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I n  the  special case of  independent ,  identical ly d is t r ibuted (i.i.d.) r a n d o m  
variables  {Xn,  n > 1}, WIENER'S domina ted  ergodic theorem [5] asserts t h a t  for 
r > l ,  

(1) 

implies 

(2) 

ElX.l <oo 

.jr 
E sup n - r  ~ < 00 

n_~l i 
while 

(a) E I X . F l o g + l / .  I < o~ 

implies (2) for r = 1. Condition (1) is clearly necessary when r > 1 and,  as has been 
demons t r a t ed  b y  BV~XHOLDER [1], (3) is likewise necessary for (2) when r = 1. 

Here ,  i t  will be shown for i . i .d.  {Xn,  n ~ 1} with  E X n  = 0 t h a t  for r > 2, the  

n X same hypothes is  (1) implies E s u p c n ] S n ]  r < 00 where Sn = ~ ~ and (for 
n ~ l  i = l  

example)  cn = n-r/2(log n) (-r/2k)-~, n > 1, with ~ > 0 and  k ---- grea tes t  integer  
< r. The  preceding s t a t emen t  holds for r ---- 2 ff (1) is s t rengthened to  (3) bu t  is 
false for 1 ~ r < 2 even under  (3). 

Such results have  implicat ions for s topping rules, name ly  t h a t  for r > 2 under  
the  s t ipula ted  conditions, Ect l  St I r < oo for all s topping rules t. 

The  proof  of  the  theorem below, f rom which the  assert ions for r > 2 and 
r = 2 follow directly,  rests upon  the  classical result  of  WIENER cited above.  

Theorem.  Let {Xn,  n > 1} be i . i .d,  with E X n  = 0 and either E I X n l  r < oo or 
E ] X n  ]r log+ ]Xn [ < r according as r > 2 or r = 2. I[ {cn, n ~ 1} is a positive, 

oo 

decreasing numerical sequence with cn -~ 0 (n-r/a), ~. n~-l  c2n~/r < ~ where k = great- 

est integer ~ r, then E sup Cn I Sn I r < c~. 
n ~ _ l  

The  contra-posi t ive s t a t emen t  for 1 ~ r < 2 is subs tan t i a ted  b y  choosing 
{Xn,  n ~ 1} to  be i . i .d ,  wi th  common  symmet r i c  s table dis t r ibut ion of charac- 
teristic exponen t  fl, 1 ~ r < fl < 2; then  (3) holds bu t  since E ISn I -~ Cnl/~ for 
some C in (0, ~ ) ,  

sup IS .  I >_-- E sup I >= C sup = 
n~_l  n_~l  n ~ l  

for Cn as chosen in pa rag raph  2. 
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The proof of the theorem will be facilitated by  noting the following lemmas. 

Lemma 1. Let {Xn, n ~ 1} be random variables on the probability space (f2, A ,  P)  
with E ] X n ]  k < cr n ~ 1 ]or some positive integer k; set ~'o -= (~, 2 )  and let ~ 'n  
denote the a-algebra generated by X1, X2 ; . . . ,  Xn .  I]  E {Xn+I ] ~ n }  = O, n ~ 0 and 
Uk, n =- ~ X i l X i ~ ' "  Xi~/or n ~ k, then { Uk, n, ~ 'n,  n ~ k} is a martingale. 

l ~ i l < . . . < i ~ g n  
Moreover, i / E  {Xn2+l [ ~ n }  = a 2 ---- const < 0% then E U~, n -~ (~) auk. 

Proo/. The lemma is commonplace for k---- 1 and otherwise follows readily 
from E I Uk, n [ < oo and the observation U~, n --  Uk, n-1 -~ X n  Uk-1, n-1. 

The next  lemma was first proved by  HXJEK and R ~ : r  [4] for the special case 
where Un is a sum of n independent random variables with zero means. However, 
it is required under the more general circumstances tha t  Un -~ Uk, n. Rather  than 
appeal to the submartingale inequality of CHow [2] from which it follows easily, 
we give a simple, direct proof. 

Lemma 2. I1 {Un, ~'n,  n ~ 1} is a martingale with EU2n < 0% n ~ 1 and 
{cn, n ~ 1} is a positive, decreasing sequence, 

n 
P m a x  cjl u j l  > < ( u j  - > o 

( l ~ j ~ n  

Proo/. Taking U0 = 0 and ~ 0  to be the trivial a-algebra, it is readily checked 

tha t  W ,  = c,2 U,,2 _ ~ c y E { ( U j  - -  Uj-1)~[=~j_l}, n --> 1 is a supermartingale 
/ = 1  

with E W1 ---- 0. Thus, for any stopping time t, setting t (n) ----- rain (t, n), i t  follows 
from a theorem of DOOR [3, p. 302] tha t  

t(n) 
Ect(n)  Ut(n) ~ E - -  . 

1 

2 2 otherwise). The right Choose t = first index i ~ 1 for which c i Ui ~ 2 2 (---- oo, 
side of (5) is clearly bounded by  the right side of (4) multiplied by  ~2 while the 
left side of of (5) is a t  least 

<n} 
[t~n] 

and the lemma follows. 

Lemma 3. I /  {Xn},  {Uk, n} are as in lemma 1, 0 ~ :r < k and {cn, n ~ 1} is 
a positive, decreasing sequence with 

e2nk/(k+c~) n k - 1  < o o ,  then  E s u p  c~ ] U/r n [1+(a/k) .~  o o .  
n ~ l  n ~ k  

Proo]. From lemmas 1 and 2, 

n 
~t-~ ~/<~+~) a zk ~ c~l(~+:)/k-~ . 

Lemma 3 now follows by  integration on 2 and monotone convergence. (The con- 
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clusion of the lemma also holds when E{X~n+I ] ~ n }  G a2 --__ const < oo but  will 
only be utilized for i.i.d. {Xn} with EX~n ---- O, E X n  -~ a2.) 

Proof o/theorem. Consider first the case 2 G r < 3. 

E2/r n>2Sup Cn I Sn I r -~ E 2/r n>2sup Cn in 2 r12 = ~ X  i ~- 2U2, n < 

/ n \r]2 

n_-->2 \ I / n=>2 

The second te rm on the right is finite by  hypothesis and lemma 3. Likewise by  
hypothesis cn <= A n  -r/2 for some A in (0, oo) and so the first term on the right is 

/ n \ r / 2  
d ~  n>2 which is finite by  Wiener's theorem. 

Suppose next  tha t  r ---- k ~ 3. Evidently 

(6) Esup  v~lS~l~ =< E sup c~lS~ -- k! Vk,~l + k!E sup c~l V~,~] 
n>=k n>=k n ~ k  

and by  hypothesis and lemma 3, the second te rm on the right is finite. 
According to the multinomial expansion, S~ - -  k ! U~, n is expressible as a finite 

linear combination with coefficients depending on/~ but  not on n, of terms 

k 

�9 ** where r j _  ~ r j = k ,  r j ~ l .  x ~  x~; .. x~ >_ o, 
i~,..., i~ pa i rwise  different  ] = 1 

Each of the latter, in turn, is expressible as a finite linear combination, with 
coefficients again independent of n, of terms 

 (ix ,l 
i~1 \ i=1 / 

where 1 __< m < k, l =< h~ ____ ~, y ~ ~. Thus, sup ~ I S~ ~ U~, .  I is bounded 
i = l  

by a similar finite linear combination of terms 

For m ---- 1, necessarily hi ---- k and so by  hypothesis 
n 

Esupc~ y i~ <<_AZsup~-~=~iXjI~ <= 
n ~ = 1  n ~ = 1  

oo 

< ~ E ~ - ~ I X ~ I  �9 < oo. 
j = l  

I f m ~ 2 ,  

: n  ~ - - j  - -  
i = l  j = l  i = 1  j 

When 2 =< hi < k, by hypothesis and Wiener's theorem 

(8)  supc   ,lh, < 
] V = I  
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I f  in (7) exactly s of the h~ are uni ty (necessarily 0 g s - - ~ k - - 2 ) ,  say 
hm-s+l . . . . .  hm ~- 1, the bound on the right side of (7) is replaceable by  

n k m - s  / n \klh~ 

m - - 8  

and according to (8), each te rm under the product  sign ~-[ in (9) is finite. 
1 

Thus, recalling (6), i t  follows tha t  for some finite constants A0, A1, . . . ,  Ak-2 
/r 

( 1 0 )  gsupcn]Snl~ <=Ao + ~AsEs/~supcn[S~]~ 
n ~ k  s = l  n ~ k  

from which the theorem (for r ~-- k ~ 3) is a simple consequence. 
Finally, i fk  ~ r ~ / c  Jr 1, (k ~ 2), set t ing~ ~ r - - /~ 

(11) ~supc~l~nl~ =< Esupr -- k! Y~,~l + k!Esupc~t~nl~IU~,~l. 

Clearly, 

(12) Esupc,~ls,~vt v,,,,,I <= E:~rsup~,,Is.l~z,,~supc,,I v,,,nl~+(~,,) 
with the last te rm of the product  in (12) finite by  lemma 3. Since previous represen- 
tations still apply to Sn ~ - - /c !  Uk, n, i t  suffices from (11) to consider such terms as 

E sup c~/~" ] Sn ]~ ~= lsup c~'/" l j~= X1]' [ 

and an argument  similar to tha t  in the integral case together with (11) establishes 
the analogue of (10) and consequently the theorem. 

Finally, i t  may  be remarked tha t  the condition cn ~ 0 (n -rj2) is necessary, and 
tha t  i t  would be of interest to have minimal conditions on (Xn} under which 
comparable results would obtain for cn ---- (n log log n)-r/2. Clearly, such a choice 
of cn is the best tha t  might be hoped for. 
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