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On the Mean Ergodic Theorem 
for Weighted Averages 

D. L. HANSON * and GORDON P L E D G E R * *  

Summary. Let (f2, S, P) be a probability space and let T be a measurable and measure preserving 
point transformation from s into ~2. Let f be a measurable and square integrable function on (~, Z, P), 
and let aN.k for N, k=0,  1, ... be such that ~aN, k= 1 for all N. The authors investigate conditions on 

the aN. k's such that the sequence ~ an.k f(T k ") converges in mean square for all (s Z, P, T) and f 
k=o 

described above. The special cases T weakly mixing and T strongly mixing are also considered. 

1. Introduction 

Let (g2, X, P) be a probability space and let T be a point transformation from f2 
into s which is measurable and measure preserving. Let X 0 be the a-field of sets 
AcE such that T-1A=A.  Let L be the complex Hilbert space of equivalence 
classes of measurable, complex valued, square integrable functions on (f~, Z, P), 
and let L o be the subspace of equivalence classes of functions f such that E { f lEo} = 0 
a.e. Let aN. k for N, k - 0 ,  1, ... be non-negative real numbers such that 

oo 

aN, k = 1 for all N. 
k=o 

(We need only require lim ~ aN,k= 1, but the generalization so obtained is 
N - * o o  k = O  

trivial.) Define the linear Operator T on Lby (Tf)(~)=f(Tco) and define the opera- 
tors S N by 

(0) SN(f)= ~ aN, k Tk(f). 
k = O  

In Section 2 results are obtained giving conditions on the aN,k's in order that 
a mean ergodic theorem hold; the three cases considered are the cases T general, 
T weakly mixing, and T strongly mixing. Section 3 contains an example showing 
that our work applies in some cases not covered by the work of Cohen [51. 
Section 4 contains an acknowledgement and some concluding remarks. 
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2. Results 

Theorem 1. ItSN f -  E {ftZo} [I ~ 0 for every f in L and every measure preserving 
transformation T on (O, Z, P) if and only if 

1 
(1) lira ~ aN,g,+s= ~-  for O<j<~ and ~=2,  3, ..., and 

N~oo k=0 

(2) lim ~ aN, k= b -  a for all a, b, ~ in [0, 1) such that a < b and ~ is 
N--+ oo {klk~mod [0, 1)e[a,b)} 

irrational. 

Theorem 2. I f  T is weakly mixing and 

(3) lira ~ as, k=O whenever S is a subset of the non-negative integers having 
N~oo kES 

density zero, 

then JISNf-Ef l  I ~ 0  for every f in L. 

Theorem 3. I f  T is strongly mixing then I I sNf -E f [ I -~0  for every f in L if 
and only if 

(4) mkax aN,k ~ 0. 

Note that in Theorem 1 it suffices to consider only f e  L o and to ask whether 
IISNfll--, O. If T is ergodic (a fortiori if T is weakly or strongly mixing), then 
E {fl  Z0} = E f  a.e. and again it is sufficient to consider only f s  L o . 

Proof of Theorem 1. The linear operator T is an isometry so { T" L 0: n = 0, 1,... } 

is a non-increasing sequence of subspaces o f L  0 . Define Z =  (~ T" L o and for each 
n=0 

n = 1, 2 . . . .  let W, be the orthocomplement of T n L 0 in T n-1 L o . Note that Z, I,V~, 
W2, ... are pairwise orthogonal; that TW,=Wn+ ~ for n = l ,  2 , . . . ;  that T Z = Z ;  
and that i f f  is in L o we can write f = f z + f l  + f 2 +  "'" where f z s Z  and fneW, for 
n = 1 , 2 , . . . .  

If f ~  W. then 

(SN(f), SN(f))= ~ aN, i aNd(Tif, TJf) 
i,j=O 

o0 
a 2 = ~ N,sltfl[ 2< [[fll2maxaN,s. 

j = 0  J 

Now hypothesis (1) is sufficient to guarantee that max aNd--~0 as N - - , ~  so 
[ISNf II--*0 as N ~ o o .  s" 

Tis an isometry of Z onto Z so it is one-to-one when restricted to Z. In addition 
( T ' T  f, g)= (T f, Tg)= (f, g) for all f, g e L so T* T =  I. Let T-~ be the inverse of T 
restricted to Z. Then, on Z, T * =  T*(TT-~)=(T  * T ) T  -~= T -~ so that T T * = I  
on Z as well. Thus T restricted to Z is unitary. 

Suppose f e Z .  By the spectral theory for unitary operators (applied to T 
restricted to Z) we can write 

(5) IlSNfl[~=c~ k~=OaN,k,2tk2dmf(,~) 
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where C is the unit circle and my is a finite measure on C. Since we are dealing 
only with functions in L o (i.e. with things of the form g-E{glZo}) the only in- 
variant functions must be zero almost everywhere so 1 is not in the point spectrum 

of T and thus ms{l}=0. Since ~ aN, k = 1 the integrand in (5) is bounded by the 
k=O ~,, 

integrable function 1. We will show that aN,k2k~o for all 2+1  such that 
k=0 

121 = 1. Then, since my {1} = 0, the bounded convergence theorem will guarantee 
that IISN f II 2__> 0 for f e Z .  

If 2 "=  1 for some smallest positive integer c~>2, then 

i - 
k=O k k= 

~t-1 1 
Now ~ 2k=0 and ~ aN,k~+~-- as N ~ o o  by hypothesis (1)so ~ aN, k2k~o 

k=O k=O ~ k=O 
as N ~ o o .  

Now suppose , t=e  2 ~  with ~ irrational in (0, 1) and suppose e>0.  Choose a 
f 

positive integer M > 2 such that I1 - e 2 ~i/MI < ~/2. Define Aj = 4k[k is a non-negative 

 nto<er and  ,mod 0,,is in '+1)} anti'ooze 
implies ' M ' 

~jaN, k - 1 e for j = 0 ,  M -  1. 
k M - < 2 M  " ' "  

If N > N o then 

g~= oaN,k 2 k 
M-1 

j= 0 keAj 
�9 t-1 .. a 1 

+ j_~ole2"'J/MI k~Aj N,k---M- 

1 M-1 
+ ~  ~ e z"ijlM 

j=O 

M-1  

<= ~ aN, k (e/2) + 2 e/2 M + 0 = e. 
k=O j=O 

We have seen that for f e L  o we can write f = f z + f l + f 2 + " "  with f zEZ and 
f~eW/for i=1,  2 . . . .  , and have shown that tlSNIzII-+0 and llSNf~ll-,0 for all i. 
This guarantees that l[ SN f II -+ 0 completing the proof of the sufficiency of hypo- 
theses (1) and (2). 

The necessity of (1) can be shown easily by an example involving a periodic 
transformation on a space consisting of a finite number of atoms. An example 
showing that (2) is necessary is somewhat tedious and a little tricky. In that 
which follows we let f2= [0, 1), let 27 be the collection of Borel subsets off2, and let 
P be Lebesgue measure restricted to 2;. 
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Suppose 7e[0, 1) is irrational and 

(6) lim lim ~ , a  Nk > ~ >0  
~ 0  N--,co k~A~ 

where A~={k[kTmod [-0, 1) is in [y-e ,y+e)mod [0, 1)}. 

[, 6 
L e t A =  , ,B= + ~ , y + ~  mod[O, 1 ) , f = ~ I a - l ,  andg=~IB-1"  

Define r ( x )=x -7  rood[0, 1). Then 

(SN(f) ' g)= ~ 12 amk (Ir-ka, IB)-- 1 
k=O (~2 

> 12 
= ~ -  ~ aN, kP(T-kAnB)- - I  

k~A6/6 

12 
~_ 52 P(B) ~ aN, k--1 

k~Ae,/6 

2 
= T  ~ aN'k-1 

k~Ad/6 

so lim(SN(f),g)>l and thus IISN(f)II does not converge to zero as N ~ o o .  
N---~ ao 

Now suppose that (6) does not hold for any y, 7e [0, 1) with 7 irrational for any 
6>0.  Suppose, however, that (2) fails to hold for fixed a, b, re[0,  1) with a<b 
and 7 irrational. Assume 

lim ~ = b - a + 6  
N--* ao {klkTmod[O, 1)~[a,b)} 

with 6>0.  (If not we will use [0, 1 ) - [a ,  b) and the same argument.) By our as- 
sumption about expression (6) there exists an e such that 0 < e < b - a  and 

lim ~ aN.k < ~  - 
N~oo k~B~ 

where B e = {klk ~/mod [0, 1) is in [b - e, b + e) mod [0, 1)}. Let T(x) = x - 7 mod [0, 1) 
as before and define 

Then 

1 
f =  l~Ito,~)--le and g= b - a  It"'b)-- l" 

oo 

1 k~=OaN, k(Ir-ktO,~), I[a,b))-- 1 (SN (f)' g) = ~ (b - a) = 

1 
> = ~ P(T-k[O, ~)c~ [a, b))- 1. 

e(b - a) {klk~, rood[O, l"~is in [a, b-e)} 
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Since T-k [0, e) = ([0, e) + k ;~) mod [0, 1), if k 7 mod [0, 1)e [a, b - e) then T-k [0, e) 
c [a, b). Thus 

SO 

1 

(SN(f)'g)> b - a  {klky mod[O,1 ~) i~ i,~ t.,b-~))aN'k-- 1 

1 [ o~ aN,~- ~aN, k] > ~-' - -  1 
= b - a  {klk,,,mod[ , ) i s in[a ,b)}  k~B~ ..1 

>1[  ]_, 
lim(SN(f),g)=~_a_ a lim 2 aN, k-- l im ~ aS, k 

N-,oo N-~oo {klk7 mod[O,1)e[a,b)} N~oo k 

1[, 
> b - a + 6 ) -  - 1 > 0 .  
= b - a  

10 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 13 

Thus HSN(f) N can not converge to zero as N ~  oo. 

Proof of Theorem 2. The proof is the same as that of Theorem 1 prior to **** 
except that it uses (3) instead of (1) to guarantee that m.ax aN, j ~ 0 as N-~ oo. 

J 
Since T is weakly mixing and since we are dealing only with functions in L o 

(i.e. their means are already subtracted out) the point spectrum of T restricted 
to Z is empty. 

Suppose f e Z .  At this point we apply the argument of [6, pp. 40 and 41] to get 

1 N-1 
g ~ I(rkf' f)l ~ 0 as g--* oo, 

k = 0  

or equivalently to get the existence of a set S of positive integers of density zero 
such that (Tkf, f)-+ 0 as k--, oo provided kr We have 

IlSN(f)ll 2= ~ aN, jaN, k(rJf, rkf) 
j , k  

<__~ a2,k IJNH 2 + 2 2 aN, jaN, k I ( rk-Jf  , f ) l  
k j < k  

~ Ilfll~ m~ax{aN,~}+2 ~. I(T~f> f)l ~ aN,~aN,~+.. 
~=1 k=O 

Now assumption (3) guarantees that mkax {an, k} ~ 0 as N ~  oo and 

M 

~] i(T:/,, f)l ~] a,<,~ aN,~§ Ilfli ~ ~ aN, k ~ aN, k+~< 
~=1 k=O k=O ~=1 

+ sup l(T=<f> f)l ~ %k ~ aN, k+=< 
e>-M 
~ S  k=O ~=1 

(7) + Ilfll = ~ aN, k ~ aN, k+~ 
k= 0 ~eS 

< M II f II z max {an, it} + sup I (r~f, f)l  
k ~>M 

+ tlftl 2 3~ aN, k E aN, k+~<" 
k= 0 ~ S  
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If z > 0, we can make the first two terms in (7) less than ~ by first choosing M 
large enough that sup l(T~f,f)l<8/2 and then choosing N large enough that 

e > M  

max {aN, k} < e/2M IIf}l 2. It remains to show that 
k 

~ aN, k~aN, k~_~O as N ~ o o .  
k= 0 ~eS 

Suppose not, that e > 0, and that 

aN, k 2  aN, k+~>= 3~ 
k= 0 cteS 

for infinitely many values of N. Now for each positive integer m 

~aN, k~aN, k+ ,<~au ,  k+max~,aN, k+, �9 
k = O  ~ S  k = O  k > m  ~t~S 

The sum ~, aN, k~O as N ~  oe so max ~ aN, k+~>2e for infinitely many values 
k = 0  k > m  oreS 

of N. Thus we can find strictly increasing sequences of positive integers {Nm} 
and {kin} such that ~ aN,,,km+~>2e for all m. Since sup{aN, k}--*0 as N--* o% we 

~ES 

could have chosen {Nm} and {kin} so that ~, aN,,,k,,+,>e for all m. If we define 

S m = {km + o~ [ o~ ~ S, o~ > m }, then we will find a subsequence {m~} such that S* = Stay 
has density zero. (Then, of course, ~= 

aN . . . .  >= ~ aN . . . .  >= ~ aNm~,k,.~+. >=e 
~tES* Ct~Smv Ct~N 

~'> rtl 

giving a contradiction.) If A is a subset of the positive integers, define :~ (A) to 
be the cardinality of A, and define 

[A ~ {1 . . . .  , N}] 
R N (A) -  N 

Note that sup R N (Sin) < sup R N (S) which converges to zero as m ~ oo since S is 
N N > m  

of density 0. Choose {m~} strictly increasing and such that sUp RN(Sm~)<2 -v. 
Then for every positive integer fi N 

oo 

RN(S*)<= ~ RN(Smv) 

<= 2 RN(Smv)+ 2 sUpRN(SJ 
v=l v>fl N 

<~RN(S)+2-Z 
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If ea > 0 we can choose fl so that 2 -a < e~/2, and then choose N so that 

Then if n > N we have 
argued above, this leads 

sup R. (S) < el/2 ft. 
n>N 

R , ( S * ) < e  1 and by definition S* is of density zero. As 
to a contradiction. Thus 

• aN, k2aN ,  k+a:'-'+O as  N ~  oo, 
k=O 7cS 

and f o r f  in Z we have IISN(f)l[ ~ 0  as N ~  oo. 

Since for f ~ L  o we can write f = f z + f l  +f2 + "'" with fz in Z and f / i n  W/ 
for i=  1, 2 , . . . ;  since the SN'S are linear operators on L with IISN[ I < 1 for all N; 
and since ItSNfzn ~ 0  and q[SNf~l I -~0 for all i; it follows that IISNfll-- ,0 for 
every f e  L o . 

Proof  of  Theorem 3 is straightforward and omitted. The theorem statement 
is included for completeness and because it is the obvious generalization of [3]. 

3. An Example 

Considerable effort has been put into the study of the convergence (in some 
sense) of sums of the form 

(8) ~ aN, k f (  Tk X) 
k=O 

to S f d P .  Many of the results obtained have required that f be such that the 
random variables { f ( T  k x)} be independent or very strong mixing in some sense; 
this type of result is not closely related to the results obtained in this paper. 

The results in [1], [2], and [4] are much deeper than those obtained here and 
are of a somewhat different type. They yield almost everywhere convergence but, 
of course, require rather strong assumptions on the aN, k'S. 

The only result (known to the authors) with which the result given here might 
be in competition is the result of Cohen [5] which states: 

Theorem (Cohen). I f  T is a linear operator from a Banach space B to B such that 
11T"]I < M < oo for n= 1, 2, . . . ,  if a, , j  is a regular matrix such that 

(9) lira ~ [aN, i+ 1 - a N , j l = 0  
k~oo j=k 

uniformly in N,  if x EB, and if L N x =j  and T j x is a weakly compact set, then 

there is an x o in B such that lim L N x = x o = Tx  o . 

The following is an example of a matrix aN, k of coefficients for which the 
theorems of this paper are applicable, but for which (9) does not hold. Let b 1 = 0 
10" 



148 D.L. Hanson and G. Pledger: 

and for each n>  1 let bN+ 1 =b~+4n .  Let I be the set of non-negative integers i 
such that either 

a) i is even and there exists a positive integer n such that b. < i < b. + 2 n -  2, or 

b) iis odd and there exists a positive integer n such that bn + 2 n + 1 < i < b. + 1 - 1. 

The set I contains the circled integers in the "picture"  below. 

bt b z b a b4 

@ 1 (~) 5 (~) 7 ~)  13 (~) 15 (~) 17 (~) 

2 @ 8 @ 10 (~  18 @ 20 (~) 22 (~  ... 

25 ... 

Let IN={k: k is one of the first N integers in I}, and let 

1 kelN 

aN, k = 
0 otherwise. 

Note that if kelN then either laN.k--aN.k_ll=l/N or ]aS, k+t--aN, kl=l/N (or 
both), and that ~ {k: k e Iv, k > N + 1 } > [N/2] - 1. Thus 

laN, k+X--aN, kl=~ ~ [laN, k--aN, k-ll+laN, k+l--aN, J1 
k=N k>=N+l 

k~ll~ 

1 > 
- 2N 

@{k: keIN, k>_N+l}  

N - 3  1 

= 4N  4 '  

and (9) does not hold. It is "obvious"  that (3) holds. Rigorous proofs that (1) and 
(2) hold are routine but very tedious and will not be given here. To prove that 
(1) holds one may consider the various cases depending on which of ~ and j are 
even and odd. The proof depends on the fact that if ~ is odd then 

and 

{klkeI, b,< k < b, + 2 n -  2, ~ divides k} 

#(klkeI ,  b <k<b ,+2n-2}  

{klkeI, b n + 2 n +  1 <k<b,,+l - 1, e divides k} 

{klkeI, b . + 2 n +  1 <k<b,,+l - 1} 

both converge to 1/~ as n ~ oo ; if ~ is even, one of these converges to 2/~ and the 
other to zero depending on whether j is odd or even. To prove that (2) holds one 
may note that the set {(m + 2k)7 mod [0, 1): 1 < k <  n} gets in a sense uniformly 
spread out in [0, 1) as n--* oe, and this "uniform spreading out"  occurs uniformly 
in m. 
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4. Acknowledgement and Concluding Remarks 

A talk bearing some resemblance to this paper was presented by the first 
author at an ergodic theory symposium held at Oberwolfach in August 1968. 
The main result was a version of Theorem 1 when T is ergodic. Assumptions (1), 
(2), and (3) were shown to be sufficient for the desired convergence, and both (1) 
and (2) were shown to be necessary. Professors Jacobs, Kakutani, and Neveu 
were responsible for asking whether (1) and (2) were not in fact necessary and 
sufficient for the desired convergence and for providing the proof of this fact 
(i. e. for deleting condition (3) in the main theorem). The ideas used in the proof 
differ surprisingly little from those used in the authors' original proof (which 
incorporated the proof of Theorem 2); the new proof does involve a stronger 
use of spectral theory. It is clear that "something" related to sets of density zero 
must be dealt with if the theorem is to hold for weakly mixing transformations 
which are not strongly mixing. It also would seem reasonable, even without a 
knowledge of Theorem 1, that (3) is stronger than necessary for Theorem 2. It is 
easy to inductively construct sequences of coefficients which satisfy (1) and (2) 
but not (3), and it came as rather a surprise to the authors to discover that (1) 
and (2) imply the necessary relations (whatever they are) between the coefficients 
aN, k and the sets of density zero which one encounters when dealing with weakly 
mixing transformations. This would seem to imply some sort of regularity for 
these sets of density zero. Questions which arise are: 1) What properties do these 
sets have ?, and 2) Can such sets be characterized in any useful fashion ? 
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