ly  singular on ~. 

Corollary 1. I f  at least one of X (1) and X (2) is quasi-left-continuous, then (X, _F) 
has the property of predictable representation if and only if the following con- 
ditions hold: 

(a) fl(1) and fl(a) are mutually singular on ~, 
(b) v 1 and v 2 are mutually singular on ~. 

Corollary 2. Let X (1) be a Brownian motion, and X (2) a jump process. I f  X (1) and 
X (2) are mutually independent, then X = X ~  (z) has the property of predict- 
able representation with respect to its natural a-fields. 

Proof It suffices to take _U as the filtration of natural  a-fields of X (~ i = 1, 2. In 
this case F is just the filtration of natural  a-fields of X. 

It is natural  to ask whether  the conclusion is still valid, if the assumption 
J i J 2 = 0  in T h e o r e m 2  is removed.  Unfor tunate ly  no definite results can be 
established and we shall indicate by example the case J1J2 4=0. 

Set 
X(1)= { I~1,o~ ~ , X(2) = t/Irrl, ooff 

X - -  X(1) + X(2)=(~ + tl) I[i, ool. 

U is taken as the filtration of natural  a-fields of X "), i = 1, 2, i.e. 

_Ftl = ~o'(~), t > l ,  E2_~o(r / ) ,  t>=l, 
= m_Fo, 0__<t<l, =t ~Fo, 0 < t < l ,  
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where F o is the a-field generated by all sets of zero probability. Since X (1) and 
X (2) are jump processes, each of them has the property of predictable repre- 
sentation. 

~162 t> l ,  

: = (fro, O_-_t<l. 

Let G~, G 2 and G be distribution functions of 4, ~/and ~ + t/respectively, then 

#1 (dr, dx) = g{l}(dt) g{~}(dx), Y 1 (dt, dx) = g(t}(dt) G 1 (dx), 

#2(dt, dx)= g~x}(dt) g~,}(dx), v2(dt , dx)= g(l)(dt) G2(dx ). 

But the measure of jumps # of X and its compensator v are 

#(dr, dx) = d~ d~162 +,}(dx), v(dt, dx) = o~(l)(dt) G(dx). 

Each uniformly integrable _F-martingale can be represented as h(~,r/)Ill,~o~ , 
where h is a two dimensional Borel function satisfying E[h(~,t/)l<oe and 
Eh(~, tl)=0. But 

W.(# -v )=(W(1 ,  r + r/)-EW(1, ~ + r/)) Ilrl, rag. 

Now the qucstion whether (X,_F) has the property of predictable representation 
is reduced to the question whether h(~, t/) can be represented as 

h(~, q) = f (~  + t/). 

Suppose that the distributions of ~ and t/are 

- 1  _1 P ( ~ = 0 ) = P ( ~ -  ) - ~ ,  P(q =0) =P(r/=2) =�89 

We denote by [-x] and {x} the integral part and the fractional part of x 
respectively. For an arbitrary h 

h(~, r/) I~1 ' oo~ = f (x ) .  (#-- v). 

In this case (X, F) has the property of predictable representation, but v 1 and v 2 
are not mutually singular on ~. 

If the distributions of ~ and t/are 

P ( ~ = 0 ) = P ( { =  1)=~, P01 =2) =P(r /=  3) =�89 

then h(~, q)= ~- �89 cannot be represented as f(~ + ~/). In this case (X,_F) cannot 
have the property of predictable representation, although v I and v 2 are mu- 
tually singular on ~. 

4. The Strong Property of Predictable Representation 
of the Sum of Independent Local Martingales 

In this section we make the following assumptions: (M(~ i=1,2,  are two 
local martingales having the strong property of predictable representation, 
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again F~ and F 2 are mutually independent. Pose 

M=M(t )  + M (2), Ft=_Ft 1 ve t  2, t >O. 

Then (M,-F) is a local martingale. According to (4.63) of [2] the compensator 
v i of the measure of jumps #i of M (~ has the following decomposition: 

vi(dt , dx)= G~ ~, t(dx) dBl il, i -  1, 2, 

where B (~ is a _F*-predictable increasing process, G~,(dx) is a transition proba- 
bility from (~2 x R+, ~)  to (R, N'), and they satisfy the following conditions: 

(0 0 -- 
Go,,,({ } ) -0 ,  i=1 ,2 .  

I6~) t(R)= o "B(O = 0 ,  

Theorem 3. (M,-F) has the strong property of predictable representation if and 
only if fl(1) + B o) and fl(2)+B(2) are mutually singular on ~. 

Proof Sufficiently. First, since B (1) and B (2) are mutually singular on ~, so are 
v 1 and v2, and therefore, JiJ2=0. By Lemma 7 

AM(1) AM(2)=O. 

For each bounded _F-martingale Z, denote V (~ =Mu,(AZ/~),  then 

<M (~ Z> = <M (~ ZC> + (x V(i)) �9 v i ~ fi(i) + B(O, i = 1, 2. 

Hence ( M  (1), Z} and ( M  (2), Z} are mutually singular on ~. 
The proof below is similar to that of Theorem 2. It suffices to verify the 

following condition which is equivalent to the strong property of predictable 
representation: 

If Q is a probability measure on F such that Q~P, Q=P[go, the derivative 

dQ is bounded, and M is still a F-local martingale with respect to Q, then Q 
dP 
=PIE~. 

Let Z , = E  F, be the density process of Q with respect to P, then Z 

= (Zt)t> 0 is a bounded -F-martingale. By Girsanov's theorem, (M, Z} = 0. (Note 
that [M, Z] is locally integrable.) Since 

0 = (M, Z} = (M ~ Z} + (M (el, Z )  

and (M (1), Z) and (M (2), Z} are mutually singular, so 

( M(II, Z}  =O, i=1,2.  

Again by Girsanov's theorem, M (~ is still a -F-local martingale with respect to 
Q. But we want to show that M (~ is still a _Fi-local martingale with respect to 
Q. In fact, let T be a Fi-stopping time such that (M(~ r is an uniformly 
integrable -Fi-martingale. Since (M(i)) r is D-bounded and Zoo is bounded, 
(M(~ r is also bounded with respect to Q, and therefore, (M(~ r is also a _F i- 
local martingale. Thus M (~ is a _FMocal martingale with respect to Q. Now by 
means of the strong property of predictable representation of (M (~ we have 

Q = PIg~, i=1,2.  



152 S.W. He and J.G. Wang 

On  the other  hand, since fl(1)--]-B(1) and fl(2)+B(2) are mutua l ly  singular, 
J 1 J 2 = O  and (5), (6) hold, according to the p roo f  of  sufficiency of  T h e o r e m  2 we 
find tha t 'F~  and =F 2 are also mutual ly  independent  with respect to Q. Hence  

O =PIg~ ,  

that  is (M,_F) has the s t rong proper ty  of  predictable  representat ion.  

N e c e s s i t y .  Let N (~ be the null-init ial-valued ifi-local mar t ingale :  

N (~ = H  (~). M (~ i =  1, 2, 

where H ( ~  i (it m a y  be supposed that  H(~)=0). In  this case there exists a 
predictable  process H e N  (also H o =0 )  such that  

N (1) + N(2) = H -  M. 

Put  An=I im<_ , .  For  each n 

(H (1) IA,  ) �9 M (1) + (H (2) IA,  ) . M (2) _- (HIA . )  �9 M (1) + ( H I A , ) .  M (2) 

[ (H (1) -  H ) / , t 1 '  M (1) = [ (H - H  (2)) IA, j �9 M (2). 

By L e m m a  2 [M (1), M(2)] is a / f - l o c a l  mart ingale ,  and  therefore, 

((H - H(1)): IA, ) �9 [ M  (1), M (1)] = ((H (2) - H) (H - H m)/An ) . [ M  (1), M(2)] 

is a _F-local mart ingale ,  since it is also a null-init ial-valued increasing process, 
it must  be ( ( H - H ( 1 ) ) 2 I A , )  �9 [ M  (1), M (1)] =0 .  Let  n-~oo we obta in  

0 -- (H - H(1)) 2. [ M  (1), M (1)] -- (H - H(1)) 2. fl(1) + ( x ( H  - H(1))) 2. ~1, 

0 ---~ (X 2 (H - H(1))2) �9 v 1 = ((H - H(1)) 2 ~ x 2 G~,)t(dx)) ' S (1). 

Since 
~ x Z G ~ , ) t ( d x ) : # O  , a.e. d B  (1) 

so 
( H -  H(1)) 2. B (1) = 0 ,  

(H - H(1)) 2- (3 (1) + B  (1)) --0.  

By the same reason we have 

(/_/(2) _ H ) 2 .  (fl(2) -I- B (2)) = 0. 

Again by L e m m a  6 we find that  fi(~)+B r and fl(2)q_B(2) are mutua l ly  singular 
on ~. 
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