A Stochastic Integral in Storage Theory

E. Çinlar * and M. Pinsky **

1. Introduction

Throughout the following $\mathbf{R}=[0,+\infty), \overline{\mathbf{R}}=[0,+\infty], \mathbf{N}=\{0,1,2, \ldots\}, \mathscr{R}$ and $\overline{\mathscr{R}}$ the Borel subsets of \mathbf{R} and $\overline{\mathbf{R}}$ respectively, and \mathscr{R}^{*} the universally measurable subsets of $\overline{\mathbf{R}}$. If (E, \mathscr{E}) and (F, \mathscr{F}) are measurable spaces and $f: E \rightarrow F$ is measurable relative to \mathscr{E} and \mathscr{F}, then we write $f \in \mathscr{E} / \mathscr{F} ;$ if $(F, \mathscr{F})=(\bar{R}, \overline{\mathscr{R}})$ then we simply write $f \in \mathscr{E}$. By $\sigma(\cdot)$ we denote the σ-algebra generated by (\cdot). If N is a transition probability from (E, \mathscr{E}) into (F, \mathscr{F}), that is, $N(x, \cdot)$ is a probability on \mathscr{F} and $N(\cdot, A)$ is in \mathscr{E}, and $f \in \mathscr{F}$, then we write $N f$ for the function defined as

$$
N f(x)=\int N(x, d y) f(y), \quad x \in E .
$$

Our notation and terminology follow that of [1].
Let (W, \mathscr{I}, P) be a probability space and let $\left\{A_{t}: t \geqq 0\right\}$ be a process on W with stationary independent non-negative increments taking values in (\mathbf{R}, \mathscr{R}) with $P\left\{A_{0}=0\right\}=1$. It is possible to, and we do, take $t \rightarrow A_{t}(w)$ to be right-continuous non-decreasing for each $w \in W$. Let $\mathscr{I}_{t}=\sigma\left(A_{s}: s \leqq t\right)$. Throughout the first four sections we assume the jump rate to be finite.

Let $\Omega=\overline{\mathbf{R}} \times W$ and, for each probability measure μ on $\overline{\mathscr{R}}$, define P^{μ} to be the product measure $\mu \times P$ on $\overline{\mathscr{R}} \times \mathscr{I}$. In particular, when μ is the Dirac measure ε_{x} concentrated at $x \in \overline{\mathbf{R}}$, we write P^{x} for P^{μ}. Let $\mathbf{U}=\left\{P^{\mu}: \mu\right.$ a probability on $\left.\overline{\mathscr{R}}\right\}$, \mathscr{F} the completion of $\overline{\mathscr{R}} \times \mathscr{I}$ with respect to \mathbf{U}, and \mathscr{F}_{t} the completion of $\overline{\mathscr{R}} \times \mathscr{F}_{t}$ in \mathscr{F} with respect to \mathbf{U}.

For $\omega=(x, w) \in \Omega$, we shall write $A_{t}(\omega)=A_{t}(w)$ (there should be no confusion because of this) for all $t \geqq 0$, and put $X_{0}(\omega)=x$.

Let r be a Lipschitz continuous strictly increasing function from $\overline{\mathbf{R}}$ into $\overline{\mathbf{R}}$ so that $r(0)=0$, and consider the equation

$$
\begin{equation*}
X_{t}(\omega)=X_{0}(\omega)+A_{t}(\omega)-\int_{0}^{t} r\left(X_{u}(\omega)\right) d u, \quad t \geqq 0 \tag{1.1}
\end{equation*}
$$

for each $\omega \in \Omega$; (note that if $\omega=(+\infty, w)$, then $X_{t}(\omega)=+\infty$ for all $t \geqq 0$). The reader will observe that certain of our results below go through under less stringent assumptions on r.
Ω is the sample space, \mathscr{F}_{t} the history until t. For the realization $\omega \in \Omega, X_{0}(\omega)$ is the initial content of the dam, $A_{t}(\omega)$ the total input during $[0, t], X_{t}(\omega)$ the content at time t. The above equation states that the rate of output at time u is

[^0]$r\left(X_{u}(\omega)\right)$, and
\[

$$
\begin{equation*}
Z_{i}(\omega)=\int_{0}^{t} r\left(X_{u}(\omega)\right) d u \tag{1.2}
\end{equation*}
$$

\]

is the total output during $[0, t] . A=\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, A_{t}, P^{x}\right)$ will be called the input process, $X=\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, X_{t}, P^{x}\right)$ the content process, $Z=\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, Z_{t}, P^{x}\right)$ the output process.

In the next section we shall show that the Eq. (1.1) has a unique solution for each ω and the resulting process $X=\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, X_{t}, P^{x}\right)$ is a standard Markov process (a strong Markov process on a locally compact space with a countable base with $\mathscr{F}_{t}=\mathscr{F}_{t+}=\overline{\mathscr{F}}_{t}$ and which is right-continuous and quasi-left-continuous on $[0,+\infty)$).

The process $\left\{Z_{t}\right\}$ is a continuous additive functional of X and thus is completely characterized by its potential which we shall compute in Section 3. If we define

$$
\begin{equation*}
\tau_{t}(\omega)=\inf \left\{s: Z_{s}(\omega)>t\right\} \tag{1.3}
\end{equation*}
$$

(then τ_{t} is the time the cumulative output reaches t) then $\tilde{X}=\left(\Omega, \mathscr{F}, \mathscr{F}_{\tau_{t}}, X_{\tau_{\mathrm{t}}}, P^{x}\right)$ is also a standard Markov process. We shall compute its resolvent and thus specify its transition function. This also gives the distribution of $\tilde{A}_{t}=A_{\mathfrak{t}_{t}}$ since $X_{\tau_{t}}=X_{0}+A_{\tau_{t}}-t$.

In Section 4 we consider the limiting distribution of the content process. We show that a limiting distribution for $\left\{X_{t}\right\}$ exists (and compute it) if

$$
\sup _{x} r(x)>m
$$

where m is the expected rate of input. If $\sup r(x)<m$, then $X_{t} \rightarrow+\infty$ as $t \rightarrow+\infty$.
In the special case where r is of form $r(x)=c x$ the equation can be solved explicitly in terms of A_{t} and, then, we are able to give a necessary and sufficient condition for the existence of the limiting distribution. This is put in Section 5.

The dam model considered was proposed by Moran [5]. We employ the methodology of [2] and [3] by considering the process X_{t} at its points of jumps along with the jump times (the resulting discrete time process is called a Markov renewal process). Section 3 is based on Chapters V and VI of Blumenthal and Getoor [1]. Section 4 ties the results of Çinlar [2], Foguel [4], Orey [6], Pyke and Schaufele [7] to show the existence of a limiting distribution for the imbedded Markov renewal process from which the limiting distribution of X_{t} is computed directly.

2. Content Process

From the general theory of processes with stationary independent increments we can write

$$
\begin{equation*}
A_{t}(\omega)=a t+\tilde{A}_{t}(\omega), \quad t \geqq 0 \tag{2.1}
\end{equation*}
$$

where $a \geqq 0$ is a constant and $\tilde{A}_{t}(\omega)$ is a right-continuous step function. We will denote the jump times by $\tau_{1}(\omega), \tau_{2}(\omega), \ldots$, set $\tau_{0}(\omega)=0$, and let $\alpha_{1}(\omega), \alpha_{2}(\omega), \ldots$ be the magnitudes of the corresponding jumps.

It follows from (1.1) and (2.1) that $X_{t}(\omega)$ satisfies the differential equation

$$
\begin{equation*}
d x_{t}=a d t-r\left(x_{t}\right) d t \tag{2.2}
\end{equation*}
$$

for $t \in\left(\tau_{n}(\omega), \tau_{n+1}(\omega)\right)$ for any $n \in \mathbf{N}$. The following puts together all the relevant facts we need about (2.2). We omit the proof.
(2.3) Lemma. The Eq. (2.2) with initial condition $x_{0}=x$ has a unique solution $q(x, t)$.
a) For fixed $x \in \mathbf{R}, t \rightarrow q(x, t)$ is monotone continuous.
b) For fixed $t \in \mathbf{R}, x \rightarrow q(x, t)$ is non-decreasing continuous.
c) The mapping $(x, t) \rightarrow q(x, t)$ is in \mathscr{R}^{2}.
d)

$$
-\frac{\partial}{\partial t} q(x, t)=[r(x)-a] \frac{\partial}{\partial x} q(x, t) . \quad \square
$$

(2.4) Theorem. Define, for each $\omega \in \Omega$,

$$
\begin{aligned}
\xi_{0}(\omega) & =X_{0}(\omega), \\
\xi_{n+1}(\omega) & =q\left(\xi_{n}(\omega), \tau_{n+1}(\omega)-\tau_{n}(\omega)\right)+\alpha_{n+1}(\omega), \quad n \in \mathbf{N}
\end{aligned}
$$

recursively. Then, we have

$$
X_{t}(\omega)=q\left(\xi_{n}(\omega), t-\tau_{n}(\omega)\right) \quad \text { if } \tau_{n}(\omega) \leqq t<\tau_{n+1}(\omega) .
$$

Proof. It follows from (2.1) that $X_{t}(\omega)$ satisfies (2.2) in any interval $\left(\tau_{n}(\omega)\right.$, $\left.\tau_{n+1}(\omega)\right)$, and at point $\tau_{n}(\omega), X_{t}(\omega)$ jumps by $\alpha_{n}(\omega)$. Thus, if $\xi_{n}=X_{\tau_{n}}$, then X_{t} is as given above for $t \in\left[\tau_{n}, \tau_{n+1}\right.$), and $\xi_{n+1}=X_{\tau_{n+1}-0}+\alpha_{n+1}$.
(2.5) Theorem. $X=\left(\Omega, \mathscr{F}, \mathscr{F}_{t}, X_{t}, P^{x}\right)$ is a normal standard Markov process (and since the termination time is $+\infty$ a.s., trivially, a Hunt process).

Proof. a) From the definition of X_{0} and the measures $P^{x}, P^{x}\left\{X_{0}=x\right\}=1$ for any $x \in \mathbf{R}$. Thus we have normality trivially.
b) From the construction, $t \rightarrow X_{t}(\omega)$ is right-continuous and has left-hand limits by Lemma (2.3).
c) Regularity Conditions. Both X_{t} and A_{t} have the same jump times and the same magnitudes of jumps. Between the jumps, both are deterministic. Thus,

$$
\begin{equation*}
\mathscr{F}_{t}^{0} \equiv \sigma\left(X_{s}: s \leqq t\right)=\sigma\left(X_{0}, A_{s}: s \leqq t\right)=\overline{\mathscr{R}} \times \mathscr{I}_{t}, \tag{2.6}
\end{equation*}
$$

and therefore, \mathscr{F}_{t} is also the completion of $\mathscr{\mathscr { F }}_{t}^{0}$ in \mathscr{F} relative to $\left\{P^{\mu}: \mu\right.$ a probability on $\overline{\mathscr{R}}\}$. Thus,

$$
\begin{equation*}
X_{t} \in \mathscr{F} / \overline{\mathscr{R}} . \tag{2.7}
\end{equation*}
$$

By right-continuity this implies that X is progressively measurable with respect to $\left\{\mathscr{F}_{t}\right\}$. Further, if T is any $\{\mathscr{F}\}$ stopping time,

$$
\begin{equation*}
X_{T} \in \mathscr{F}_{T} / \mathscr{R}^{*}, \tag{2.8}
\end{equation*}
$$

since the \mathscr{F}_{t} are complete with respect to $\mathbf{U}=\left\{P^{\mu}: \mu\right.$ a probability on $\left.\overline{\mathscr{R}}\right\}$ and since the completion of \mathscr{F}_{T} in \mathscr{F} with respect to U is the same as $\mathscr{\mathscr { F }}_{T}$.

Finally, from the construction of P^{x}, for $A \in \overline{\mathscr{R}}$ and $B \in \mathscr{I}, P^{x}(A \times B)=\varepsilon_{x}(A) P(B)$ so that $x \rightarrow P^{x}(A \times B)$ is in $\overline{\mathscr{R}}$. By the monotone class theorem then

$$
\begin{equation*}
x \rightarrow P^{x}(\Lambda) \quad \text { is in } \overline{\mathscr{R}} \tag{2.9}
\end{equation*}
$$

for any $\Lambda \in \overline{\mathscr{R}} \times \mathscr{I}$.
d) Strong Markov Property. Since $\left(W, \mathscr{I}, \mathscr{I}_{t}, A_{t}, P\right)$ is a process with stationary independent increments, $\left(W, \mathscr{I}, \mathscr{I}_{t+}, A_{t}, P\right)$ is a strong Markov process, and by (2.6), for any $\left\{\mathscr{F}_{+}^{0}\right\}$ stopping time T,

$$
\begin{equation*}
P^{x}\left\{A_{T+t}-A_{T} \in B \mid \mathscr{\mathscr { F }}_{T+}^{0}\right\}=P^{x}\left\{A_{t} \in B\right\} \tag{2.10}
\end{equation*}
$$

for all $t \geqq 0, B \in \mathscr{R}$ independent of x.
Let T be an $\left\{\mathscr{F}_{+}^{0}\right\}$ stopping time and define

$$
\begin{equation*}
A_{t}^{+}=A_{T+t}-A_{T}, \quad X_{t}^{+}=X_{T+t}, \quad t \geqq 0 \tag{2.11}
\end{equation*}
$$

Then, it follows from (1.1) that we have

$$
\begin{equation*}
X_{t}^{+}=X_{0}^{+}+A_{t}^{+}-\int_{0}^{t} r\left(X_{u}^{+}\right) d u, \quad t \geqq 0 \tag{2.12}
\end{equation*}
$$

which is the same as (1.1). Since, by (2.10), $\sigma\left(A_{t}^{+} ; t \geqq 0\right)$ is independent of $\mathscr{F}_{T_{+}}^{0}$, this implies

$$
P^{x}\left\{X_{t}^{+} \in B \mid \mathscr{F}_{T+}^{0}\right\}=P^{y}\left\{X_{t} \in B\right\} \quad \text { on }\left\{X_{0}^{+}=y\right\} ;
$$

that is,

$$
\begin{equation*}
P^{x}\left\{X_{T+t} \in B \mid \mathscr{F}_{T+}^{0}\right\}=P^{X(T)}\left\{X_{t} \in B\right\} \tag{2.13}
\end{equation*}
$$

for all $x \in \mathbf{R}, t \geqq 0, B \in \mathscr{R}$.
This proves that $\left(\Omega, \mathscr{F}_{2}, \mathscr{F}_{+}^{0}, X_{t}, P^{x}\right\}$ is a strong Markov process. By Proposition (8.12) in Chapter I of [1], then

$$
\begin{equation*}
\mathscr{F}_{t}=\mathscr{F}_{t+}, \quad t \geqq 0 . \tag{2.14}
\end{equation*}
$$

Thus, by Theorem (7.3) in Chapter I of [1], if T is any $\left\{\mathscr{F}_{t}\right\}$ stopping time, for each μ there exists a $\left\{\mathscr{F}_{t+}^{0}\right\}$ stopping time T_{μ} such that $P^{\mu}\left\{T \neq T_{\mu}\right\}=0$. Hence, (2.13) implies

$$
\begin{equation*}
P^{x}\left\{X_{T+i} \in B \mid \mathscr{F}_{T}\right\}=P^{X(T)}\left\{X_{t} \in B\right\} \tag{2.15}
\end{equation*}
$$

for all $t \geqq 0, x \in \mathbf{R}, B \in \mathscr{R}$, and $\left\{\mathscr{F}_{t}\right\}$ stopping times T.
e) If $\overline{\mathscr{F}}_{t}$ is the completion of \mathscr{F}_{t} in \mathscr{F} with respect to $\left\{P^{\mu}\right\}$, then obviously $\overline{\mathscr{F}_{t}}=\mathscr{F}_{t}$ and together with (2.14) we have

$$
\begin{equation*}
\mathscr{F}_{t}=\mathscr{\mathscr { F }}_{t+}=\overline{\mathscr{F}_{t}} . \tag{2.16}
\end{equation*}
$$

f) Quasi-Left-Continuity. Let $\left\{T_{n}\right\}$ be an increasing sequence of $\left\{\mathscr{F}_{t}\right\}$ stopping times with limit T. By the continuity of X_{t} on intervals $\left(\tau_{n}, \tau_{n+1}\right), X_{T_{n}} \rightarrow X_{T}$ everywhere on Ω except on $\Lambda=\bigcup_{k=1}^{\infty}\left\{T=\tau_{k}\right\}$. Thus we need to show that $P^{x}(A)=0$ for all x. Supposing otherwise, if $P^{x}(\Lambda)>0$ for some x, then $P^{x}\left\{A_{T_{n}} \rightarrow A_{T}\right\}=$
$1-P^{x}(\Lambda)<1$ since the τ_{k} are discontinuity points for $\left\{A_{t}\right\}$ also. This contradicts the fact that a process with stationary independent increments is quasi-leftcontinuous.

We shall next derive the transition function

$$
\begin{equation*}
P_{t}(x, A)=P^{x}\left\{X_{t} \in A\right\}, \quad x \in \mathbf{R}, A \in \mathscr{R} \tag{2.17}
\end{equation*}
$$

of the process X under the assumption that the rate of jumps is finite. Let, then, $b<\infty$ be the rate of jumps, and let γ be the distribution of the magnitude of a jump.
(2.18) Lemma. For any bounded $f \in \mathscr{R}^{*}$ and $t \geqq 0$,

$$
\begin{equation*}
P_{t} f(x)=e^{-b t} f \circ q(x, t)+\int_{0}^{t} \int_{0}^{\infty} b e^{-b s} d s \gamma(d y) P_{t-s} f(y+q(x, s)) \tag{2.19}
\end{equation*}
$$

(2.20) Remark. Since X is measurable, the mapping $(x, t) \rightarrow P_{t}(x, A)$ of \mathbf{R}^{2} into [0,1$]$ for fixed $A \in \mathscr{R}^{*}$ is $(\mathscr{R} \times \mathscr{R})^{\lambda \times \mu}$-measurable for all finite measures λ and μ on \mathscr{R} (where the σ-algebra in question is the completion of $\mathscr{R} \times \mathscr{R}$ with respect to the product measure $\lambda \times \mu$). Thus, the integral on the right-hand side of (2.19) is well defined. $\quad \square$

Proof. The first jump time $T=\tau_{1}$ is an $\left\{\mathscr{F}_{t+}^{0}\right\}$, and therefore an $\left\{\mathscr{F}_{t}\right\}$, stopping time. Since X is strong Markov by Theorem (2.5),

$$
P^{x}\left\{X_{t} \in B \mid \mathscr{F}_{T}\right\}=P_{t-T}\left(X_{T}, B\right) \quad \text { on }\{T \leqq t\}
$$

By Theorem (2.4), $X_{T}=q\left(X_{0}, T\right)+\alpha_{1}$, and $X_{t}=q\left(X_{0}, t\right)$ on $\{T>t\}$. Thus, we have

$$
P_{t} f(x)=E^{x}\left[f\left(X_{t}\right)\right]=E^{x}\left[I_{\{T>t\}} f \circ q(x, t)+I_{\{T \leqq t\}}\left(P_{t-T} f\right)\left(\alpha_{1}+q(x, T)\right)\right]
$$

which yields the lemma.
(2.21) Theorem. Let, for each $x \in \mathbf{R}, B \in \mathscr{R}^{2}$,

$$
\begin{equation*}
K(x, B)=\iint b e^{-b s} d s \gamma(d y) I_{B}(q(x, s)+y, s) \tag{2.22}
\end{equation*}
$$

and define

$$
\begin{align*}
K_{0}(x, B) & =\varepsilon_{(x, 0)}(B) \tag{2.23}\\
K_{n+1}(x, B) & =\int K(x, d(y, s)) K_{n}(y, B-(0, s)) .
\end{align*}
$$

Then, for any bounded $f \in \mathscr{R}$,

$$
\begin{equation*}
P_{t} f(x)=\sum_{n=0}^{\infty} \int_{R \times[0, t]} K_{n}(x, d(y, s)) e^{-b(t-s)} f \circ q(y, t-s) \tag{2.24}
\end{equation*}
$$

exists and is the unique solution of (2.19).
Proof. Fix $f \in \mathscr{R}$ bounded and write $f(x, t)=P_{\mathrm{t}} f(x)$ and $g(x, t)=e^{-b t} f \circ q(x, t)$. Then, (2.19) can be rewritten as

$$
\begin{equation*}
f(x, t)=g(x, t)+\int_{R \times[0, t]} K(x, d(y, s)) f(y, t-s) \tag{2.25}
\end{equation*}
$$

with K as defined by (2.22).

Note that $x \rightarrow K(x, B)$ is in \mathscr{R} and $B \rightarrow K(x, B)$ is a measure on \mathscr{R}^{2}. Thus K is a semi-Markovian kernel and (2.25) is a Markov renewal equation (cf. Çinlar [2] and [3]). Then, that (2.24) exists and is a solution of (2.25) follows from Theorem 8 of [2] since

$$
g(x, t) \leqq K(x, \mathbf{R} \times(t, \infty))=e^{-b t} .
$$

That (2.24) is the only solution of (2.25) follows from Theorem (3.13) of [3] since

$$
\sup _{x} K(x, \mathbf{R} \times[0, t])=1-e^{-b t}<1
$$

for some $t>0$ (because $b<\infty$ by hypothesis). \square
(2.26) Remark. Let $u(t, x)=e^{b t} P_{t} f(x)$ for some differentiable function f on (R, \mathscr{R}). Then, from Lemma (2.18) we get

$$
u(t, x)=f \circ q(x, t)+b \int_{0}^{\infty} \gamma(d y) \int_{0}^{t} u(s, y+q(x, t-s)) d s
$$

From this, using (d) of Lemma (2.3), we obtain

$$
\left[\frac{\partial}{\partial t}+(r(x)-a) \frac{\partial}{\partial x}\right] u=b \int_{0}^{\infty} \gamma(d y) u(t, x+y)
$$

This is the characteristic equation for $X . \quad \square$
(2.27) Remark. Let K be as defined by (2.22) and put, for $\lambda \geqq 0$,

$$
K^{\lambda}(x, A)=\int_{0}^{\infty} e^{-\lambda t} K(x, A \times d t)
$$

Then K^{λ} is a sub-Markovian kernel on (R, \mathscr{R}). Putting

$$
R^{\lambda}=\sum_{n} K_{n}^{\lambda}
$$

we have

$$
U^{\lambda} f(x)=\int_{0}^{\infty} e^{-\lambda t} P_{t} f(x) d t=\int_{0}^{\infty} R^{\lambda}(x, d y) \int_{0}^{\infty} e^{-(\lambda+b) t} f \circ q(y, t) d t
$$

($U^{\lambda} f$ is called the λ-potential of f). This follows directly from Theorem (2.21) and the relationship between Laplace transforms and convolutions.

3. Output Process

Consider the process $\left\{Z_{t} ; t \geqq 0\right\}$ where

$$
\begin{equation*}
Z_{t}(\omega)=\int_{0}^{t} r\left(X_{\mathrm{s}}(\omega)\right) d s, \quad \omega \in \Omega, t \geqq 0 \tag{3.1}
\end{equation*}
$$

Since X is right-continuous and r continuous, $t \rightarrow Z_{t}(\omega)$ is continuous. It is clear that, for any $s, t \geqq 0$,

$$
\begin{equation*}
Z_{t+s}-Z_{t} \in \sigma\left(X_{u}: t \leqq u \leqq t+s\right) \tag{3.2}
\end{equation*}
$$

and that $Z_{0}=0$. Thus, Z is a continuous additive functional of X.

The function

$$
\begin{equation*}
f_{t}(x)=E^{x}\left[Z_{t}\right] \tag{3.3}
\end{equation*}
$$

is called the characteristic of Z. For fixed $x \in \mathbf{R}, f_{0}(x)=0, t \rightarrow f_{t}(x)$ is non-decreasing continuous, and $f_{t}(x)=E^{x}\left[Z_{t}\right] \leqq x+E^{x}\left[A_{t}\right] \leqq x+m t$. Conditioning on \mathscr{F}_{t}, we have

$$
\begin{equation*}
f_{t+s}(x)=f_{t}(x)+\int P_{t}(x, d y) f_{s}(y), \tag{3.4}
\end{equation*}
$$

or directly

$$
\begin{equation*}
f_{t}(x)=\int_{0}^{t} \int_{0}^{\infty} P_{s}(x, d y) r(y) d s \tag{3.5}
\end{equation*}
$$

The Laplace transform

$$
\begin{equation*}
u^{\lambda}(x)=\lambda \int_{0}^{\infty} e^{-\lambda t} f_{t}(x) d t, \quad \lambda \geqq 0 \tag{3.6}
\end{equation*}
$$

is called the λ-potential of Z. From (3.5) and Remark (2.27) we have, in the notation of (2.27),

$$
\begin{equation*}
u^{\lambda}(x)=\int_{0}^{\infty} R^{\lambda}(x, d y) \int_{0}^{\infty} e^{-(\lambda+b) t} r \circ q(y, t) . \tag{3.7}
\end{equation*}
$$

We next consider the random time change effected by Z. Let

$$
\begin{equation*}
T_{t}(\omega)=\inf \left\{s: Z_{s}(\omega)>t\right\}, \quad t \geqq 0 \tag{3.8}
\end{equation*}
$$

for each $\omega \in \Omega$. Since Z is continuous non-decreasing, T_{t} is strictly increasing right-continuous. For each $t \geqq 0, T_{t}$ is an $\left\{\mathscr{F}_{s}\right\}$ stopping time. Define

$$
\begin{equation*}
\bar{X}_{t}=X_{T_{t}}, \quad \bar{A}_{t}=A_{T_{t}}, \quad \overline{\mathscr{F}}=\mathscr{F}_{T_{t}} . \tag{3.9}
\end{equation*}
$$

Noting that $Z_{T_{t}}=t$ by right-continuity of Z, (1.1) implies that

$$
\begin{equation*}
\bar{X}_{t}=X_{0}+\bar{A}_{t}-t \tag{3.10}
\end{equation*}
$$

It is known (cf. [1] p. 212) that, since X is a standard Markov process and Z is continuous and strictly increasing (since r is Lipschitz, $X_{t} \neq 0$)

$$
\bar{X}=\left(\Omega, \mathscr{\mathscr { F }}, \overline{\mathscr{F}}, \bar{X}_{t}, P^{x}\right)
$$

is also standard Markov process.
Further, for $x>0, r(x)>0$ and thus $P^{x}\left\{Z_{t}>0\right\}=1$ for $t>0$ which implies that $P^{x}\left\{T_{0}=0\right\}=1$ and hence $P^{x}\left\{\bar{X}_{0}=x\right\}=1$. On the other hand, if $x=0, P^{x}\left\{T_{0}=\tau_{1}\right\}=1$ and thus $P^{0}\left\{\bar{X}_{0}=\alpha_{1}>0\right\}=1$. So, \bar{X} is normal except for $x=0$.

Next we will compute the resolvent of \bar{X} (and thus specify its transition function, and by (3.10), that of \bar{A}_{t}).
(3.11) Theorem. Let, for $\lambda>0, f \in \mathscr{R}^{*}$ bounded,

$$
\begin{equation*}
W^{\lambda} f(x)=E^{x}\left[\int_{0}^{\infty} e^{-\lambda t} f\left(\bar{X}_{t}\right) d t\right] . \tag{3.12}
\end{equation*}
$$

Then,

$$
\begin{equation*}
W^{\lambda} f(x)=e^{-\lambda x} \sum_{n=0}^{\infty} K_{n} g(x) \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
g(x)=\int_{0}^{\infty} \exp [-(b+\lambda a) t+\lambda q(x, t)](f \cdot r) \circ q(x, t) d t \tag{3.14}
\end{equation*}
$$

and
for $x \in \mathbf{R}, A \in \mathscr{R}$.

$$
\begin{equation*}
K(x, A)=\int_{0}^{\infty} b e^{-(b+\lambda a) t} d t \int_{A-q(x, t)} e^{-\lambda z} \gamma(d z), \tag{3.15}
\end{equation*}
$$

Proof. Let $f \in \mathscr{B}^{*}$ be bounded, $\lambda>0$. It follows from (3.8) and (3.9) that (cf. [1] Lemma (2.2) in Chapter V)

$$
\int_{0}^{\infty} e^{-\lambda t} f\left(\bar{X}_{t}\right) d t=\int_{0}^{\infty} \exp \left(-\lambda Z_{s}\right) f\left(X_{s}\right) d Z_{s}
$$

Replacing Z_{s} by $X_{0}+A_{s}-X_{s}$ and $d Z_{s}$ by $r\left(X_{s}\right) d s$ and putting

$$
\begin{equation*}
h(x)=e^{-\lambda x} f(x) r(x), \tag{3.16}
\end{equation*}
$$

we have

$$
\begin{align*}
W^{\lambda} f(x) & =E^{x}\left[\exp \left(-\lambda X_{0}\right) \int_{0}^{\infty} \exp \left(-\lambda A_{s}\right) h\left(X_{s}\right) d s\right] \\
& =e^{-\lambda x} \int_{0}^{\infty} E^{x}\left[\exp \left(-\lambda A_{s}\right) h\left(X_{s}\right)\right] d s \tag{3.17}
\end{align*}
$$

where we use normality of X, and Fubini's theorem to change the order of integration.

Noting that $\left(\Omega, \mathscr{F}, \mathscr{F}_{t},\left(X_{t}, A_{t}\right), P^{x}\right)$ has the strong Markov property, and that the first jump time $T=\tau_{1}$ is an $\left\{\mathscr{F}_{t}\right\}$ stopping time, we have

$$
\begin{align*}
& E^{x}\left[\exp \left(-\lambda A_{t}\right) h\left(X_{t}\right) \mid \mathscr{F}_{T}\right] \\
&= \begin{cases}e^{-\lambda a t} h \circ q(x, t) & \text { on }\{T>t\}, \\
e^{-\lambda A(T)} E^{X(T)}\left[\exp \left(-\lambda A_{t-T}\right) h\left(X_{t-T}\right)\right] & \text { on }\{T \leqq t\} .\end{cases} \tag{3.18}
\end{align*}
$$

Thus, if we write

$$
\begin{equation*}
k(x, t)=E^{x}\left[\exp \left(-\lambda A_{t}\right) h\left(X_{t}\right)\right], \quad k(x)=\int_{0}^{\infty} k(x, t) d t \tag{3.19}
\end{equation*}
$$

then we have from (3.18)

$$
\begin{aligned}
k(x, t)= & \exp (-b t-\lambda a t) h \circ q(x, t) \\
& +\iint_{\mathbf{R} \times[0, t]} b e^{-b s} d s \gamma(d y-q(x, s)) \exp [-\lambda(a s+y-q(x, s))] k(y, t-s)
\end{aligned}
$$

which gives

$$
\begin{aligned}
k(x)= & \int_{0}^{\infty} \exp (-b t-\lambda a t) h \circ q(x, t) d t \\
& +\int_{0}^{\infty} b e^{-b s} d s \int_{0}^{\infty} \gamma(d y-q(x, s)) \exp [-\lambda(a s+y-q(x, s)] k(y) .
\end{aligned}
$$

Noting the definitions (3.14), (3.15), (3.16) this becomes

$$
\begin{equation*}
k=g+K k \tag{3.20}
\end{equation*}
$$

We have $K(x, \mathbf{R})=\frac{b}{b+\lambda a} \gamma^{\lambda} \leqq \gamma^{\lambda}<1$ since $\lambda>0$ where $\gamma^{\lambda}=\int_{0}^{\infty} e^{-\lambda x} \gamma(d x)$. Therefore, $R=\sum_{n} K_{n}$ is well defined and $A \rightarrow R(x, A)$ is a finite measure. The solution of (3.20) then is

$$
k=R g
$$

This together with (3.19) and (3.17) yields (3.13). $\quad \square$

4. Limit Theorems

In this section we shall consider the limiting distribution of X_{t} as t approaches infinity. First we want to show that, in the decomposition (2.1), we can take $a=0$ without loss of generality.

Suppose $a>0$ in (2.1). If $\sup r(x)<a$, then $t \rightarrow X_{t}(\omega)$ is a strictly increasing function and $X_{t}(\omega) \rightarrow+\infty$ as $t \rightarrow \infty$ for each $\omega \in \Omega$.

If $a>0$ and $\sup r(x)=a$, then $t \rightarrow X_{t}(\omega)$ is non-decreasing, and there exists a hitting time T such that

$$
X_{t}(\omega)=A_{t}(\omega)-a t-C(\omega)
$$

for all $t \geqq T(\omega)$, (and $C(\omega)$ is independent of t). Therefore, then X_{t} and $A_{t}-a t$ are shifted copies of each other; and $X_{t}(\omega) \rightarrow+\infty$ as $t \rightarrow \infty$ for each $\omega \in \Omega$.

Finally suppose $a>0, \sup r(x)>a$, let x^{*} be such that $r\left(x^{*}\right)=a$ (since r is continuous, such a point exists), and set $T(\omega)=\inf \left\{t: X_{t}(\omega)>x^{*}\right\}$. Then, X_{t} is strictly increasing for $t<T$, and $X_{T+t} \geqq x^{*}, r\left(X_{T+t}\right) \geqq a$ for all $t \geqq 0$. On the other hand, $P^{x}\{T<\infty\}=1$ and $E^{x}(T)<\infty$ for all x. Thus, the set $\left[0, x^{*}\right)$ is distributive and $P^{x}\left\{X_{t}<x^{*}\right\} \rightarrow 0$ as $t \rightarrow \infty$ for $x<x^{*}$ (of course we have $P^{x}\left\{X_{t}<x^{*}\right\}=0$ for $x \geqq x^{*}$). Hence, it is sufficient to consider the limiting behavior of X restricted to [x^{*}, ∞]. Then, putting $\tilde{r}(x)=r(x)-a$ we can rewrite (1.1) as $X_{i}=X_{0}+\tilde{A}_{t}-\int_{0}^{t} \tilde{r}\left(X_{u}\right) d u$.

Hence, from here on, we assume $a=0$. We also assume the jump rate b to be finite, and denote by m the input rate:
(then $E^{x}\left(A_{i}\right)=m t$ for all t).

$$
m=b \int_{0}^{\infty} x \gamma(d x)
$$

Below we shall show that $P^{x}\left\{X_{t} \in B\right\} \rightarrow 0$ for all bounded B as $t \rightarrow \infty$ if $\sup r(x)<m$. If $\sup r(x)>m$, then $P^{x}\left\{X_{t} \in B\right\} \rightarrow v(B)$ as $t \rightarrow \infty$ for some probability measure v independent of x and we will compute v. The situation in the case $\sup r(x)=m$ is not clear. Our conjecture is that there exists a σ-finite (but not finite) invariant measure for P_{t} in that case.

Let η_{n} be the left-hand limit of X_{t} at τ_{n}, that is,

$$
\begin{align*}
\eta_{1} & =q\left(X_{0}, \tau_{1}\right) \\
\eta_{n+1} & =q\left(\eta_{n}+\alpha_{n}, \tau_{n+1}-\tau_{n}\right), \quad n=1,2, \ldots \tag{4.1}
\end{align*}
$$

and put

$$
\begin{equation*}
\mathscr{M}_{n}=\sigma\left(X_{0}, \eta_{1}, \ldots, \eta_{n} ; \tau_{1}, \tau_{2}, \ldots, \tau_{n}\right) \quad n=1,2, \ldots . \tag{4.2}
\end{equation*}
$$

The following (whose proof we omit as fairly easy) is central to our development (cf. [2] for the definitions).
(4.3) Proposition. $\left(\Omega, \mathscr{F}, \mathscr{A}_{n},\left(\eta_{n}, \tau_{n}\right), P^{x}\right)$ is a delayed Markov renewal process with semi-Markov kernel Q (that is,

$$
P^{x}\left\{\eta_{n+1} \in A, \tau_{n+1}-\tau_{n} \in B \mid \mathscr{A}_{n}\right\}=Q\left(\eta_{n}, A \times B\right)
$$

for all $A, B \in \mathscr{R}$ and $n=1,2, \ldots$), where

$$
\begin{equation*}
Q(x, \Gamma)=\iint b e^{-b s} d s \gamma(d y) I_{\Gamma}(q(x+y, s), s) \tag{4.4}
\end{equation*}
$$

for all $x \in \mathbf{R}, \Gamma \in \mathscr{R}^{2}$.
(4.5) Corollary. $Y=\left(\Omega, \mathscr{F}, \mathscr{M}_{n}, \eta_{n}, P^{x}\right)$ is a Markov chain with transition kernel

$$
\begin{equation*}
N(x, A)=Q(x, A \times \mathbf{R})=\iint b e^{-b s} d s \gamma(d y) I_{A} \circ q(x+y, s) . \tag{4.6}
\end{equation*}
$$

We next will show that the assumptions of Foguel [4] are satisfied by N and further that the σ-finite invariant measure v he constructs for N is actually finite in our case.

Throughout the following we denote by T_{f} the operator defined as

$$
T_{f} g(x)=f(x) g(x)
$$

and write T_{A} instead of T_{f} when $f=I_{A}$. The following is of interest on its own.
(4.7) Theorem. Let $D=\{x: r(x)>c\}$ be non-empty for some constant $c>m$. Then,
a) $\left(T_{D} N T_{D}\right)^{n} 1(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in \mathbf{R}$;
b) $\sum_{n=0}^{\infty}\left(N T_{D}\right)^{n} 1(x)<\infty$ for all $x \in \mathbf{R}$;
c) $\sum_{n=0}^{\infty} T_{C}\left(N T_{D}\right)^{n} 1$ is bounded for any bounded set $C \in \mathscr{R}$.

Proof. Note first that $\left(N T_{D}\right)^{n}=\left(N T_{D}\right)\left(T_{D} N T_{D}\right)^{n-1}$ so that b) implies a).
Since r is continuous non-decreasing, the set D is of form $D=(d, \infty)$. Thus, if $q(x, t) \in D$, then $q(x, t)<x-c t$ and $x-c t \in D$. From (4.1) therefore

$$
\begin{equation*}
\left\{\eta_{k+1} \in D\right\} \subset\left\{\eta_{k+1} \in D, \eta_{k+1}<\eta_{k}+\alpha_{k}-c\left(\tau_{k+1}-\tau_{k}\right) \in D\right\} . \tag{4.8}
\end{equation*}
$$

Define

$$
\begin{align*}
& S_{0}=0 \\
& S_{n}=\sum_{k=1}^{n}\left[\alpha_{k}-c\left(\tau_{k+1}-\tau_{k}\right)\right], \quad n=1,2, \ldots . \tag{4.9}
\end{align*}
$$

Then, from (4.8) we have

$$
\begin{equation*}
\left\{\eta_{2} \in D, \ldots, \eta_{n+1} \in D\right\} \subset\left\{\eta_{1}+S_{1} \in D, \ldots, \eta_{1}+S_{n} \in D\right\}=\left\{U_{\eta_{1}}>n\right\} \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{x}=\inf \left\{k \geqq 1: x+S_{k} \notin D\right\} . \tag{4.11}
\end{equation*}
$$

On the other hand, writting \tilde{P}^{x} for the conditional probability $P^{y}\left\{\cdot \mid \mathscr{M}_{1}\right\}$ on $\left\{\eta_{1}=x\right\}$, we have

$$
\begin{equation*}
\left(N T_{D}\right)^{n} 1(x)=\tilde{P}^{x}\left\{\eta_{2} \in D, \ldots, \eta_{n+1} \in D\right\} ; \tag{4.12}
\end{equation*}
$$

thus, from (4.10) and (4.11),

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(N T_{D}\right)^{n} 1(x) \leqq \sum_{n=0}^{\infty} P^{y}\left\{U_{x}>n\right\}=E^{y}\left[U_{x}\right] . \tag{4.13}
\end{equation*}
$$

But $\left\{S_{n}\right\}$ is a random walk and the expected value of one of its steps is $m / b-$ $c / b<0$ since $c>m$. Thus, $\left\{S_{n}\right\}$ drifts to $-\infty$. From standard results for random walks, since D is of form $(d, \infty), E^{y}\left[U_{x}\right]<\infty$ for any x. This proves b) via (4.13).

To show c) it is sufficient to take $C=[0, k]$. Then, the result is immediate from b) once we note that

$$
\begin{aligned}
\sup _{x} \sum_{n=0}^{\infty} T_{C}\left(N T_{D}\right)^{n} 1(x) & =\sup _{x \in C} \sum_{n=0}^{\infty}\left(N T_{D}\right)^{n} 1(x) \\
& \leqq \sup _{x \in C} E^{y}\left(U_{x}\right) \leqq E^{y}\left(U_{k}\right) .
\end{aligned}
$$

(4.14) Lemma. If $f \in \mathscr{R}$ is continuous, so is $N f$.

Proof. From Corollary (4.5)

$$
N f(x)=\iint b e^{-b s} d s \gamma(d y) f \circ q(x+y, s)
$$

and this is continuous since $x \rightarrow q(x, t)$ is continuous by Lemma (2.3).
(4.15) Theorem. If $\sup r(x)>m$, then Y has a unique invariant measure v and $v(\mathbf{R})=1$.

Proof. By the hypothesis of the theorem, there exists $c>m$ with $D=\{x: r(x)>c\}$ non-empty. Thus, Theorem (4.7) holds. The statement a) of (4.7) is assumption (2.1) of Foguel [4], and Lemma (4.14) is assumption (3.5) in [4]. Thus all the results of [4] hold for the process Y. In particular, the theorem of that paper shows that there exists a measure v for Y which is constructed as follows.

Let C be a closed interval containing the complement $\{D$ of D; and let f be a continuous function with

$$
0 \leqq f \leqq 1, \quad f=0 \quad \text { on } \complement D, \quad f=1 \quad \text { on } \complement C .
$$

Then

$$
N_{\infty}=\sum_{n=0}^{\infty}\left(N T_{f}\right)^{n} N T_{1-f}
$$

is a well defined contraction on bounded measurable functions defined on C. Further, by the corollary to Lemma 3 of [4], there exists a probability measure λ, on C, with $\lambda N_{\infty}=\lambda$. We have

$$
\begin{equation*}
v=\sum_{n=0}^{\infty} \lambda\left(N T_{f}\right)^{n} \tag{4.16}
\end{equation*}
$$

as the desired σ-finite measure satisfying $v N=v$.

Since $f \leqq I_{D}, N T_{f} \leqq N T_{D}$ and by iteration we have $\left(N T_{f}\right)^{n} \leqq\left(N T_{D}\right)^{n}$. Thus, from (4.16),

$$
v 1 \leqq \lambda \sum_{n=0}^{\infty}\left(N T_{D}\right)^{n} 1 \leqq \sup _{x \in C} \sum_{n=0}^{\infty}\left(N T_{D}\right)^{n} 1(x)
$$

since λ is a probability measure concentrated on C. Hence $\nu 1<\infty$ by c) of Theorem (4.7). Then we can take $v(\mathbf{R})=1$ by a suitable normalization.

To show that v is the only invariant measure we note that, for any $x \in \mathbf{R}$ and $A \in \mathscr{R}$ with positive Lebesgue measure, there exists n such that $N_{n}(x, A)>0$. This follows from the nature of the exponential distribution since, if $\beta=$ $\sup \{x: \gamma(0, x)<1\}$ and $A=\left[a_{0}, a_{1}\right] \subset[0, x+\beta-\varepsilon]$, then

$$
N(x, A) \geqq \int_{\beta-\varepsilon}^{\beta} \gamma(d y) \int_{B_{y}} b e^{-b s} d s>0
$$

where $B_{y}=\{t: q(x+y, t) \in A\}$. $\quad \square$
(4.17) Theorem. Let $N(t)=\sup \left\{n: \tau_{n} \leqq t\right\}$. Then, if $\sup _{x} r(x)>m$,

$$
\begin{equation*}
\lambda(A \times B)=\lim _{t \rightarrow \infty} P^{x}\left\{\eta_{N(t)} \in A, t-\tau_{N(t)} \in B\right\} \tag{4.18}
\end{equation*}
$$

exists for open sets A, B and is given by

$$
\begin{equation*}
\lambda(A \times B)=v(A) \int_{B} b e^{-b s} d s \tag{4.19}
\end{equation*}
$$

where v is as defined in Theorem (4.15).
Proof. Existence of the limit (4.18) is assured by Theorem 4 of Orey [6] whose conditions we satisfy as follows. Conditions (i) and (ii) of [6] on the state space are satisfied by (\mathbf{R}, \mathscr{R}); condition (iii) is satisfied by our Theorem (4.15); and the finiteness of the integral (0.1) of [6] is evident since v is finite and the expected sojourn times involved are $1 / b$.

That (4.19) is true follows from Theorem (3.1) of Pyke and Schaufele [7] (though their state space was discrete, their proof goes through for our case).
(4.20) Theorem. If $\sup r(x)>m$, then

$$
\mu(A)=\lim _{t \rightarrow \infty} P^{x}\left\{X_{t} \in A\right\}
$$

exists and we have

$$
\mu(A)=\iiint v(d x) \gamma(d y) b e^{-b s} d s I_{A} \circ q(x+y, s)
$$

Proof. From Theorem (2.4) and (4.1) we have

$$
X_{t}=q\left(\eta_{n}+\alpha_{n}, t-\tau_{n}\right) \quad \text { on }\left\{\tau_{n} \leqq t<\tau_{n+1}\right\}
$$

that is, if $N(t)$ is defined as in Theorem (4.17),

$$
X_{t}=q\left(\eta_{N(t)}+\alpha_{N(t)}, t-\tau_{N(t)}\right) .
$$

Proof follows now from Theorem (4.17) and the independence of $\eta_{n}, \alpha_{n}, \tau_{n+1}-\tau_{n}$ for each n.
(4.21) Remark. Suppose $\sup r(x)=c<m$. Then, from (1.1) we have

$$
X_{t} \geqq X_{0}+A_{t}-c t
$$

Since $E^{x}\left[A_{t}\right]=m t>c t$, this implies that $\lim _{t} X_{t}=+\infty$ almost surely for any P^{x}.

5. A Special Case

Consider the case $r(x)=c x$ where $c>0$ is a constant. According to Theorem (4.20), a limiting distribution for X exists if m is finite. We will now show by an explicit calculation that it may still exist when m is infinite. Furthermore, in this case we do not need to assume the rate of jumps to be finite. For the reasons explained in Section 4 we assume, without loss of generality, that $\left\{A_{t}\right\}$ is a pure jump process. Then,

$$
\begin{equation*}
E^{x}\left[\exp \left(-\lambda A_{t}\right)\right]=\exp (-t g(\lambda)) \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
g(\lambda)=\int_{0}^{\infty}\left(1-e^{-\lambda x}\right) v(d x) \tag{5.2}
\end{equation*}
$$

for some measure v on the Borel subsets of $(0, \infty)$ satisfying $\int(x /(1+x)) v(d x)<\infty$.
(5.3) Theorem. Let $r(x)=c x$. In order that X_{t} have a limiting distribution when t approaches $+\infty$, it is necessary and sufficient that

$$
\begin{equation*}
\int_{1}^{\infty}(\log x) v(d x)<\infty . \tag{5.4}
\end{equation*}
$$

Proof. In this case the Eq.(1.1) can be solved explicitly to yield

$$
\begin{equation*}
X_{t}(\omega)=X_{0}(\omega) e^{-c t}+\int_{0}^{t} e^{-c(t-s)} d A_{s}(\omega) \tag{5.5}
\end{equation*}
$$

where the integral on the right-hand side is a Riemann-Stieltjes integral. If we write (5.5) as a limit of Riemann-Stieltjes sums, it follows from (5.1) that

$$
\begin{aligned}
u_{t}(x, \lambda) & =E^{x}\left[e^{-\lambda x_{t}}\right] \\
& =\exp \left(-\lambda x e^{-c t}\right) \exp \left[-\int_{0}^{t} g\left(\lambda e^{-c s}\right) d s\right] .
\end{aligned}
$$

If we now make the change of variable $y=\lambda e^{-c s}$ above, it becomes clear that $\lim _{t \rightarrow \infty} u_{t}(x, \lambda)$ exists simultaneously with

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{\lambda} \frac{1}{y} g(y) d y \tag{5.6}
\end{equation*}
$$

But this last expression is of the form $\int_{0}^{\infty} f_{\varepsilon}(x) v(d x)$ where

$$
f_{\varepsilon}(x)=\int_{\varepsilon}^{\lambda} \frac{1-e^{-y x}}{y} d y .
$$

As $\varepsilon \downarrow 0, f_{\varepsilon}(x)$ increases to the limit

$$
\begin{equation*}
f(x)=\int_{0}^{2} \frac{1-e^{-y x}}{y} d y \tag{5.7}
\end{equation*}
$$

Thus, by the monotone convergence theorem, the limit (5.6) exists simultaneously with the integral

$$
\begin{equation*}
\int_{0}^{\infty} f(x) v(d x) \tag{5.8}
\end{equation*}
$$

But f is locally bounded and asymptotic to $\log x$ as $x \rightarrow \infty$. Therefore, the conclusion follows from the continuity theorem for Laplace transforms. $\quad]$

References

1. Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. New York: Academic Press 1968.
2. C̦inlar, E.: On semi-Markov processes on arbitrary spaces. Proc. Cambridge philos. Soc. 65, 381-392 (1969).
3. - Markov renewal theory. Advances Appl. Probab. 1, 123-187 (1969).
4. Foguel, S.R.: Existence of a σ-finite invariant measure for a Markov process on a locally compact space. Israel J. Math. 6, 1-4 (1968).
5. Moran, P.A. P.: A theory of dams with continuous input and a general release rule. J. appl. Probab. 6, 88-98 (1969).
6. Orey, S.: Change of time scale for Markov processes. Trans. Amer. math. Soc. 99, 384-397 (1961).
7. Pyke, R., Schaufele, R.: The existence and uniqueness of stationary measures for Markov renewal processes. Ann. math. Statistics 37, 1439-1462 (1966).

Prof. E. C̦inlar and
Prof. M. Pinsky
Dept. of Mathematics
Northwestern University
Evanston Illinois 60201, USA

[^0]: * Research supported by the National Science Foundation Grant GK-4196.
 ** Research supported by the National Science Foundation Grant GP-9437.

