A Dominated Ergodic Type Theorem

HENRY TEICHER *

Received December 31, 1966

In the special case of independent, identically distributed (i.i.d.) random variables $\{X_n, n \ge 1\}$, WIENER'S dominated ergodic theorem [5] asserts that for r > 1,

$$(1) E |X_n|^r < \infty$$

implies

(2)
$$E \sup_{n \ge 1} n^{-r} \left| \sum_{i=1}^{n} X_i \right|^r < \infty$$

while

$$(3) E |X_n|^r \log^+ |X_n| < \infty$$

implies (2) for r = 1. Condition (1) is clearly necessary when r > 1 and, as has been demonstrated by BURKHOLDER [1], (3) is likewise necessary for (2) when r = 1.

Here, it will be shown for i.i.d. $\{X_n, n \ge 1\}$ with $EX_n = 0$ that for r > 2, the same hypothesis (1) implies $E \sup_{n \ge 1} c_n |S_n|^r < \infty$ where $S_n = \sum_{i=1}^n X_i$ and (for example) $c_n = n^{-r/2} (\log n)^{(-r/2k)-\delta}$, n > 1, with $\delta > 0$ and k = greatest integer $\le r$. The preceding statement holds for r = 2 if (1) is strengthened to (3) but is false for $1 \le r < 2$ even under (3).

Such results have implications for stopping rules, namely that for $r \ge 2$ under the stipulated conditions, $Ec_t |S_t|^r < \infty$ for all stopping rules t.

The proof of the theorem below, from which the assertions for r > 2 and r = 2 follow directly, rests upon the classical result of WIENER cited above.

Theorem. Let $\{X_n, n \ge 1\}$ be i.i.d. with $EX_n = 0$ and either $E |X_n|^r < \infty$ or $E |X_n|^r \log^+ |X_n| < \infty$ according as r > 2 or r = 2. If $\{c_n, n \ge 1\}$ is a positive, decreasing numerical sequence with $c_n = O(n^{-r/2})$, $\sum_{n=1}^{\infty} n^{k-1} c_n^{2k/r} < \infty$ where k = greatest integer $\le r$, then $E \sup_{n \ge 1} c_n |S_n|^r < \infty$.

The contra-positive statement for $1 \leq r < 2$ is substantiated by choosing $\{X_n, n \geq 1\}$ to be i.i.d. with common symmetric stable distribution of characteristic exponent β , $1 \leq r < \beta < 2$; then (3) holds but since $E|S_n| = Cn^{1/\beta}$ for some C in $(0, \infty)$,

$$E^{1/r}\sup_{n\geq 1}c_n \left|S_n\right|^r \geq E\sup_{n\geq 1}c_n^{1/r}\left|S_n\right| \geq C\sup_{n\geq 1}c_n^{1/r}n^{1/\beta} = \infty$$

for c_n as chosen in paragraph 2.

^{*} Research under NSF Contract GP-4590.

H. TEICHER:

The proof of the theorem will be facilitated by noting the following lemmas.

Lemma 1. Let $\{X_n, n \ge 1\}$ be random variables on the probability space (Ω, A, P) with $E \mid X_n \mid^k < \infty$, $n \ge 1$ for some positive integer k; set $\mathscr{F}_0 = (\varphi, \Omega)$ and let \mathscr{F}_n denote the σ -algebra generated by X_1, X_2, \ldots, X_n . If $E \{X_{n+1} \mid \mathscr{F}_n\} = 0$, $n \ge 0$ and $U_{k,n} = \sum_{1 \le i_1 < \cdots < i_k \le n} X_{i_1} X_{i_2} \cdots X_{i_k}$ for $n \ge k$, then $\{U_{k,n}, \mathscr{F}_n, n \ge k\}$ is a martingale. Moreover, if $E \{X_{n+1}^2 \mid \mathscr{F}_n\} = \sigma^2 = \text{const} < \infty$, then $E U_{k,n}^2 = \binom{n}{k} \sigma^{2k}$.

Proof. The lemma is commonplace for k = 1 and otherwise follows readily from $E|U_{k,n}| < \infty$ and the observation $U_{k,n} - U_{k,n-1} = X_n U_{k-1,n-1}$.

The next lemma was first proved by HÁJEK and RÉNYI [4] for the special case where U_n is a sum of *n* independent random variables with zero means. However, it is required under the more general circumstances that $U_n = U_{k,n}$. Rather than appeal to the submartingale inequality of CHOW [2] from which it follows easily, we give a simple, direct proof.

Lemma 2. If $\{U_n, \mathscr{F}_n, n \geq 1\}$ is a martingale with $EU_n^2 < \infty$, $n \geq 1$ and $\{c_n, n \geq 1\}$ is a positive, decreasing sequence,

(4)
$$P\left\{\max_{1\leq j\leq n} c_j \mid U_j \mid \geq \lambda\right\} \leq \lambda^{-2} \sum_{j=1}^n c_j^2 E(U_j - U_{j-1})^2, \quad \lambda > 0$$

Proof. Taking $U_0 = 0$ and \mathscr{F}_0 to be the trivial σ -algebra, it is readily checked that $W_n = c_n^2 U_n^2 - \sum_{j=1}^n c_j^2 E\{(U_j - U_{j-1})^2 | \mathscr{F}_{j-1}\}, n \ge 1$ is a supermartingale with $EW_1 = 0$. Thus, for any stopping time t, setting $t(n) = \min(t, n)$, it follows from a theorem of Doob [3, p. 302] that

(5)
$$E c_{t(n)}^2 U_{t(n)}^2 \leq E \sum_{j=1}^{t(n)} c_j^2 E \left\{ (U_j - U_{j-1})^2 \middle| \mathscr{F}_{j-1} \right\}.$$

Choose $t = \text{first index } i \ge 1$ for which $c_i^2 U_i^2 \ge \lambda^2$ (= ∞ , otherwise). The right side of (5) is clearly bounded by the right side of (4) multiplied by λ^2 while the left side of of (5) is at least

$$\int_{[t \le n]} c_t^2 U_t^2 \ge \lambda^2 P\{t \le n\}$$

and the lemma follows.

n

Lemma 3. If $\{X_n\}$, $\{U_{k,n}\}$ are as in lemma 1, $0 \leq \alpha < k$ and $\{c_n, n \geq 1\}$ is a positive, decreasing sequence with

$$\sum_{k=1}^{\infty} c_n^{2k/(k+\alpha)} n^{k-1} < \infty, \quad then \quad E \sup_{n \ge k} c_n |U_{k,n}|^{1+(\alpha/k)} < \infty$$

Proof. From lemmas 1 and 2,

$$P\left\{\max_{k\leq j\leq n}c_{j}\left|U_{k,j}\right|^{1+(lpha/k)}\geq\lambda
ight\}=P\left\{\max_{k\leq j\leq n}c_{j}^{k/(k+lpha)}\left|U_{k,j}\right|\geq\lambda^{k/(k+lpha)}
ight\}\leq \\\leq\lambda^{-2\,k/(k+lpha)}\sigma^{2k}\sum_{j=k}^{n}c_{j}^{2\,k/(k+lpha)}j^{k-1}\,.$$

Lemma 3 now follows by integration on λ and monotone convergence. (The con-

clusion of the lemma also holds when $E\{X_{n+1}^2 | \mathscr{F}_n\} \leq \sigma^2 = \text{const} < \infty$ but will only be utilized for i.i.d. $\{X_n\}$ with $EX_n^2 = 0$, $EX_n = \sigma^2$.)

Proof of theorem. Consider first the case $2 \leq r < 3$.

$$\begin{split} E^{2/r} \sup_{n \ge 2} c_n \left| S_n \right|^r &= E^{2/r} \sup_{n \ge 2} c_n \left| \sum_{1}^n X_i^2 + 2 U_{2,n} \right|^{r/2} \le \\ &\leq E^{2/r} \sup_{n \ge 2} c_n \left(\sum_{1}^n X_i^2 \right)^{r/2} + 2 E^{2/r} \sup_{n \ge 2} c_n \left| U_{2,n} \right|^{r/2}. \end{split}$$

The second term on the right is finite by hypothesis and lemma 3. Likewise by hypothesis $c_n \leq A n^{-r/2}$ for some A in $(0, \infty)$ and so the first term on the right is dominated by $E^{2/r}A \sup_{n \geq 2} n^{-r/2} \left(\sum_{i}^{n} X_{i}^{2}\right)^{r/2}$ which is finite by Wiener's theorem.

Suppose next that $r = k \ge 3$. Evidently

(6)
$$E \sup_{n \ge k} c_n |S_n|^k \le E \sup_{n \ge k} c_n |S_n^k - k! U_{k,n}| + k! E \sup_{n \ge k} c_n |U_{k,n}|$$

and by hypothesis and lemma 3, the second term on the right is finite.

According to the multinomial expansion, $S_n^k - k! U_{k,n}$ is expressible as a finite linear combination with coefficients depending on k but not on n, of terms

$$\sum_{i_1,...,\,i_k ext{ pairwise different}} X_{i_1}^{r_1} X_{i_2}^{r_2} \cdots X_{i_k}^{r_k} ext{ where } r_j \geqq 0, \sum_{j=1}^k r_j = k, \, r_j \equiv 1 \,.$$

Each of the latter, in turn, is expressible as a finite linear combination, with coefficients again independent of n, of terms

$$\prod_{i=1}^{m} \left(\sum_{j=1}^{n} X_{j}^{h_{i}} \right)$$

where $1 \leq m < k, 1 \leq h_i \leq k, \sum_{i=1}^m h_i = k$. Thus, $\sup c_n |S_n^k - k! U_{k,n}|$ is bounded by a similar finite linear combination of terms

$$\prod_{i=1}^{m} \sup c_n^{h_i/k} \left| \sum_{j=1}^{n} X_j^{h_i} \right|.$$

For m = 1, necessarily $h_1 = k$ and so by hypothesis

$$E \sup_{n} c_{n} \left| \sum_{j=1}^{n} X_{j}^{k} \right| \leq A E \sup_{n} n^{-k/2} \sum_{j=1}^{n} |X_{j}|^{k} \leq \Delta E \sum_{j=1}^{\infty} j^{-k/2} |X_{j}|^{k} < \infty.$$

If $m \geqq 2$,

(7)
$$E\prod_{i=1}^{m} \sup c_{n}^{h_{i}/k} \left| \sum_{j=1}^{n} X_{j}^{h_{i}} \right| \leq \prod_{i=1}^{m} E^{h_{i}/k} \sup c_{n} \left| \sum_{j=1}^{n} X_{j}^{h_{i}} \right|^{k/h_{i}}.$$

When $2 \leq h_i < k$, by hypothesis and Wiener's theorem

(8)
$$E \sup c_n \left| \sum_{j=1}^n X_j^{h_i} \right|^{k/h_i} \leq A E \sup n^{-k/h_i} \left(\sum_{j=1}^n |X_j|^{h_i} \right)^{k/h_i} < \infty.$$

9 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 8

If in (7) exactly s of the h_i are unity (necessarily $0 \le s \le k-2$), say $h_{m-s+1} = \cdots = h_m = 1$, the bound on the right side of (7) is replaceable by

(9)
$$E^{s/k} \sup c_n \left| \sum_{j=1}^n X_j \right|^k \prod_{i=1}^{m-s} E^{h_i/k} \sup c_n \left(\sum_{j=1}^n |X_j|^{h_i} \right)^{k/h_i}$$

and according to (8), each term under the product sign $\prod_{i=1}^{n}$ in (9) is finite.

Thus, recalling (6), it follows that for some finite constants $A_0, A_1, \ldots, A_{k-2}$

(10)
$$E \sup_{n \ge k} c_n |S_n|^k \le A_0 + \sum_{s=1}^{k-2} A_s E^{s/k} \sup_{n \ge k} c_n |S_n|^k$$

from which the theorem (for $r = k \ge 3$) is a simple consequence.

Finally, if k < r < k + 1, (k > 2), setting $\alpha = r - k$

(11)
$$E \sup_{n \ge k} c_n |S_n|^r \le E \sup_{n \ge k} c_n |S_n|^{\alpha} |S_n^k - k! U_{k,n}| + k! E \sup_{n \ge k} c_n |S_n|^{\alpha} |U_{k,n}|.$$

Clearly,

(12)
$$E \sup c_n |S_n|^{\alpha} |U_{k,n}| \leq E^{\alpha/r} \sup c_n |S_n|^r E^{k/r} \sup c_n |U_{k,n}|^{1+(\alpha/k)}$$

with the last term of the product in (12) finite by lemma 3. Since previous representations still apply to $S_n^k - k! U_{k,n}$, it suffices from (11) to consider such terms as

$$E \sup c_n^{\alpha/r} |S_n|^{\alpha} \prod_{i=1}^m \sup c_n^{h_i/r} \left| \sum_{j=1}^n X_j^{h_i} \right|$$

and an argument similar to that in the integral case together with (11) establishes the analogue of (10) and consequently the theorem.

Finally, it may be remarked that the condition $c_n = O(n^{-r/2})$ is necessary, and that it would be of interest to have minimal conditions on $\{X_n\}$ under which comparable results would obtain for $c_n = (n \log \log n)^{-r/2}$. Clearly, such a choice of c_n is the best that might be hoped for.

References

- BURKHOLDER, D. L.: Successive conditional expectations of an integrable function. Ann. math. Statistics 33, 887-893 (1962).
- CHOW, Y. S.: A martingale inequality and the law of large numbers. Proc. Amer. math. Soc. 11, 107-111 (1960).
- 3. DOOB, J. L.: Stochastic processes. New York: John Wiley 1953.
- HÁJEK, J., and A. RENYI: Generalization of an inequality of Kolmogoroff. Acta math. Acad. Sci. Hungar. 6, 281-283 (1955).
- 5. WIENER, N.: The ergodic theorem. Duke math. J. 5, 1-18 (1939).

Dept. of Mathematics Purdue University Lafayette, Indiana 47907

116