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Compact Abelian Group Extensions 
of Discrete Dynamical Systems 

WILLIAM PARRY 

Summary. This paper introduces the notion of a free G extension of a dynamical system where G 
is a compact abelian group. The concept is closely allied to that of generalised discrete spectrum 
(which includes Abramov's  quasi-discrete spectrum as a special case). We give necessary and sufficient 
conditions for a G extension of a minimal (uniquely ergodic) dynamical system to be minimal (uniquely 
ergodic) and show that in a certain sense a general G extension lifts these properties. Stable G-extensions 
always lift these properties if the underlying space is connected. This fact is then used to characterise 
all uniquely ergodic and minimal affine transformations of a certain three dimensional nilmanifold. 
The rest of the paper is devoted to the exhibition of group invariants for systems with generalised 
discrete spectrum. In particular it is shown that such systems always have a compact abelian group 
as underlying space. A lemma which facilitates this result gives necessary and sufficient conditions 
for a connected G-extension of a compact abelian group to be a compact abelian group. 

w 0. Introduction and Definitions 

Furstenberg's structure theorem for distal dynamical systems [13 shows how 
a distal system may be constructed by a transfinite sequence of isometric extensions 
starting from the trivial system. At the moment there seems to be a lack of in- 
variants associated with such a construction, although Knapp's work on distal 
algebras of functions 1-23 goes some way towards alleviating this defficiency. It 
would seem worthwhile, therefore, to restrict one's attention to a smaller class of 
systems. Systems with quasi-discrete spectrum are distal, but these have received 
sufficient attention in [ 3 -  7]. An intermediate class comprises systems with (for 
want of a better name) generalised discrete spectrum. In w 4 we introduce the 
notion of discrete spectrum mod D, where D is a conjugate closed, closed, sub- 
algebra of the algebra of continuous functions. By starting with the algebra C of 
constants, forming the mod C eigenfunctions, taking the closed linear span D of 
these functions, forming the rood D eigenfunctions and so on (a possibly trans- 
finite procedure) we may arrive at the entire algebra of continuous functions. If 
this is the case we say the system has generalised discrete spectrum. (The procedure 
is similar to, but stronger than, Knapp's of forming functions almost periodic with 
respect to a sub-algebra [23: on the other hand it is weaker than Abramov's 
of forming quasi-eigenfunctions of order n+ 1 from quasi-eigenfunctions of 
order n. As one might expect, systems with quasi-discrete spectrum have gen- 
eralised discrete spectrum and these latter are distal.) 

Our purpose, then, is to give a structure theorem (a canonical representation 
theorem) for minimal dynamical systems with generalised discrete spectrum 
acting on a compact metric space. The invariant we associate with such systems 
is a sequence of countable discrete abelian groups or, dually, a sequence of compact 
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abelian groups (w 4 Theorem 8). w 5 is devoted to a lemma which gives a necessary 
and sufficient condition for a compact abelian group extension of a compact 
abelian group to be a compact connected abelian group. The condition is very 
natural and the lemma is of such a fundamental nature that it may not be new, 
although we have not been able to find it in the literature. Minimal dynamical 
systems with generalised discrete spectrum acting on a compact connected metric 
space may be represented as "skew-product" transformations of a compact 
abelian group. This is a partial generalisation of the fact that a minimal dynamical 
system with quasi-discrete spectrum acting on a compact metric space can be 
represented as an affine transformation of a compact abelian group. The dif- 
ference in the canonical structure of these types of transformation lies in the "non- 
affinity" of skew-products. For example a typical transformation of quasi-discrete 
type on a 2-torus K x K is 

S (x, y) = (~ x, ~ x" y), (o.1) 

whereas generalised-discrete spectrum is typified by 

S (x, y) = (e x, ~0 (x) y) (0.2) 

where ~o: K ~ K. Although the latter type in general fails to be affine, roughly 
speaking, we can say they act as translations on fibres. 

Transformations of type (0.2) were studied by Furstenberg in [8], where 
conditions for the [minimality], unique ergodicity, and ergodicity of such trans- 
formations were given. In w167 1, 2 we note that these conditions generalise to what 
we call [simple] compact abelian group extensions of dynamical systems. In 
essence, most of the ideas of these sections can be attributed to Furstenberg [8]. 
Our indebtedness to [8] is fully acknowledged. 

An interesting corollary of the results in w167 1, 2 shows that "in general" 
compact abelian group extensions of [minimal], [uniquely ergodic] systems are 
[minimal], [uniquely ergodic] (cf. [9] for similar results). This suggests the notion 
of a stable extension. If an extension is stable the qualification "in general" may 
be omitted. This simple result enables us to characterise all minimal [uniquely 
ergodic] affine transformations of a certain 3-dimensional nilmanifold, generalis- 
ing certain results in [10, 11]. The study of such affine transformations appears 
in w 

w 6 discusses, without proofs, the purely measure theoretic analogues of the 
rest of the paper. 

A dynamical system (X, S) (in this paper) is a compact metric space X, together 
with a homeomorphism S. A dynamical system (Y, T) is a factor (or a homo- 
morphic image) of (X, S) if there is a continuous map p of X onto Y such that the 

diagram X s , X  

~ Iv 
Y ~ Y  

commutes (S- ~ ~ T). If in particular q~ is a homeomorphism we say the two 
systems are conjugate or homeomorphic. If SF= F (F closed) implies F =  X or ~b 
we say that S is minimal. If m is a normalised S invariant Borel measure and if 
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SF = F (F Borel) implies m (F)= 0 or 1 we say that S is ergodic (with respect to m) 
or alternatively that m is an ergodic measure for S. Ergodic measures always exist; 
if there is only one for a given dynamical system we say that the system is uniquely 
ergodic. (In this case there is only one invariant measure and it is ergodic.) A 
uniquely ergodic system whose invariant measure is positive on non-empty open 
sets is minimal. A necessary and sufficient condition for (X, S) to be uniquely 
ergodic is that 

]n-1 
- -  ~ f ( S k x ) ~ I ( f )  for all x~X  and for all f~C(X)  (0.3) 
nk=O 

where I(f) is a constant depending only on f and C (X) is the algebra of complex 
valued continuous functions. (If (X, S) is uniquely ergodic the convergence in 
(0.3) is necessarily uniform [-12].) S is called distal ifS n~ x -+ z, S "~ y --+ z implies x = y. 

Let X be a free G-space where G is a compact abelian group i.e. there is given 
a continuous map q0 of G x X onto X such that 

~o (g, q0 (h, x)) = (p (g h, x) 

and ~0 (g, x) = x if and only if g is the identity of G. (If the map (p is understood we 
shall write g x for ~0 (g, x).) If (X, S) is a dynamical system such that S commutes 
with G (i. e. S(g x) =g  S x) then S induces a homeomorphism S' on the G orbit space 
X'= X/G defined by 

S' a (x) = G (S x) 

where G(x) is the G orbit of x(G(x)= {gx: g~G}). If (Y, T) is homeomorphic to 
(X', S') (T ~' , S') we shall say that (X, S) is a free G-extension of (Y,, T). rc will 
usually denote the map (S ~ , T) defined by re(x)= ~o -1G(x). 

(X, S) is a simple free G-extension of (Y, T) if for every 7 e G (the character group 
of continuous homomorphisms of G into the circle group K) there exists fie C(X, K) 
satisfying 

f~ (g x) = t' (g) f ,  (x). (0.4) 

(C(X, G) denotes the group of continuous maps of X into G, if G is a group.) 
Actually simplicity refers only to the spaces X, Y and the group G and the require- 
ment is that the G space induced on the trivial line bundle X • C by each character 
y e G (g: (x, c ) ~  (g x, 2(g) c)) possesses an every non-zero cross-section i.e. there 
exists s: X-+  C (s (x)4= 0) such that the section (x, s (x))is G invariant, for to obtain 
f~ one need only divide s(x) by b(x)]. 

IfD is a closed, conjugate closed, sub-algebra of C(X) an eigen-function rood D 
is a function f ~  C(X, K) satisfying 

f s  
- - E D .  
f 

(X, S) is said to have discrete spectrum rood D if the linear Span of H(D) is 
dense in C(X) where H(D) denotes the group of eigenfunctions rood D. (If D is 
the algebra of constant functions discrete spectrum mod D reduces to the classical 
case.) Generalised discrete spectrum will be defined later. 

Throughout this paper (X, S) will denote a dynamical system and G will denote 
a compact abelian group. 
7 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 13 
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w 1. Minimal Extensions 

Theorem 1. Let (X, S) be a simple free G-extension of the minimal dynamical 
system (Y, T). Then (X, S) is minimal if and only if 

f ( T n  x) _ f~(S x) 
f (n  x) f~ (x) 

(S ~ , T) (1.1) 

has no solution f e C ( Y,, K), 74 = 1. 
I f  (1.1) has a solution f for f~ satisfying (0.4) then (1.1) has a solution f '  for 

each f~ satisfying (0.4). 

Proof. Let us clarify the last remark first. If f satisfies (1.1) where f~(gx)= 
7 (g)f(x) and if f~' (g x)= 7 (g)if(x) then fJf~ is G invariant and hence has the form 
h o n where he C(Y,, K). Therefore 

f (Tnx )  
f (nx)  

f((Sx) h(n Sx) _ fj(Sx) h(Tn x) 
f;(x)h(nx) f;(x)h(~x) 

and f ' = f / h  satisfies (1.1) with f~' in place of f~. 

Suppose 75  1, feC(Y,  K) and 

f (nSx)  f ( T n x ) _  f~(Sx) 
f (nx)  f (nx)  f~(x) ' 

then fn/f7 is S invariant and not constant (for this would entail f (ngx)= 
7 (g) f (n x) =f(n x) i. e. 7 - 1) and hence S is not minimal. 

On the other hand suppose S is not minimal. Let F :I= X be a closed minimal 
set for S. Since gF is also a closed minimal set for S, for each geG we have gF=F 
or gFnF=dp. Moreover g F n F = q )  for some geG for otherwise we would have 
n - l n F = F  and the minimality of T would imply F=X.  Hence the closed sub- 
group H = { h :  hF=F, heG} of G is proper. Let 7 (H)=l ,  74=1. If n x = y  and 
g x e F  define f(y)=f~(gx)=7(g)f~(x). This is well defined for if hxeF  then 
7(g) f~(x)=7(h) f~(x) since g h-lEH. If y . ~  y, n xn= y ., n x=y, g.x.eF, g xeF  we 
must show that 7 (g . ) f  (x.) ~ 7 (g) f~ (x). 

By considering a subsequence we may suppose g . x . ~ g ' x e F  (since F is 
closed and y . - . y )  and therefore f~(g.x.)-~f~(g'x)=7(g')f~(x)=7(g)f~(x) since 
g' g- leH.  Hence f~C(Y, K) and 

f(Trcx) f (nSx )_ f~ (gSx )  7(g)f~(Sx) 
f(n x) f(n x) f~ (h x) 7 (h) f~ (x) 

where g Sx =S g x s F  (i.e. xEF) and hxeF. 
Hence g h-  ~ c H and 

f ( r ~  x) _ f~ (S x) 
f (n x) f~ (x) " 
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Corollary 1. Suppose (X, S), (X, So) are simple free G extensions of (Y, T). Then 
S x = q~ (n x) S O x where q~ E C (Y, G) and S is minimal if and only if 

f ( T n  f~(S o x) 
f (nx~ )=?(cpnx f~(x) (1.2) 

has no solution f e C(Y, K), 7~g 1. 

Proof The proof is immediate once we have shown that Sx=qo(nx)S o x for 
some q~eC(Y, G) and this follows from the fact that n S x = T x = S o x  since for 
each x there exists g = ~0'(x) such that Sx= r o x. Moreover 

Sg x=g  S x=~o'(g x) So(g x)=g q)'(g x) S o x 

and we have S x = q0'(g x)S o x i.e. q)'(g x)= qo'(x) for all g ~ G and therefore ~o'(x)= 
~o n x for some ~oe C(Y, G). (The continuity of~0 is easily proved.) 

Corollary 2. I f  X =  Y x G (g(y, h)=(y, g h)) then Eq. (1.2) becomes 

f (Ty)  
- y (p (y)  (1 .3)  

f(Y) 

on putting S o (y, h)= (Ty, h) and f~ (y, g)= 7 (g). 

Remark 1. In Theorem 1 and its corollaries if X is connected a solution of 

f ( T n  x) _ f~ (S x) 

f (n  X) fr (x) 
(1.4) 

cannot exist if 7 4= 1 is of finite order. 

Proof If7 k = 1 and Eq. (1.4) has a solution then f~ (8 x) = 7 (g) f/(x), f k (g X) = f~(x) 
and for some he C(Y, K) h(n x)= f f  (x). Therefore 

fk(Ty) h(Ty) 

fk(y) h(y) 

i.e. fk/h is constant and fk  n / f f  is constant. Since X is connected f n / f r  is constant 
and therefore f~ is constant on fibres n - 1 y i.e. 7 = 1. 

Theorem 2. Let (X, Se) be a simple free G-extension of the minimal dynamical 
system (Y, T) where X is connected (Se~-~r ) .  Then {g: Sg=gSe is minimal} 
contains a dense G a in G. 

Proof. Let J be the set of characters of G of infinite order. According to 
Corollary 1 of Theorem 1 and Remark 1, S~ is not minimal if and only if there 
exist ?e J ,  f i e  C(Y, K) satisfying 

fZ(T~ L(S~ x) 
(t.5) 

7* 
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If h6C(Y,, K) also satisfies (1.5) for the same 7, g then fg~/h is constant. In other 
words, up to a multiplicative constant, there is at most one f ]  for each 7, g. Should 
f ]  satisfy (1.5) with g replaced by k we would have 

fJ(T~x) fJ(~x) 
fff (T~ x) = ? (g/k) f ]  (~ x) " 

Hence G~ the set of g e G admitting a solution of (1.5) is a coset of some sub-group 
of G and using the separability of X, 7 (G~) is a countable coset of some countable 
sub-group of K. 

{g: Sg is not minimal} = {g: for some ?~d;, g~G~} 

m_ U a ) ~  U 7-17(G~2). 

Since J is countable and 7 (G~) is countable the latter set is an F~. Moreover 7-a(k) 
is nowhere dense if k e K  since 7 is not of finite order. Hence the latter set is a first 
category F~, i.e. {g: Sg is minimal} contains a dense G~. 

Corollary 1. I f  gS o is homeomorphic to So for each geG then gS o is minimal for 
each g E G. 

Proof. This follows immediately from the existence of at least one g such that 
g S o is minimal. 

Corollary 1 motivates the following definition: If(X, S) is a free (not necessarily 
simple) G extension of (Y, T) we will say that the extension is stable if gS is 
homeomorphic to S for every ge G. In view of Corollary 1, verifying stability is a 
method of verifying minimality. An analogous result holds for unique ergodicity 
and we shall apply this method in w 3. 

w 2. Uniquely Ergodic Extensions 

In w 1 we needed repeatedly to assume that G-extensions were simple i.e. for 
each 7~G there exists f~e C(X, K) satisfying f~(gx)=7(g)f~(x). In this section it 
is enough to assume the existence of such functions in the class B(X, K) of Borel 
maps of X into K, (Borel simple extensions). However, this is no assumption at 
all as we will now show. The proof imitates Gleason's proof of G invariant local 
sections for vector bundles. 

Lemma 1. Let X be a free G-extension of the compact metric space Y Then for 
each ? ~ G there exists f~ e B (X, K) satisfying f7 (g x) = ? (g) f~ (x). 

Proof. Let X-~* Y and ?eG. For each y~ Y we will produce an open neigh- 
bourhood U(y) such that on ~-1 U(y) there is a function Fys C(X) vanishing now- 
here on re- 1 g(y) satisfying Fy (g x) = ? (g) Fy (x). Letting U 1 . . . .  , Uk be a finite covering 
of Y selected from { U(y)}, U/= U(y) and defining F i = Fy~/tFy ,I on U/we finally define 

f , = F /  on g / - ( g l u  "", U Ui_l) i=2,  3, ..., k 

=F1 on u1. 
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We proceed therefore to produce our neighbourhoods U(y) and functions Fy. 
Choose Xo~n-~y and define F on n-~y by F(gxo)=7(g ). By Tietze's extension 
theorem extend F: X -~ C, F e C (X). Define Fy (x) = ~ ~, (h) F(h- i x) dh where integra- 
tion is with respect to normalised Haar measure on G. By the invariance of Haar 
measure under translation we have 

Fy(gx)=7(g)Fy(x) and Fyl~_,y=Fl~_~y 

and clearly Fye C(X). Since IFyl= 1 on n-~y {x: Fy(x)+O} is an open subset of X 
of the form rc -~ U(y)=rc -~ y. The lemma is proved. 

In the following if m is a normalised Borel measure defined on Y and X is a 
G-extension of Y, rh will denote the normalised Borel measure on X defined by 

5 f(x) d,5 = ~(~ f (g  x)dg) dm 

for Borel functions on X. In this equation the inner integral is with respect to 
Haar measure producing a function which is constant on fibres n -  ~ y making the 
outer integral meaningful. If m is T invariant and S is a free G-extension of T then 
~5 is S invariant. 

Theorem 3. Let (X, S) be a free G-extension of the ergodic dynamical system 
(Y,, T,m). Let f~6B(X, K) satisfy where ?,~G. Then (X, S, ffl) is 
ergodic if and only if 

f(Tnx)_ f~(Sx) 
f( x) L(x) 

a.e. (Fn), (S ~ , T), (2.1) 

has no solution feB(Y,  K), ~ 1. 

Proof Suppose 7+ 1 and f eB(Y,  K) satisfies 

f( Sx)_ f(T=x)_ L(Sx) 
x) x) f, (x) 

then fn/J~ is S invariant and fn/j~ is not constant a.e. (fro for this would imply 
f (ngx)=),(g)f(nx)  a.e.i.e. 7 - 1 .  Hence S is not ergodic. 

If S is not ergodic there exists f e L  2 (X, ~) not constant a.e. satisfying f (S)=f.  
It is not difficult to see that L 2 (X, r~) is spanned by functions of the form f~ (x) h~ (x) 
where h~ (x) = h'~ (n x), h'~ e L 2 ( Y, m). Hence 

and 
f = ~ f~ (x) h~ (x) = ~ f7 (S x) h~ (S x) 

Z f~ (x) f~, (x) h, (x) = Z L (S x).f~, (x) h, (S x) 
7 '2 

(2.2) 

and applying the conditional expectation operator E(/n -1 B(Y)) to both sides of 
(2.2) we get 

f / (x)  f,, (x) hr, (x) =f~, (S x) j~, (x) h,, (S x). (2.3) 
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Here we have used the facts that h~ (x), h~ (S x) are n -  1 B (Y) measurable and 

fy (g x) f,, (g x) = 7 (g) 7'(g) f~ (x) f,, (x) 
and hence 

E(f~ f~,/rc -1B(Y))/f~ f~, is G invariant. 

Using the ergodicity of T it follows that either E(f~f~, /g-IB(Y))=O a.e. 
(7=I=7') or f~f~, is G invariant (7:t:7') which latter plainly is not so. Hence 
E(f~f~, /n- iB(r) )=O a.e. In the same way E(f~(Sx)f~,(x) /~-lB(r))=O a.e. if 
7 �9 7'. (2.3) is therefore justified, and since h~, (x) vanishes only on an S invariant 
n -1B(Y)  set the ergodicity of T implies h~, = 0  on a set of measure zero or one. 
However since f is not constant a.e. there must exist 7 '~  1 such that h~, is zero 
only on a set of measure zero. By normalisation it follows from (2.3) that (2.1) 
has a solution in B(Y, K). 

Corollary 1. Suppose (X, S, Fn), (X, S o, Ya) are free G extensions of (Y, T, m). Then 
S x =(p(n x) S o x where qoE C(Y, G) and S is ergodic if and only if 

f ( r n  x) f~ (S o x) (2.4) 
f(rcx) =7(~~ f ,(x) a.e. 

has no solution f ~B(Y,, K), 7~g 1. 

Corollary 2. I f  X = Y x G (g (y, h) = (y, g h)) then Eq. (2.4) becomes 

f ( r y )  =7(~o(y)) on putting So(Y, h ) = ( r y ,  h) 
f(Y) 

and f~ (y, g) = 7 (g). 

Remark 2. In Theorem 3 and its corollaries if X is connected a solution of 

f ( T r c x ) _  f , (Sx)  a.e. 
f (~x )  f ,(x) 

cannot exist if y ~ 1 is of finite order. 

Theorem 4. Let (X, Se, Fn) be a free G extension of the ergodic dynamical system 
(Y,, T, m) where X is connected (Se ~ �9 T). Then {g: Sz=gS ~ is ergodic} contains 
a dense G~ in G. 

Corollary 1. I f  the extension (X, S~, Fn) is stable then g S e is ergodic for each geG. 

The proofs of Corollaries 1, 2 of Theorem 3, Remark 2, Theorem 4 and its 
corollary are direct copies of corresponding statements in w 1. 

Theorem 5. Let (X, S) be a free G extension of the uniquely ergodic dynamical 
system (Y, T) (with unique invariant normalised measure m). Let f ~ B ( X , K )  
satisfy fy (g x) = 7 (g) f~ (x), 7 e G. Then the following are equivalent: 

(i) (X, S) is ergodic with respect to Fn. 
(ii) (X, S) is uniquely ergodic. 

(iii) f (r~x)_ f~(S x) a.e. (Fn) 
f (n  x) f ,  (x) 

has no solution f 6B(Y, K), 7~- 1. 
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Proof. As we have seen if (2.1) has a solution when ~ ~ 1 then S is not ergodic 
and therefore not uniquely ergodic i.e. (ii) ~ (i) ~ (iii). We have also seen that 
(iii) ~ (i). We need only show that (i) => (ii). 

Suppose S is ergodic with respect to ~ and suppose } is a normalised S in- 
variant Borel measure with respect to which S is ergodic. With q = N or ~ let {1 1 } 

Eq= x: T ~. f (S ix )~  [. f dq for all feC(X) . 
i=0 

By the ergodic theorem q(Eq)= 1. Notice that if xeE,~ then gxeEe, for all geG 
since 

1.-1 1.-1 
-~ y. f(S'g x ) = 7  E f (g  Si x ) +  i f (g  x) d k  = l  f(x)dVn, 

i=0 i=0 

for all f e  C(X) i.e. n -~ n E,a =E,~. The measure p defined on Y by p(B) =~ n -1B 
is clearly T invariant and hence p=m. Hence m(reE~)=[)n-lnE~>~(Er,)=l 
and m (re E,~) = r~ (re- 1 n E~a ) = r~ (E~) = 1 and re E~, re E,~ have a common point. 
Since E~, consists of whole fibres re-~y, Er,, E,~ have a common point x. Hence 

�9 1 n-1  . 
y f d~a=2,+mTi~=of(S'x)= y f d#a for all feC(X) and ~- r~ .  

Remark 3. Let (X, S, Fn) be a free G extension of the uniquely ergodic dynamical 
system (Y, T, m). Then Corollary i and 2 of Theorem 3, Remark 2, Theorem 4 and 
its corollary remain true if "ergodicity" is replaced by unique ergodicity. 

In view of the fact that & is a measure which is positive on non-empty open 
sets (if the same is true of m) the unique ergodicity of (X, S, tS) implies that (X, S) 
is minimal. 

Remark 4. There is a very close analogy between the situation where (X, S) 
is a non-minimal simple free G-extension of a minimal system (Y,T) and the 
situation where (X, S) is a non-uniquely ergodic free G extension of a uniquely 
ergodic system (Y, T) (even when (X, S) is minimal). In the first case a minimal 
set is translated to either a disjoint or coincident minimal set by elements of G. 
The set fixing the minimal set is a closed sub-group. In the second case an ergodic 
measure is translated to either a mutually singular or coincident measure. The 
set fixing a given ergodic measure is a closed subgroup. From this fact it is easy 
to see that if an extension is not uniquely ergodic then as many ergodic measures 
exist as there are cosets of the corresponding sub-group. In case G is the circle 
a proper closed sub-group is finite and therefore there is either one ergodic 
measure or uncountably many. This was first noted in [13]. 

w 3. A p p l i c a t i o n s  to  N i l m a n i f o l d s  

Let N be the nilpotent Lie group consisting of matrices 

(ix ) (x Yz)- 1 (x, y,z, real) 
0 

and D be the uniform discrete subgroup obtained by restricting x, y, z to be 
integers. Define X = N/D the space of left cosets of D. X is a compact connected 
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three dimensional nil manifold. Define S YcD=aA(2)D where 2, ~ e N  and where 
A is an automorphism of N such that A D = D. S is called an affine transformation 
of the nilmanifold. If 

then since A is an automorphism we have 

~oi(x,y,z)+~o~(x',y',z')=q)i(x+x',y+y'+xz',z+z' ) i=1 ,3  (3.1) 

and 

qh(x,y,z) cp3(x',y',z')+cpz(x,y,z)+cp2(x',y',z')=cp2(x + x',y+ y' + xz ' ,z  + z'). (3.2) 

Moreover  A N '=N'  where N'  is the derived group consisting of elements 

and therefore (pi(o, r, o)=o,  i=1, 3. From (3.2) we have r O ) + ( p z ( O , y '  , O) = 

(pz(O,y+y',o) i.e. q)z(O,y,o)=~y where e= +_1. (A(N'c~D)=N'c~D.) From (3.1) 
we have 

rpi(x,y,z)=cpi(x,o,z)+cPi(o,y,o)=~oi(x,o,z ) i=1 ,3 ,  

and from (3.2) we have 

~oz(x , y, z )=  q)l(o , y, o) (?3(x, o, z)+ ~o2(o, y, o)+ q)z(x, o, z)=e y+~o2(x, o, z). (3.3) 

The circle group G=N'. DID acts freely on X according to f .  ( 2 D ) = 2 f D  
where f e N ' ,  and the affine transformation sends cosets of N'  to cosets of N'. 
Hence S induces a homeomorphism on 

N/D 
Y= X/G =-iV,. D/D- ~ N/N'. D, 

and since N'.  D is the group of matrices 

where a, c are integers and r is real Y is the two dimensional torus R x R/Z x Z 
and the induced homeomorphism is the affine transformation 

T(x, z) = (c~, 7) + (a x + b z, c x + d z) rood 1 

where a, b, c, d are integers and A = a d - b  c = + 1. 

In order that T should be minimal (or uniquely ergodic) it is necessary and 
sufficient that the matrix 
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should have entries a = d = l  and bc=o and the element ( ~ , j  together with 
elements (b x, c z) should generate Y [6]. 

Again from (3.2) we deduce that ~o2(x,o,z)=@2(x,o,o)+cP2(o,o,z)+xz(1-e ) 
and on substitution in (3.3) and resubstitution in (3.2) we get 

cxx'+bzz'+@z(X,O,O)+@2(o,o,z)+qoa(x', o,o).q-@2(o,o,z' ) 
=@2(x+x ' ,  o,o)+@z(o,o,z + z')+ x'z(1-~). 

Hence 

@2(X: O, 0)-- 2 X 2 

is a homomorphism of R to R i.e. 

@2(X, O, 0)= 2 X 2-~-~ X. 

Similarly 

b 
@2(0, O, Z ) : T  Z2 -{-# Z 

from which we conclude e = 1, b, c are even (one of which, of course, is zero) and 
)~, # are integers. 

Therefore A has the form 

<:/( c. t x ~ x + b z  ~ + 2 x + b z z + # z + y  

CX4-Z 

(3.4) 

(where b c = 0, b, c even, 2,/~ integers) if S (and hence T) is minimal or uniquely 
ergodic. 

Above we concluded that ~ = 1. This implies that S is a free G extension of T. 
We will show that S is G stable by showing that for every g~G there exists @ 
such that (p-~g S @ = S. In fact we shall only consider @ of the form x ~ fix 
and solve g e A(fi x)=f i  cA(x)mod  D where g~N'.  Since N' is central we have 
to solve 

~-lfl-lo;A(fi)=g-1 mod D. (3.5) 

With A satisfying (3.4) it is a purely computational matter to verify that the image 
of the map f i ~ - a f l - l c ~ A ( / ~ )  contains a half line of 

t 
and hence the Eq. (3.5) always has a solution fi i fgeN ' .  We have therefore proved: 

Theorem 6. In order that an affine transformation $2 D=~A(YJD of the nil- 
manifold X =N/D be minimal (or uniquely ergodic) it is necessary and sufficient 
that S be a free G extension of a minimal (uniquely ergodic) affine transformation 
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of the torus Y= X/G (G = N'. D/D). Such transformations S are G stable and have 
the form Yc D--+ ~ A(x) D where 

A is given by (3.4) and (a, 7) together with (b x, c z) generate the two dimensional torus. 
(It is an easy matter, moreover, to verify that they are distal.) 

The analysis of minimal affine transformations of compact abelian groups 
can also be carried out using these methods as we can see by the following: 

Theorem 7. Let S x = ~ A x be an affine transformation of a compact connected 
metric abelian group X. Let G be a closed sub-group of X such that 

G c k e r ( A - I ) c ~  I m ( A -  I) 

then S is a (simple) free stable G extension of T (where Tx  G--~ A (x)G) and is 
minimal, uniquely ergodic, ergodic according as T is minimal, uniquely ergodie, 
ergodic. 

w 4. Generalised Discrete Spectrum 

Lemma 2. Let H 1 be a sub-group of C (X, K) whose linear span is dense in C (X), 
and let D be a closed (conjugate-closed) sub-algebra of C(X). I f  E is a linear 
operator of C (X) to D satisfying 

(i) E ( f g ) = E ( f ) . g ,  f ~ C ( X ) ,  g~D, 

(ii) E ( f ) > O  if f >O with equality only if f =-O, 
(iii) E(1)= 1, 

(iv) E ( f )  = E (f) ,  

(v) E ( f ) - O  if f 6 n a - D ,  
then there exist a compact abelian group G acting freely on X such that D consists 
exactly of functions which are G invariant. Moreover for each 7eG there exists 
f ~ H  1 satisfying f~(gx)=7(g) f~(x). (E ( f )  is simply ~ f(gx)dg where dg is Haar 
measure on G.) 

Proof Let m be a normalised Borel measure on X such that ~ f d m  > O if f _>_ O 
( f ~  O) and define At by ~ fdAt = ~ E ( f )  dm. Then Yn is a normalised measure on X 
and (ii) ensures that ~fdAt>O if f > O  ( f r  We may and shall suppose that 
H I 2 D ~  C(X,K)  by considering HI.Dc~ C(X,K)  instead of H I if necessary. 
(Condition (i) would ensure that (v) remains true.) Let H2 =D c~ C(X, K) so that 
H 2 is a sub-group of H a. (v) ensures that members of distinct cosets of H 2 are E 
orthogonal (and therefore At orthogonal) so that F = H1/H 2 is a countable group 
since X is a compact metric space. 

Let G = P the group of homomorphism of F into K (or equivalently the group 
of homomorphisms of H 1 into K sending H 2 to 1) equipped with the compact 
open topology so that G is a compact abelian group. In a well known sense G = F. 
We shall define the action of G on X by describing its action on C (X) as a group 
of isometric isomorphisms. It will be enough to describe the G action on L (the 
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linear span of H1) as a group of isometric isomorphisms. Every member of L can 
be written uniquely as 

f = f l h x + , . . . , f k h k ,  h ~ D ,  f ~ H  1 (4.1) 

(fl . . . .  , fk) belonging to distinct cosets of H 2, for should (4.1) be identically zero 
we would have (by multiplication by j~ and application of E) h i =- 0 i = 1, ..., k. 

Define for g e G 
k 

g ' f -  Y' ,g(f)fihi  where J~=f iH 2. 
i=t 

This action is well defined and G acts as a group of algebraic lsomorphisms of the 
algebra L onto itself. (The action also commutes with conjugation.) We need only 
show that G acts as a group of isometries i.e. Ilg "ft] = N/N- However this will 
follow if we can show that ~ I g f 12 d~-= S l f  12 dr~ for then we can conclude that 

I lgf It = }i_+mJ Ig f l  2" dm) *'2"= ~im(5 I f l  2" dk)m"= I l f l l .  
However 

I lgf lZ dfn=~ ~g(J~)f~h~. g(f~)~ lc~ d f n = ~ l h z l 2  d fn=~l f l2  dt'n. 
\ i = 1  i=1 i=1 

We have proved that G acts on X in such a way that 

f ( g x ) = g ( f ) f ( x )  for f e H  1. (4.2) 

Hence g x = x implies g ( f )  = 1 for all f e  H1 i.e. g = 1. Clearly members of D are 
exactly the G invariant functions. From (4.2) it follows that for each 7 = r e  ~ there 
exists f7 (namely f )  satisfying f~ (g x) = g (f)  f~ (x) = y (g) f~ (x). 

Notice if D consists only of constant functions the conditions of the theorem 
become: The linear span of H 1 is dense in C(X) and there exists a normalised 
Borel measure m (positive on non-empty open sets) such that ~ f d m  =Oi f f eH~ - D. 

The conclusion is that X supports an abelian group structure (compatable 
with the topology of X) such that m is Haar measure and each member of H x is 
a constant times a character. 

Theorem 8. Let (X, S) be minimal and let (X, S) ~ (Y,, T) where (Y,, T) is distal 
and let D = { f q~ : f e C (Y)}. In order that (X, S) should have discrete spectrum mod D 
it is necessary and sufficient that S should be a simple free G extension of T where 
~0(gx)=cp(x) for all geG. 

Proof. Suppose S is a simple free G extension of T. We may suppose S induces T 
on X/G so that D is the subspace of C (X) consisting of G invariant functions. Let 
f,~ e C (X, K), 7 ~ G satisfy fy (g x)= y (g)f~ (x), then the closed linear span of functions 
f~ . f ~o ( f  EC(Y, K)) is C(X) and 

f~(S x) f(cp S x) 
f~(x) f q~(x) 

is G invariant i.e. f~ .fq)~H(D). 
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On the other hand if S has discrete spectrum mod D then there exists a linear 
operator E sending C(X) to D satisfying the conditions of Lemma 2 and such 
that E ( f S ) = E ( f ) S  (cf. Proposition 5.5 of [2]). H(D) plays the role of H~ in 
Lemma 2 since if f ~ H(D)-  D f(S) = h f where h ~ D and E (f)  S = h E (f). 

Hence E ( f ) / f  is S invariant and by the ,minimality of S, E( f )  is a constant 
multiple o f f r  i.e. E(f)=-O. Hence G=(H1/H2) acts freely on X as described in 
Lemma 2 and for each f~H(D), 

Therefore 
f (gx)=7(g)f(x) ,  f ( S x ) = h f .  (4.3) 

f (g S x)=7(g) f (S x)-- 7(g) h f ,  

f (S g x) = h (g x) f (g x) = h~ (g) f 

and G commutes with S. That S is a simple G extension of T follows from (4.3). 

Evidently a minimal homeomorphism has discrete spectrum (i.e. mod C) if 
and only if it is a simple compact abelian extension of the trivial homeomorphism 
of a one point space or, in other words, if and only if it is a compact abelian group 
translation. 

Let H 1 be the group of (rood C) eigenfunctions of S and let D1 be the closed 
linear span of H 1. Suppose for some ordinal ~, D~ a closed (conjugate closed) 
sub-algebra of C(X) has been defined for each/~< e. If ~ is a limit ordinal define 

D,=~JDp,  H ~ = U H  ~ 

(so that D~ is the closed linear span of H~). If c~ is not a limit ordinal define H~ as 
the group of mod D~_ 1 eigenfunctions and D, as the closed linear span of H~. If 
for some ordinal e, Do= C(X) we will say S has (generalised) discrete spectrum 
of order c~ (for the least such e). Members of Hp are called (generalised) eigenfunc- 
tions of order less than or equal to ft. Ho = K (the group of constant functions with 
absolute value one) are zero order eigenfunctions. 

Let us note that a homeomorphism with generalised discrete spectrum is 
distal (I am grateful to J. Auslander who pointed out that this could be proved 
without reference to a canonical representation). For suppose S"'x ~ z +--S"'y. 
We shall show that x = y  by showing that for each/~<~, f (S"x)=f(S"y)  when 
f~Hp.  This is trivially true for/~=0. Suppose it is true for/~<flo. If/~o is a limit 
ordinal then it is true for/3o since 

P<Po 

If flo is not a limit ordinal then it is true for f l0-1.  Let feHao, then f ( S ) = h f  
where h~Dao_ 1. Moreover since h can be approximated by linear combinations 
of elements of Hao_ 1 we have h (S" x) = h (S" y). Hence 

f (S"' x)= h (S "'- a x), ... , h (x) f (x) 

f (S  "~ y) = h (S"'- 1 y) . . . . .  h (y) f(y) 
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and therefore f ( x ) = f ( y )  and in the same way f ( S " x ) = f ( S " y ) .  The proof is 
complete by transfinite induction. 

Theorem 9. 
Let (X,S)  be a minimal dynamical system ( X  connected). Then (X,S)  has 

(generalised) discrete spectrum of order ~ if and only if it can be represented as 
(Y,, T) where Y is a compact abelian group and T is a homeomorphism of Y for which 
there is a sequence {Gr of closed sub-groups (0 < fl < ~) Y= G o 2 G~ :5 G~ 2 G~ = {e} 
if fll < f12 satisfying 

(i) The coset partition of G e is T invariant for each fl i.e. the sub-algebra Cp of 
C(Y)  consisting of functions invariant under G e is T invariant. (Hence T(gy)= 
Pe(g,Y) Ty for geGp where PeeC(Gpx Y, G~) and therefore induces a homeo- 
morphism T~ on Y/G~.) 

(ii) I f  fi is not a limit ordinal then 

G~_ 1 = {ge Y: 

= {ge Y: 

(g Ge) T~ = T~ (g Ge) } 

T(gy) 

(iii) I f  fi is a limit ordinal G~ = ~ G~ . 
e1<~ 

In other words (Y,, T) is the inverse limit of the systems (Y/Ge, T~) with respect 
to the natural maps ( Y/G ~ + I) -* ( Y/G e), Tp + 1 -* T~ where G r is defined in (ii) and (iii). 

Proof. If Y is a compact abelian group and T has the form described in the 
theorem it is easy to show that T has discrete spectrum of order ~. The (generalised) 
eigenfunctions are easily derived from the characters. 

We shall show that if (X, S) has discrete spectrum of order e (and X is con- 
nected) it can be given the form described in the theorem. 

We may suppose that D~ = {h q0: he C(Yr where q0: (X, S)--+ (Ye, Te) in which 
case, since H~+ 1 is the group of rood D~ eigenfunctions, by Theorem 8, (Ye+l, T~+I) 
is a simple free compact abelian group extension of (Yr Te). 

We shall show (cf. w 5, Lemma 3) that the assumption that Ye is a compact 
abelian group leads to the conclusion that Yp+I is a compact abelian group. The 
theorem is completed by defining (Y,, T) as the limit of the systems (Y~, Te). 

Remark 5, If X is connected and (X, S) is minimal with generalised discrete 
spectrum of order ~ and if for each non-limit ordinal/3 < c~ the group D e_ 1 c~ C(X, K) 
is a direct factor of H e then Y/G ~_ Y/G~_ 1 x G~_I/G e and Tr under the same 
natural isomorphism commutes with G e_ 1/Gf and induces 7~_ i on Y/G e _ 1. Hence 

r (y G _I, g = (re_ 1 y Ge_i, 1r Ge_l)g 

where q~e_le C(Y/Ge_x, Gt~_l/Ge). Denoting the groups Gp_~/G e by G}, X may 
be represented as 1-] G} and S may be represented as 

fl~[1,~l' 

Sg'--S{g'~}={(op_lI~g' .g'~} where ~op_leC ( I~ G'~,G'p), 
fl-i [i,#-i] 
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I-I is the projection of ]71 G} to I-I G'r and these products are over non-limit 
# - 1  1 , ~ 1 '  D , p - 1 ]  

ordinals. In particular if ~ = ~  (the first infinite ordinal) then S has the skew- 
t t t ! t t r product form S(g~, 82, . . . )=  (a gl, qh(gO g2, q~2 (g,, g2) g3,-..). 

w 5. Lemma on Group Extensions 

Lemma 3. I f  X is a connected free simple G extension of Y where Y, G are 
compact abelian groups, then G is a closed sub-group of a compact abelian group X' 
homeomorphic to X in such a way that the diagram 

X r  q~ ) X  t 

X ~ X '  

is commutative i.e. the G spaces (X, G), (X', G) (natural action) are equivariant. 
Moreover the induced map sending X/G to X'/G is a group isomorphism. 

Proof We may suppose that Y= X/G. Let F be the character group of G and 
let F, be the sub-group of F generated by 1, 7~, -.., 7, where F = (1, 7~, 72 . . . .  ). Let 
X, be the space obtained by identifying points gx such that 7~(g)= 1 i=  1, ..., n. 
(In particular X o = Y= X/G, X~ = X.) X,  = X/G, where G, = a n n F,. Clearly G/G, 
acts freely on X/G, (g G,: G, x -~ G, g x) and X/G, is a simple GIG, extension of 
Y/G. In fact X/G,+ 1 is acted on freely by G,/G,+ 1 (gG,+l:  G.+lx--+ G,+ 1 g x) 
and is a simple Gn/G,+ 1 extension of the orbit space X/G,. 

The character group of Gn/Gn+ 1 is F,+ iF ,  where 7n+1 F,(g, G,+1)=7,+l(g,) i.e. 
the character group of G,/Gn+ 1 is one generated (cyclic) unless G n = G.+I, F,+ 1 = F. 
(i. e. 7n + 1 e F,). Assuming X/G n is a compact abelian group (which is true for n = 0) 
we will show that X/G,+ 1 can be given a compact abelian group structure in such 
a way that Gn/G n + ~ is a closed sub-group. By induction and the taking of limits the 
theorem will follow. We have therefore reduced the theorem to the special case 
where the character group of G is cyclic i.e. G is a circle or G is a finite cyclic group. 

(i) Assume G is a circle. Let m be normalised Haar measure on X/G, and let dg 
be normalised Haar measure on G, and let ~ be the measure on X defined by 

I fdgn = j" (j" f (g  x) dg) din. 

Let 7 be a generator of d and let f~(gx)=y(g)f~(x),f~eC(X,K). Let H =  
{f~"hr~: heX/G} where z is the natural map of X to X/G. H is a sub-group of 
C(X,K) whose linear span is dense in C(X). Moreover ~f~hTtdgn~:O only if 
h -  1, m = 0 since 

~f~(gx)hrcdg=hr~7"(g)f(x)dg=O if n~=0 and i f  n=O, h ~ l  

~(~ f~  hrtdg)dm=~ hdm=O. 

The conditions of Lemma 2 (special case) apply and case (i) is concluded. 
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(ii) Suppose X is a free simple G extension of Y where G is a finite cyclic group 
of order k i.e. suppose X is a k-fold connected covering of the compact connected 
abelian group Y(X ~ , Y). 

-~(y) consists of k distinct points. Let ~ be a translation invariant metric on Y 
and let d be a G invariant metric on X. Let 

re(x)= infd(gx, x)=m(hx) for all hsG. 
g ~ l  

m (x) can be considered as a function on Y and is continuous, hence m (x)> m for 
some m >  0. For  each x let 

U(x)={x': d(x,x')<2}. 

Then g U(x) = U(g x) and the open balls U(g x) are disjoint for fixed x and varying 
geG. Sets rc U(x)= V(nx) form a covering Of Y and it is easy to see that for large 
enough N each set n-ly YN will be contained in some 

t) U(gx)- w( x) 
geG 

where I1. is a decreasing sequence of closed sub-groups ((~ Yn = e) such that Y/u 
is a torus (cf. [14]). For  each coset y = y  YN let W(y) be a choice from the finite 
sub-covering W1 . . . . .  W k of {W(Trx)} such that ~-1 yN~W(~). Clearly rc- ly  YN 
decomposes into closed sets 

{~-lyYNnU(gx): g~G} where W(37)=~ U(gx). 
geG 

We write u ~ v if u, v belongs to one of these sets. (W0~) consists ofk components 
and we say u ~ v if they belong to the same component and project into the same 
coset of YN.) ~ is an equivalence relation and X ' =  X/-.~ is a k-fold covering (in 
fact a simple G extension) of Y'= Y/Yr. In other words the diagram 

X (o ; , X  t 

y - U ~  y '  

commutes where ~o is the projection of X to X' defined by the equivalence rela- 
tion ~ ,  cp' is the natural map of Y to Y'= Y/YN and re' is the projection of X' onto 
its orbit space Y'. Moreover q) commutes with the action of G. Suppose we have 
established (ii) for X', Y' in place of X, Y so that X' is a torus and G is a finite 
cyclic sub-group. The proof  would be completed as follows: take 7 to be a character 
on X' extending a non-trivial character of order k on G, so that 7 (g x') = 7 (g) 7 (x') 
and define f~eC(X,K) as f~(x)=y(q~x) so that f,(gx)=y(q~gx)=7(g)Tcpx= 
3,(g)f~(x). Note that f~(g x)=f~(x)=Tk(q~ X) and since 7 k and f~ are G invariant 
we have 7 k (x') = 7' (Tr' x'), fk (X) = f~ (re x) where 7' is a character on Y' and f ' e  C (Y,, K) 
and f ' (r t  x )=  7'(re' q)x)= 7'(~o' re x). Since q)' is a group homomorphism and 3/is a 
character it follows that f '  is a character on Y. We can conclude therefore that 
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{f~hrc: i=O, 1, . . . , k - l ,  h~f '} is a group all of whose elements are mutually 
orthogonal and whose linear span is dense in C(X). Case (ii) is now easily concluded 
by applying Lemma 2 again. 

It remains only to deal with case (ii) when G is finite cyclic of order k and Y is 
a torus. X is a finite covering of Y. Let Z be the universal covering group of 
Y ( Z ~  Y,, a covering homomorphism) so that [15] if z~o-Xy, x~n- ly  there 
exists a unique map O = O~,x such that 

Z \  ~ ~X 

Y 
commutes and O(z)=x. Choose e'ffT~ -1 e and let ~ be the map which sends the 
identity of Z to e'. Note that O(az)=O(bz)if O(a)=O(b). Indeed it is sufficient 
to note that O(ab-lz)=O(z) since both functions map b to O(a)=O(b) and 
n ~b (z) -- cp (z) and 

n O (a b-1 z)-- ~0 (a b-1 z) = (p (a) (p (b)-i @ (Z) = ~ 0 (a) (TO I/J (b))-x q) (z) = @ (Z). 

Hence if Ozi=x i and Ozi=x i (i=1, 2) then 0(z i z2)=0(z i z~) and the definition 
xl x xz=~(z i z2) is unambiguous. It is easy to show that this multiplication 
makes X into a compact abelian group such that n is a homomorphism onto Y 
From this it follows that G is a sub-group of X. Case (ii) is concluded and the 
proof of the lemma is complete. 

w 6. Measure Theoretic Analogues 

Let (X, B, m) be a normalised measure space and let S be a one-one measure 
preserving transformation of the space onto itself. Most of the considerations 
of the previous sections have analogues for purely measure theoretic dynamical 
systems (X, S). 

The proofs of these analogues will not be given. Suffice it to say that ergodicity 
plays the role of minimality, L 2 (X) plays the role of C(X) and M(X, K) the group 
of measurable maps of X to K plays the role of C(X, K). Where connectedness 
was essential in w167 1, 2 ergodicity should be strengthened and replaced by total 
ergodicity (S" ergodic for n 4=0). Moreover theorems can be given a simpler form 
due to the fact that a free G extension of Y can be represented as Y x G. Conse- 
quently the canonical form of ergodic system with generalised discrete spectrum 
is a skew-product on a "transfinite" direct product of groups. We shall not stop 
to give the precise form of these results. 
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