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A Dominated Ergodic Type Theorem
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In the special case of independent, identically distributed (i.i.d.) random
variables {X,, » = 1}, WiENER’s dominated ergodic theorem [5] asserts that for
r>1,

(1) E|Xyu|r<oo
implies ‘
n r
2) Esupn-r in < oo
nz1 =1
while
(3) B|Xy|rlogt| Xp| < oo

implies (2) for r = 1. Condition (1) is clearly necessary when r > 1 and, as has been
demonstrated by BurRkHOLDER [1], (3) is likewise necessary for (2) when ¢ = 1.
Here, it will be shown fori.i.d. {X,, n = 1} with EX, = 0 that for r > 2, the

n
same hypothesis (1) implies & sup ¢, |Ss|" < co where S, = > X; and (for
n=1 t=1

example) ¢, = n/2(log n)(~1/2k)—¢ n > 1, with § > 0 and &k = greatest integer
=< r. The preceding statement holds for » = 2 if (1) is strengthened to (3) but is
false for 1 < r << 2 even under (3).

Such results have implications for stopping rules, namely that for r = 2 under
the stipulated conditions, Ee¢;|S;|r < oo for all stopping rules f.

The proof of the theorem below, from which the assertions for r > 2 and
r = 2 follow directly, rests upon the classical result of WiENER cited above.

Theorem. Let {Xpn, n = 1} be i.i.d. with EXy, = 0 and either E|Xy|r < oo or
E|X,|"logt| Xy| < oo according as r > 2 or r = 2. If {cy, n = 1} is a positive,

decreasing numerical sequence with ¢, = O (n~1/2), Z nk-Le2kIr < oo where k = grea-
n=1
est integer = r, then E sup cy|Sn|t < co.
nz1

The contra-positive statement for 1 < r < 2 is substantiated by choosing
{Xu,n =1} to be i.i.d. with common symmetric stable distribution of charac-
teristic exponent f§, 1 < r < f§ < 2; then (3) holds but since £|S,| = Cnl/8 for
some C in (0, oo},

EVrsup ey | Sy|r = Esup cl'| Sy | = O sup clf'nl/8 = oo
nzl nz1 nzl

for ¢, as chosen in paragraph 2.
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The proof of the theorem will be facilitated by noting the following lemmas.

Lemma 1. Let { Xy, n = 1} be random variables on the probability space (2, A, P)
with B| Xy |k < oo, n = 1 for some positive integer k; set Fo = (p, 2) and let Fy,
denote the g-algebra generated by X1, Xz, ..., X4 If E{Xu1|Fn}=0,72=0and
Uk, o= > X Xy Xy forn = k, then {Ug, n, F n,n = k} is a martingale.

ISii< - <izSn
Moreover, if E{Xp .| Fn} = 0 = const < oo, then EU}, = (%) o?*.

Proof. The lemma is commonplace for k¥ = 1 and otherwise follows readily

from E|Ug,»| < oo and the observation U,y — U, n-1 = Xp Up-1,n-1.

The next lemma was first proved by HAsEK and RENY1 [4] for the special case
where U, is a sum of » independent random variables with zero means. However,
it is required under the more general circumstances that U, = Uy, . Rather than
appeal to the submartingale inequality of Crow [2] from which it follows easily,
we give a simple, direct proof.

Lemma 2. If {U,, Fu,n =1} is a martingale with EU2 < oo, n =1 and
{en, n = 1} is a positive, decreasing sequence,

7
(4) P{maxcj[U,]gz}gz—ZEc?E(Uj—Uj_l)z, A>0.
1=j=n j=1
Proof. Taking Up = 0 and & to be the trivial g-algebra, it is readily checked
13
that W, =c Uz — > fE{(U; — U;_1)%| %1}, n=1 is a supermartingale

j=1
with E W1 = 0. Thus, for any stopping time £, setting ¢(n) = min (¢, n), it follows
from a theorem of Doos [3, p. 302] that

t(n)
(6) By Uy < B 3 GE{(U; — Uj-1)2| Fj1} .
1

Choose ¢ = first index ¢ =1 for which ¢? U7 = A2 (= oo, otherwise). The right
side of (5) is clearly bounded by the right side of (4) multiplied by A2 while the
left side of of (5) is at least

[ dUtznP{it<n}
[t=n]
and the lemma follows.

Lemma 3. If {Xn}, {Ug,a} are as in lemma 1, 0 < o <k and {cn,n = 1} is
a positive, decreasing sequence with

[~}
> RMET Dk~ < oo,  then Esupcq| U, n|t@H < oo.
n=1 nzk
Proof. From lemmas 1 and 2,

P{ max ¢;| U, ;| 1H/k) = 2} — P{ max C;,cl(k+m)| Ug,j| = }.Ic/(k+a)} <
k=jsn k<isn

n
< A-2K/(kto) g2F Z cjzkl<k+ @) jk-1,
i=k

Lemma 3 now follows by integration on 4 and monotone convergence. (The con-
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clusion of the lemma also holds when E{X? | #,} < 02 = const < co but will
only be utilized fori.i.d. {X,} with EX2 = 0, EX,, = ¢2.)

Proof of theorem. Consider first the case 2 =< r < 3.

/2
E2iT sup ¢y | Sy |r = E2/7 sup ¢y, ZX +2Us,n| =
nz2 n=2
< E¥rsup e, (in> +2E2rsupcy | Us, |12
n=2 1 n=2

The second term on the right is finite by hypothesis and lemma 3. Likewise by
hypothesis ¢, =< An~"/2 for some 4 in (0 oo) and so the first term on the right is

dominated by E2/r 4 sup n~r/2 (2 Xz) which is finite by Wiener’s theorem.

nz2
Suppose next that r = k = 3. Evidently
(6) E sup cq | Sy |¥ <Esupcn|;5”c —E'\Ug,n| + Ic?Esupcn| Uk, n

n=k

and by hypothesis and lemma 3, the second term on the right is finite.
According to the multinomial expansion, S — k! Uy, , is expressible as a finite
linear combination with coefficients depending on k but not on =, of terms

k
LY72... Te _— N
XpXpe--- X% where r; =0, er =k, r;E1.
4150005 b Dairwise different j=1

Each of the latter, in turn, is expressible as a finite linear combination, with
coefficients again independent of %, of terms

fi(2=)

=

m
where 1 <m <k, 1 < h; <k, > h; = k. Thus, sup ¢, | S§ — k! Uy, | is bounded

t=1

by a similar finite linear combination of terms
m (3
[ Tsup chf®| > Xk|.
i=1 i=1
For m = 1, necessarily h; = k and so by hypothesis
Esupecy, zX = AEsupn”k/Zz[le’c =
n j=1 j=1
<AE27—’0/2|X,|’C < o0.
j=1
Iftm=2,
(7N E‘Hsup clulk ZX’“ <1_[Eh‘ Sup ¢y ZX’“
=1 j=1 i=1 i=1

When 2 < h; << k, by hypothesis and Wiener’s theorem

) %/ h
2 X}

j=1

(8) Esupey

i n kfhs
< AEsupn~tM( 3| X, |’“> < oo,
=1
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If in (7) exactly s of the k; are unity (necessarily 0 < s <k — 2), say
hm—s+1 = +++ = hy = 1, the bound on the right side of (7) is replaceable by

R
zX] I—[Ehi/ksup cn(Z!lehs)
i=1 j=1

j=1

(9) Es'kEgup ¢,

and according to (8), each term under the product sign H ) is finite.

Thus, recalling (6), it follows that for some finite constants Ag, A1, ..., Ag—2
(10) Esupcy|Sn|* < Ao+ ZASES/ksupcn|Sn[k
n=k n=k

from which the theorem (for r = k = 3) is a simple consequence.
Finally,if bk << r <k + 1, (k > 2),settinga =r — k

(11) Esupcy|Salr gEsupcn|Sn|“]S,’Z—k!Uk,n| + klEsupcn|Sn|*| Uk, ] -
n=k n=k n=k

Clearly,

(12)  Esupcn|Sn|*| Uk, n| < BV supcy|Sy|rEE" sup ey | Uy, n |1 HVB

with the last term of the product in (12) finite by lemma 3. Since previous represen-
tations still apply to SE — k! Uk, 4, it suffices from (11) to consider such terms as

Z X}u

j=1

E sup 2| Sy |* 1_[ sup ¢l

fe=1

and an argument similar to that in the integral case together with (11) establishes
the analogue of (10) and consequently the theorem.

Finally, it may be remarked that the condition ¢, = O (n7/2) is necessary, and
that it would be of interest to have minimal conditions on {X,} under which
comparable results would obtain for ¢, = (n log log #)~7/2. Clearly, such a choice
of ¢, is the best that might be hoped for.
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