A Dominated Ergodic Type Theorem

Henry Teicher *

Received December 31, 1966

In the special case of independent, identically distributed (i.i.d.) random variables $\left\{X_{n}, n \geqq 1\right\}$, Wiener's dominated ergodic theorem [5] asserts that for $r>1$,

$$
\begin{equation*}
E\left|X_{n}\right|^{r}<\infty \tag{1}
\end{equation*}
$$

implies

$$
\begin{equation*}
E \sup _{n \geqq 1} n^{-r}\left|\sum_{i=1}^{n} X_{i}\right|^{r}<\infty \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
E\left|X_{n}\right|^{r} \log ^{+}\left|X_{n}\right|<\infty \tag{3}
\end{equation*}
$$

implies (2) for $r=1$. Condition (1) is clearly necessary when $r>1$ and, as has been demonstrated by Burkholder [1], (3) is likewise necessary for (2) when $r=1$.

Here, it will be shown for i.i.d. $\left\{X_{n}, n \geqq 1\right\}$ with $E X_{n}=0$ that for $r>2$, the same hypothesis (1) implies $E \sup _{n \geqq 1} c_{n}\left|S_{n}\right|^{r}<\infty$ where $S_{n}=\sum_{i=1}^{n} X_{i}$ and (for example) $c_{n}=n^{-r / 2}(\log n)^{(-r / 2 k)-\delta}, n>1$, with $\delta>0$ and $k=$ greatest integer $\leqq r$. The preceding statement holds for $r=2$ if (1) is strengthened to (3) but is false for $1 \leqq r<2$ even under (3).

Such results have implications for stopping rules, namely that for $r \geqq 2$ under the stipulated conditions, $E c_{t}\left|S_{t}\right|^{r}<\infty$ for all stopping rules t.

The proof of the theorem below, from which the assertions for $r>2$ and $r=2$ follow directly, rests upon the classical result of Wiener cited above.

Theorem. Let $\left\{X_{n}, n \geqq 1\right\}$ be i.i.d. with $E X_{n}=0$ and either $E\left|X_{n}\right|^{r}<\infty$ or $E\left|X_{n}\right|^{r} \log ^{+}\left|X_{n}\right|<\infty$ according as $r>2$ or $r=2$. If $\left\{c_{n}, n \geqq 1\right\}$ is a positive, decreasing numerical sequence with $c_{n}=O\left(n^{-r / 2}\right), \sum_{n=1}^{\infty} n^{k-1} c_{n}^{2 k / r}<\infty$ where $k=$ great est integer $\leqq r$, then $E \sup _{n \geqq 1} c_{n}\left|S_{n}\right|^{r}<\infty$.

The contra-positive statement for $1 \leqq r<2$ is substantiated by choosing $\left\{X_{n}, n \geqq 1\right\}$ to be i.i.d. with common symmetric stable distribution of characteristic exponent $\beta, \mathbf{1} \leqq r<\beta<2$; then (3) holds but since $E\left|S_{n}\right|=C n^{1 / \beta}$ for some C in ($0, \infty$),

$$
E^{1 / r} \sup _{n \geqq 1} c_{n}\left|S_{n}\right|^{r} \geqq E \sup _{n \geqq 1} c_{n}^{1 / r}\left|S_{n}\right| \geqq C \sup _{n \geqq 1} c_{n}^{1 / r} n^{1 / \beta}=\infty
$$

for c_{n} as chosen in paragraph 2.

[^0]The proof of the theorem will be facilitated by noting the following lemmas.
Lemma 1. Let $\left\{X_{n}, n \geqq 1\right\}$ be random variables on the probability space (Ω, A, P) with $E\left|X_{n}\right|^{k}<\infty, n \geqq 1$ for some positive integer k; set $\mathscr{F}_{0}=(\varphi, \Omega)$ and let \mathscr{F}_{n} denote the σ-algebra generated by $X_{1}, X_{2}, \ldots, X_{n}$. If $E\left\{X_{n+1} \mid \mathscr{F}_{n}\right\}=0, n \geqq 0$ and $U_{k, n}=\sum_{1 \leq i_{1}} X_{i_{1}} X_{i_{2}} \cdots X_{i_{k}}$ for $n \geqq k$, then $\left\{U_{k, n}, \mathscr{F}_{n}, n \geqq k\right\}$ is a martingale. Moreover, if $E\left\{X_{n+1}^{2} \mid \mathscr{F}_{n}\right\}=\sigma^{2}=$ const $<\infty$, then $E U_{k, n}^{2}=\binom{n}{k} \sigma^{2 k}$.

Proof. The lemma is commonplace for $k=1$ and otherwise follows readily from $E\left|U_{k, n}\right|<\infty$ and the observation $U_{k, n}-U_{k, n-1}=X_{n} U_{k-1, n-1}$.

The next lemma was first proved by HáJek and Rényi [4] for the special case where U_{n} is a sum of n independent random variables with zero means. However, it is required under the more general circumstances that $U_{n}=U_{k, n}$. Rather than appeal to the submartingale inequality of CHow [2] from which it follows easily, we give a simple, direct proof.

Lemma 2. If $\left\{U_{n}, \mathscr{F}_{n}, n \geqq 1\right\}$ is a martingale with $E U_{n}^{2}<\infty, n \geqq 1$ and $\left\{c_{n}, n \geqq 1\right\}$ is a positive, decreasing sequence,

$$
\begin{equation*}
P\left\{\max _{1 \leqq j \leqq n} c_{j}\left|U_{j}\right| \geqq \lambda\right\} \leqq \lambda^{-2} \sum_{j=1}^{n} c_{j}^{2} E\left(U_{j}-U_{j-1}\right)^{2}, \quad \lambda>0 \tag{4}
\end{equation*}
$$

Proof. Taking $U_{0}=0$ and \mathscr{F}_{0} to be the trivial σ-algebra, it is readily checked that $W_{n}=c_{n}^{2} U_{n}^{2}-\sum_{j=1}^{n} c_{j}^{2} E\left\{\left(U_{j}-U_{j-1}\right)^{2} \mid \mathscr{F}_{j-1}\right\}, n \geqq 1$ is a supermartingale with $E W_{1}=0$. Thus, for any stopping time t, setting $t(n)=\min (t, n)$, it follows from a theorem of Door [3, p. 302] that

$$
\begin{equation*}
E c_{t(n)}^{2} U_{t(n)}^{2} \leqq E \sum_{1}^{t(n)} c_{j}^{2} E\left\{\left(U_{j}-U_{j-1}\right)^{2} \mid \mathscr{F}_{j-1}\right\} \tag{5}
\end{equation*}
$$

Choose $t=$ first index $i \geqq 1$ for which $c_{i}^{2} U_{i}^{2} \geqq \lambda^{2}$ ($=\infty$, otherwise). The right side of (5) is clearly bounded by the right side of (4) multiplied by λ^{2} while the left side of of (5) is at least

$$
\int_{[t \leqq n]} c_{t}^{2} U_{t}^{2} \geqq \lambda^{2} P\{t \leqq n\}
$$

and the lemma follows.
Lemma 3. If $\left\{X_{n}\right\},\left\{U_{k, n}\right\}$ are as in lemma $1,0 \leqq \alpha<k$ and $\left\{c_{n}, n \geqq 1\right\}$ is a positive, decreasing sequence with

$$
\sum_{n=1}^{\infty} c_{n}^{2 k /(k+\alpha)} n^{k-1}<\infty, \quad \text { then } \quad E \sup _{n \geqq k} c_{n}\left|U_{k, n}\right|^{1+(\alpha / k)}<\infty
$$

Proof. From lemmas 1 and 2,

$$
\begin{gathered}
P\left\{\max _{k \leqq j \leqq n} c_{j}\left|U_{k, j}\right|^{1+(\alpha / k)} \geqq \lambda\right\}=P\left\{\max _{k \leqq j \leqq n} c_{j}^{k /(k+\alpha)}\left|U_{k, j}\right| \geqq \lambda^{k /(k+\alpha)}\right\} \leqq \\
\leqq \lambda^{-2 k /(k+\alpha)} \sigma^{2 k} \sum_{j=k}^{n} c_{j}^{2 k /(k+\alpha)} j^{k-1}
\end{gathered}
$$

Lemma 3 now follows by integration on λ and monotone convergence. (The con-
clusion of the lemma also holds when $E\left\{X_{n+1}^{2} \mid \mathscr{F}_{n}\right\} \leqq \sigma^{2}=$ const $<\infty$ but will only be utilized for i.i.d. $\left\{X_{n}\right\}$ with $E X_{n}^{2}=0, E X_{n}=\sigma^{2}$.)

Proof of theorem. Consider first the case $2 \leqq r<3$.

$$
\begin{aligned}
E^{2 / r} \sup _{n \geqq 2} c_{n}\left|S_{n}\right|^{r} & =E^{2 / r} \sup _{n \geqq 2} c_{n}\left|\sum_{1}^{n} X_{i}^{2}+2 U_{2, n}\right|^{r / 2} \leqq \\
& \leqq E^{2 / r} \sup _{n \geqq 2} c_{n}\left(\sum_{1}^{n} X_{i}^{2}\right)^{r / 2}+2 E^{2 / r} \sup _{n \geqq 2} c_{n}\left|U_{2, n}\right|^{r / 2} .
\end{aligned}
$$

The second term on the right is finite by hypothesis and lemma 3 . Likewise by hypothesis $c_{n} \leqq A n^{-r / 2}$ for some A in $(0, \infty)$ and so the first term on the right is dominated by $E^{2 / r} A \sup _{n \geqq 2} n^{-r / 2}\left(\sum_{i}^{n} X_{i}^{2}\right)^{r / 2}$ which is finite by Wiener's theorem.

Suppose next that $r=k \geqq 3$. Evidently

$$
\begin{equation*}
E \sup _{n \geqq k} c_{n}\left|S_{n}\right|^{k} \leqq E \sup _{n \geqq k} c_{n}\left|S_{n}^{k}-k!U_{k, n}\right|+k!E \sup _{n \geqq k} c_{n}\left|U_{k, n}\right| \tag{6}
\end{equation*}
$$

and by hypothesis and lemma 3, the second term on the right is finite.
According to the multinomial expansion, $S_{n}^{k}-k!U_{k, n}$ is expressible as a finite linear combination with coefficients depending on k but not on n, of terms

$$
\sum_{i_{1}, \ldots, i_{k}} \underset{\text { pairwise different }}{ } X_{i_{2}}^{r_{1}} X_{i_{k}}^{r_{2}} \cdots X_{i_{k}}^{r_{k}} \quad \text { where } \quad r_{j} \geqq 0, \sum_{j=1}^{k} r_{j}=k, r_{j} \neq 1
$$

Each of the latter, in turn, is expressible as a finite linear combination, with coefficients again independent of n, of terms

$$
\prod_{i=1}^{m}\left(\sum_{j=1}^{n} X_{j}^{h_{i}}\right)
$$

where $\mathbf{l} \leqq m<k, \mathbf{l} \leqq h_{i} \leqq k, \sum_{i=1}^{m} h_{i}=k$. Thus, $\sup c_{n}\left|S_{n}^{k}-k!U_{k, n}\right|$ is bounded by a similar finite linear combination of terms

$$
\prod_{i=1}^{m} \sup c_{n}^{h_{i} / k}\left|\sum_{j=1}^{n} X_{j}^{h_{i}}\right|
$$

For $m=1$, necessarily $h_{1}=k$ and so by hypothesis

$$
\begin{aligned}
E \sup _{n} c_{n}\left|\sum_{j=1}^{n} X_{j}^{k}\right| & \leqq A E \sup _{n} n^{-k / 2} \sum_{j=1}^{n}\left|X_{j}\right|^{k} \leqq \\
& \leqq A E \sum_{j=1}^{\infty} j^{-k / 2}\left|X_{j}\right|^{k}<\infty .
\end{aligned}
$$

If $m \geqq 2$,

$$
\begin{equation*}
E \prod_{i=1}^{m} \sup c_{n}^{h_{1} / k}\left|\sum_{j=1}^{n} X_{j}^{h_{i}}\right| \leqq \prod_{i=1}^{m} E^{h_{i} / k} \sup c_{n}\left|\sum_{j=1}^{n} X_{j}^{h_{i}}\right|^{\mid k / h_{i}} \tag{7}
\end{equation*}
$$

When $2 \leqq h_{i}<k$, by hypothesis and Wiener's theorem

$$
\begin{equation*}
E \sup c_{n}\left|\sum_{j=1}^{n} X_{j}^{h_{t}}\right|^{k / h_{t}} \leqq A E \sup n^{-k \mid h_{h}}\left(\sum_{j=1}^{n}\left|X_{j}\right|^{h_{i}}\right)^{k / h_{t}}<\infty . \tag{8}
\end{equation*}
$$

9 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 8

If in (7) exactly s of the h_{i} are unity (necessarily $0 \leqq s \leqq k-2$), say $h_{m-s+1}=\cdots=h_{m}=1$, the bound on the right side of (7) is replaceable by

$$
\begin{equation*}
E^{s / k} \sup c_{n}\left|\sum_{j=1}^{n} X_{j}\right|_{i=1}^{k_{i}^{m-s}} E^{h_{i} / k} \sup c_{n}\left(\sum_{j=1}^{n}\left|X_{j}\right|^{h_{i}}\right)^{k / h_{i}} \tag{9}
\end{equation*}
$$

and according to (8), each term under the product sign \prod_{1}^{m-s} in (9) is finite.
Thus, recalling (6), it follows that for some finite constants $A_{0}, A_{1}, \ldots, A_{k-2}$

$$
\begin{equation*}
E \sup _{n \geqq k} c_{n}\left|S_{n}\right|^{k} \leqq A_{0}+\sum_{s=1}^{k-2} A_{s} E^{s / k} \sup _{n \geqq k} c_{n}\left|S_{n}\right|^{k} \tag{10}
\end{equation*}
$$

from which the theorem (for $r=k \geqq 3$) is a simple consequence.
Finally, if $k<r<k+1,(k>2)$, setting $\alpha=r-k$

$$
\begin{equation*}
E \sup _{n \geqq k} c_{n}\left|S_{n}\right| r \leqq E \sup _{n \geqq k} c_{n}\left|S_{n}\right| \alpha\left|S_{n}^{k}-k!U_{k, n}\right|+k!E \sup _{n \geqq k} c_{n}\left|S_{n}\right| \alpha\left|U_{k, n}\right| . \tag{11}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
E \sup c_{n}\left|S_{n}\right|^{\alpha}\left|U_{k, n}\right| \leqq E^{\alpha / r} \sup c_{n}\left|S_{n}\right|^{r} E^{k / r} \sup c_{n}\left|U_{k, n}\right|^{1+(\alpha / k)} \tag{12}
\end{equation*}
$$

with the last term of the product in (12) finite by lemma 3. Since previous representations still apply to $S_{n}^{k}-k!U_{k, n}$, it suffices from (11) to consider such terms as

$$
E \sup c_{n}^{\alpha / r}\left|S_{n}\right|^{\alpha} \prod_{i=1}^{m} \sup c_{n}^{h_{n} / r}\left|\sum_{j=1}^{n} X_{j}^{h_{i}}\right|
$$

and an argument similar to that in the integral case together with (11) establishes the analogue of (10) and consequently the theorem.

Finally, it may be remarked that the condition $c_{n}=O\left(n^{-r / 2}\right)$ is necessary, and that it would be of interest to have minimal conditions on $\left\{X_{n}\right\}$ under which comparable results would obtain for $c_{n}=(n \log \log n)^{-r / 2}$. Clearly, such a choice of c_{n} is the best that might be hoped for.

References

1. Burkholder, D. L.: Successive conditional expectations of an integrable function. Ann. math. Statistics 83, 887-893 (1962).
2. Chow, Y. S.: A martingale inequality and the law of large numbers. Proc. Amer. math. Soc. 11, 107-111 (1960).
3. Dоов, J. L.: Stochastic processes. New York: John Wiley 1953.
4. Háser, J., and A. Renyr: Generalization of an inequality of Kolmogoroff. Acta math. Acad. Sci. Hungar. 6, 281-283 (1955).
5. Wiener, N.: The ergodic theorem. Duke math. J. 5, 1-18 (1939).

Dept. of Mathematics
Purdue University
Lafayette, Indiana 47907

[^0]: * Research under NSF Contract GP-4590.

