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A Stochastic Integral in Storage Theory 

E. ~INLAR * and M. PINSKY * *  

1. Introduction 

Throughout the following R =  [0, + oo), R =  [0, + oo], N =  {0, 1, 2 . . . .  }, ~ and 
the Borel subsets of R and R respectively, and N* the universally measurable 

subsets of 1~. If(E, ~) and (F, ~ )  are measurable spaces and f :  E --, F is measurable 
relative to ~ and ~ then we write feg/~; if (F, ~ ) =  (R, N) then we simply write 
f~g. By a( ' )  we denote the a-algebra generated by ('). If N is a transition prob- 
ability from (E, g) into (F, ~ ) ,  that is, N(x,') is a probability on ~- and N(' ,  A) is 
in d ~ and f~Y,, then we write Nf for the function defined as 

Nf(x)=~ N(x, dy)f(y), x6E. 

Our notation and terminology follow that of [1]. 

Let (W, J,,P) be a probability space and let {At: t>0} be a process on Wwith 
stationary independent non-negative increments taking values in (R, ~)  with 
P { A o = 0 } =  1. It is possible to, and we do, take t~At(w) to be right-continuous 
non-decreasing for each we W. Let ~ = o ( A s :  s<t). Throughout the first four 
sections we assume the jump rate to be finite. 

Let f2=R x Wand, for each probability measure # on ~ ,  define P" to be the 
product measure # x P on ~ x J .  In particular, when # is the Dirac measure ex 
concentrated at xsR,  we write px for P". Let U =  {P": # a probability on ~}, 

the completion of ~ x J with respect to U, and ~ the completion of ~ x Jt in 
with respect to U. 
For co = (x, w)ef2, we shall write At(co)= At(w) (there should be no confusion 

because of this) for all t > 0, and put Xo (co) = x. 
Let r be a Lipschitz continuous strictly increasing function from [i into 11 

so that r(0)= 0, and consider the equation 

(1 .1 )  xdco)=Xo(co)+At(co)- ir(X.(co))du, t>=O 
o 

for each co ~ g?; (note that if co = ( + 0% w), then Xt (co) = + ~ for all t > 0). The reader 
will observe that certain of our results below go through under less stringent 
assumptions on r. 

~? is the sample space, o~; the history until t. For the realization coE~?, Xo(co) 
is the initial content of the dam, At(co) the total input during [0, t], X,(co) the 
content at time t. The above equation states that the rate of output at time u is 
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r (X, (co)), and 
t 

(1.2) Z,(CO)= 5 r(X,,(co)) du 
0 

is the total output during [0, t]. A =(f2, ~,  fit, At, W) will be called the input 
process, X = (O, ~,  fit, Xt, P':) the content process, Z = (O, ~,  fit, Z t, W) the 
output process. 

In the next section we shall show that the Eq. (1.1) has a unique solution for 
each co and the resulting process X=(O,  ~,  fit, X t, W) is a standard Markov 
process (a strong Markov process on a locally compact space with a countable 
base with fit = fit+ = J t  and which is right-continuous and quasi-left-continuous 
on [0, + oo)). 

The process {Zt} is a continuous additive functional of X and thus is completely 
characterized by its potential which .we shall compute in Section 3. If we define 

(1.3) -c t (co) = inf {s: Zs (co) > t} 

(then z t is the time the cumulative output reaches t) then X = (O, ~,  4 ,  X~t, px) 
is also a standard Markov process. We shall compute its resolvent and thus 
specify its transition function. This also gives the distribution of At =At, since 
X~t = Xo + A,~ - t. 

In Section 4 we consider the limiting distribution of the content process. We 
show that a limiting distribution for {Xt} exists (and compute it) if 

sup r (x) > m 
x 

where m is the expected rate of input. If sup r(x)<m, then Xt ~ + oe as t--, + oe. 
x 

In the special case where r is of form r(x)=cx the equation can be solved 
explicitly in terms of At and, then, we are able to give a necessary and sufficient 
condition for the existence of the limiting distribution. This is put in Section 5. 

The dam model considered was proposed by Moran I-5]. We employ the 
methodology of [2] and [3] by considering the process X, at its points of jumps 
along with the jump times (the resulting discrete time process is called a Markov 
renewal process). Section 3 is based on Chapters V and VI of Blumenthal and 
Getoor [1]. Section 4 ties the results of C, inlar I-2], Foguel [4], Orey [6], Pyke 
and Schaufele [7] to show the existence of a limiting distribution for the imbedded 
Markov renewal process from which the limiting distribution of X~ is computed 
directly. 

2. Content Process 

From the general theory of processes with stationary independent increments 
we can write 

(2.1) At(co):at+At(co), t>O 

where a > 0  is a constant and At(co) is a right-continuous step function. We will 
denote the jump times by zl(co), z2 (co) . . . . .  set %(co)= 0, and let ~l(co), ~2 (co) . . . .  
be the magnitudes of the corresponding jumps. 
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It follows from (1.1) and (2.1) that Xt(co) satisfies the differential equation 

(2.2) dxt = a d t - r  (x~) d t 

for t~(z,(co), z,+~(co)) for any n~N. The following puts together all the relevant 
facts we need about (2.2). We omit the proof. 

(2.3) Lemma. The Eq.(2.2) with initial condition x o=x  has a unique solution 
q(x, t). 

a) For fixed xsR,  t-~ q(x, t) is monotone continuous. 
b) For f ixed t sR,  x-+ q(x, t) is non-decreasing continuous. 
c) The mapping (x, t)-~ q(x, t) is in ~2. 

8 [r(x)-a]~--~q(x, t ) .  D d) Ot q(x, t)= 

(2.4) Theorem. Define, for each co~(2, 

~o (co) = Xo (co), 

4,+1 (co)= q (~n (co), "cn+l (co)-'c, (co)) + ~, § (co), n e N  

recursively. Then, we have 

Xt(co)= q(~,,(co), t -  z,(co)) /f r,(co)<t<~,+l(co). 

Proof. It follows fi'om (2.1) that Xt(co ) satisfies (2.2) in any interval (%(co), 
~, + 1 (co)), and at point r, (co), Xt (co) jumps by a, (co). Thus, if ~ = X~,, then X~ is as 
given above for t~[ r , ,  z,+l), and ~+l=X~,+ ,_0+en+l .  P 

(2.5) Theorem. X = ( f 2 , ~ , X t ,  W) is a normal standard Markov process 
(and since the termination time is + oo a. s, Zrivially, a Hunt process). ~ 

Proof. a) From the definition of X o and the measures W, W {X o = x} = 1 for 
any x~R. Thus we have normality trivially. 

b) From the construction, t--.Xt(co ) is right-continuous and has left-hand 
limits by Lemma (2.3). 

c) Regularity Conditions. Both X~ and A t have the same jump times and  the 
same magnitudes of jumps. Between the jumps, both are deterministic. Thus, 

(2.6) fft~ s<=t)=a(Xo,A~: s < t ) = ~ x  jr ,  

and therefore, N is also the completion of ~ o  in ~- relative to {W:/~ a probability 
on .~}. Thus, 

(2.7) X t e f / ~ .  

By right-continuity this implies that X is progressively measurable with respect 
to {~}. Further, if T is any {~} stopping time, 

(2.8) X r e ~ ' r / ~ *  , 

since the -~t are complete with respect to U =  {W: # a probability on ~} and since 
the completion of ~ r  in J~ with respect to U is the same as ~r -  
16 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd 17 
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Finally, from the construction of px, for A e ~ and B e J ,  px (A x B)= ex(A)P(B) 
so that x ---, P~(A x B) is in ~.  By the monotone class theorem then 

(2.9) x --* P~(A) is in 

for any A e ~ x  J .  
d) Strong Markov Property. Since (W, J ,  ~ ,  At, P) is a process with stationary 

independent increments, (W, ~, ~ + ,  At, P) is a strong Markov process, and by 
(2.6), for any {go} stopping time T, 

(2.10) PX {AT+ t -  ATeB[~T~ } = P~ {A~B} 

for all t>0, B ~  independent of x. 
Let T be an {go+ } stopping time and define 

(2.11) A + = A t + t - A T ,  X + =XT+t, t>_O. 

Then, it follows from (1.1) that we have 

t 

(2.12) Xt+=X+ +A + -  ~r(X+)du, t>=O 
o 

which is the same as (1.1). Since, by (2.10), a(A+; t>O) is independent of ~-o+, 
this implies 

P:'{X+eB]~'~ on {X~- =y}; 
that is, 

(2.13) px {Xr +teB]~O+ } = pX(T) {XteS} 

for all xeR, t>0,  Be~.  
This proves that ~ ~-o (~?, 5~,~+, X~, px} is a strong Markov process. By Pro- 

position (8.12) in Chapter I of [1], then 

(2.14) ~ - - ~ + ,  t>0.  

Thus, by Theorem (7.3) in Chapter I of [1], if Tis any {4} stopping time, for each 
p there exists a {go} stopping time T, such that PU{T:# T,}=0. Hence, (2.13) 
implies 

(2.15) P~ {XT +~ e B[O,~T} = pX(r) {Xt e B} 

for all t>0, xeR, BeM, and {4} stopping times T 
e) If ~ is the completion of ~ in ~ with respect to {pu}, then obviously 

~ =  ~ and together with (2.14) we have 

(2.16) ~ = 4 +  = ~ .  

f) Quasi-Left-Continuity. Let {T,} be an increasing sequence of {4} stopping 
times with limit T By the continuity of X t on intervals (z,, -c, + 1), Xr, ~ Xr every- 

where on ~2 except on A=  ~) {T=zk}. Thus we need to show that PX(A)=0 for 
k = l  

all x. Supposing otherwise, if P~(A)>0 for some x, then p X { A r ~ A T } =  
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1-PX(A)< 1 since the •k are discontinuity points for {At} also. This contradicts 
the fact that a process with stationary independent increments is quasi-left- 
continuous. [~ 

We shall next derive the transition function 

(2.17) Pt(x,A)=Px{XteA}, xeR,  A ~  

of the process X under the assumption that the rate of jumps is finite. Let, then, 
b < ~ be the rate of jumps, and let 7 be the distribution of the magnitude of a jump. 

(2.18) Lemma. For any bounded f ~ *  and t>~O, 
tct~ 

(2.19) PJ(x)=e-bt foq(x, t )+ ~ ~ be-bSdsT(dy)Pt_~f(y+q(x,s)). 
O 0  

(2.20) Remark. Since X is measurable, the mapping (x, t) ~ P~(x, A) of R 2 into 
[0, 1] for fixed A ~ *  is (~  x ~)a• for all finite measures 2 and/2 
on N (where the a-algebra in question is the completion of ~ x N with respect 
to the product measure 2 x/2). Thus, the integral on the right-hand side of (2.19) 
is well defined. [3 

Proof The first jump time T=  Zl is an { 4  ~ }, and therefore an { t }, stopping 
time. Since X is strong Markov by Theorem (2.5), 

W{Xt~B[~r}=Pt_T(Xr,B)  on {T<t}.  

By Theorem (2.4), X r = q (Xo, T)+ ~1, and X t = q (X0, t) on { T > t}. Thus, we have 

P, f (x) = E ~ [ f  (Xt)] =- E:' [I{w > t} f o q (X, t) + I{r <_ t} (Pt- T f)(c~1 + q (x, T))] 

which yields the lemma. 0 

(2.21) Theorem. Let, for each xeR,  B~N 2, 

(2.22) 

and define 

(2.23) 

K(x, B ) = ~  be -bs ds y(dy) IB(q(x, s)+ y, S) 

Ko (x, B) = e(~,o) (B) 

Kn+ l (X , B)= ~ K(x, d(y, s)) K~( y, B -  (0, s)). 

Then, for any bounded f 6 ~,  

(2.24) Pt f (x)= ~ ~ Kn(x,d(y,s))e-b(t-S)foq(y,t-s) 
n=O R • [0,t] 

exists and is the unique solution of (2.19). 

Proof Fix f ~  ~ bounded and write f(x, t)= P~f(x) and g (x, t)= e-btfo q (X, t). 
Then, (2.19) can be rewritten as 

(2.25) f(x, t )=g(x,  t )+ 
R • [0,t] 

with K as defined by (2.22). 
16" 

K(x, d(y, s)) f (y, t - s )  
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Note that x ~ K(x, B) is in N and B ~ K(x, B) is a measure on N2. Thus K 
is a semi-Markovian kernel and (2.25) is a Markov renewal equation (cf. C, inlar [2] 
and [3]). Then, that (2.24) exists and is a solution of (2.25) follows from Theorem 8 
of [2] since 

g(x, t)<-_K(x, R x (t, oo))=e -b'. 

That (2.24) is the only solution of (2.25) follows from Theorem (3.13) of [3] since 

sup K(x, R x [0, t ] )=  1 - e-b*< 1 
x 

for some t > 0 (because b < oo by hypothesis), l] 

(2.26) Remark. Let u(t ,x)=ebtptf(x ) for some differentiable function f on 
(R, N). Then, from Lemma (2.18) we get 

oo t 

u (t, x) = fo q (x, t) + b ~ 7 (dy) ~ u (s, y + q (x, t -  s)) ds. 
0 0 

From this, using (d) of Lemma (2.3), we obtain 

~ t  (r(x)-a)~xx u=b~ y (dy )u ( t , x+y ) .  
o 

This is the characteristic equation for X. [] 

(2.27) Remark. Let K be as defined by (2.22) and put, for 2__>0, 

oo 

KZ(x,A)= ~ e -Z tK(x ,A  xdt) .  
0 

Then K ~ is a sub-Markovian kernel on (R, N). Putting 

Rx= Z K.  z 
t l  

oo oo oo 

UZf(x) = j e -z'  PJ(x)  dt = ~ R~(x, dy) ~ e-(Z+b)tfo q(y, t) dt 
0 0 0 

(UZf is called the 2-potential o f f ) .  This follows directly from Theorem (2.21) and 
the relationship between Laplace transforms and convolutions. [7 

3. Output Process 
Consider the process {Z,; t>O} where 

t 

(3.1) t>O. 
0 

Since X is right-continuous and r continuous, t ~ Zt(co) is continuous. It is clear 
that, for any s, t > 0, 

(3.2) Z~+s- Zt~G(Xu: t<_u<_t + s), 

and that Z 0 = 0. Thus, Z is a continuous additive functional of X. 
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The function 

(3.3) ft (x) = E ~ [Z,] 

is called the characteristic of Z. For fixed x e R, fo (x) = 0, t --*f~ (x) is non-decreasing 
continuous, and f (x) = E ~ [Z~] < x + E x [At] < x + mt. Conditioning on 4 ,  we have 

(3.4) it +s (x) = f, (x) + S ~ (x, dy) L (y), 

or directly t 

(3.5) f ( x )  = ~ ~ P~(x, dy) r(y) ds. 
O0 

The Laplace transform 
c o  

(3.6) u~(x)=)~ ~ e-~tft(x ) dr, 2 > 0  
o 

is called the 2-potential of Z. From (3.5) and Remark (2.27) we have, in the notation 
of (2.27), 

0 0  oO 

(3.7) u~(x) = f Ra(x, dy) ~ e -t~'+b)t roq(y, t). 
0 0 

We next consider the random time change effected by Z. Let 

(3.8) T~(co) = inf  {s: Z~(co)> t}, t > 0  

for each coef2. Since Z is continuous non-decreasing, T~ is strictly increasing 
right-continuous. For each t > 0, Tt is an {~s} stopping time. Define 

(3.9) X t ~ - X T t ,  A t = A T e ,  J~t=~Tt  . 

Noting that ZT~ = t by right-continuity of Z, (1.1) implies that 

(3.10) , X , = X o  + / i , -  t. 

tt is known (cs [1] p. 212) that, since X is a standard Markov process and Z is 
continuous and strictly increasing (since r is Lipschitz, X~ @ O) 

2 = ( O , ~ , ~  X ~'x~ i t '  t ~ #  l 

is also standard Markov process. 

Further, for x > 0 ,  r (x )>0  and thus P~{Zt>0} = 1 for t > 0  which implies that 
P~ { T o = 0} = 1 and hence P~ {Xo = x} = 1. On the other hand, ifx = 0, P~ { T o = h } -- 1 
and thus p0 {Xo = el > 0} = 1. So, .g is normal except for x = 0. 

Next we will compute the resolvent of X (and thus specify its transition func- 
tion, and by (3.10), that of/1,). 

(3.11) 

(3.12) 

Then, 

(3.13) 

Theorem. Let, for 2>0,  f e ~*  bounded, 

W;~ f (x)= E~ [ ~ e-  ~t f(Xt)  dt] . 

co 

WZf(x)=e  -zx ~ K,, g(x) 
n ~ O  
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where 

(3.14) 

and 

(3.15) 

GO 

g (x) = ~ exp [ -  (b + 2 a) t + 2 q (x, t)] ( f .  r)o q (x, t) dt 
0 

09 

K(x ,A)= ~ be-(b+z")t dt ~ e-ZZy(dz), 
0 A - q ( x , t )  

for xeR,  A e ~ .  

Proof Let f s N *  be bounded, 2>0 .  It follows from (3.8) and (3.9) that (cf. [1] 
Lemma (2.2) in Chapter V) 

co oo 

I e-Ztf(Xt)  dt= ~ e x p ( - 2 Z s ) f ( X s ) d Z  s. 
0 0 

Replacing Zs by Xo + A ~ - X s  and dZs by r(Xs)ds and putting 

(3.16) h(x)= e- a~ f (x) r(x), 
we have 

WXf(x)=  E = [ e x p ( -  2 Xo) ~ e x p ( -  2 As)h(Xs)d,] 
(3.17) o 

oo 

= e-  a ~ ~ E ~ [exp ( - 2 As) h (Xs) ] ds, 
0 

where we use normality of X, and Fubini's theorem to change the order of 
integration. 

Noting that (f2, ~' ,  ~',, (Xt, At), W) has the strong Markov property, and that 
the first jump time T=  zl is an {~t} stopping time, we have 

E x [exp ( - 2 At) h (Xt) I ~T] 

(3.18) J'e- 4,, h o q (x, t) on { r > t}, 

--(e-~A(r)EX(T)[exp(--2At_r)h(X,_T)] on {T<t} .  

Thus, if we write 
oo 

(3.19) k(x, t ) - -EX[exp(-2At)h(Xt)] ,  k(x)= ~ k(x, t)dt; 
0 

then we have from (3.18) 

k(x, t ) = e x p ( -  b t - 2 a  t) hoq(x, t) 

+ j'j" b e- bs ds 7 (dy - q (x, s)) exp [ -  2 (a s + y -  q (x, s))] k (y, t -  s) 
I1• [O,t] 

which gives 
co 

k(x)= ~ e x p ( - b  t - 2 a  t) hoq(x, t) dt 
0 

oo oo 

+ ~ b e- bs ds ~ 7 (dy - q (x, s)) exp [ - 2 (a s + y - q (x, s)] k (y). 
0 0 

Noting the definitions (3.14), (3.15), (3.16) this becomes 

(3.20) k = g + K k. 
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We have K ( x , R ) =  b b + 2 ~ 7 ~ < ~ , ~ < 1  since 2 > 0  where 7~=j'e-;~y(dx). 
0 

Therefore, R = ~  K, is well defined and A ~ R(x, A) is a finite measure. The 
n 

solution of (3.20) then is k-- R g. 

This together with (3.19) and (3.17) yields (3.13). D 

4. Limit Theorems 

In this section we shall consider the limiting distribution of X t as t approaches 
infinity. First we want to show that, in the decomposition (2.1), we can take a = 0  
without loss of generality. 

Suppose a > 0  in (2.1). If sup r(x)<a, then t--*Xt(cg) is a strictly increasing 
x 

function and Xt (r ~ + oo as t ~ o0 for each r ~ f2. 

If a > 0  and sup r(x)=a, then t-,Xt(co) is non-decreasing, and there exists a 
hitting time T such that 

Xt (co) = At(e))- a t -  C(co) 

for all t > T(co), (and C (co) is independent of t). Therefore, then Xt and A t -  a t are 
shifted copies of each other; and Xt(co)--* + oo as t--* oo for each coef2. 

Finally suppose a > 0 ,  sup r(x)>a, let x* be such that r (x*)= a (since r is con- 
tinuous, such a point exists), and set T(co)= inf{t: Xt(co)> x*}. Then, X, is strictly 
increasing for t <  T, and XT+t>X*, r(XT+t)>a for all t>0 .  On the other hand, 
P X { T < o e } = l  and EX(T)< oo for all x. Thus, the set [0, x*) is distributive and 
P~ {Xt < x*} ~ 0 as t --+ oo for x < x* (of course we have P~ {X t < x*} = 0 for x > x*). 
Hence, it is sufficient to consider the limiting behavior of X restricted to [x*, oo]. 

Then, putting f (x)=  r(x)-a  we can rewrite (1.1) as Xt =Xo  + A t -  i ~(X,)du. 
0 

Hence, from here on, we assume a=0 .  We also assume the jump rate b to be 
finite, and denote by m the input rate: 

oo 

m=b S x?;(dx) 
(then E ~ (At) = m t for all t). 0 

Below we shall show that P~{XtsB}-*O for all bounded B as t ~ o o  if 
sup r (x) < m. If sup r (x) > m, then P~ {Xt e B} ~ v (B) as t -* oo for some probability 

X X 

measure v independent of x and we will compute v. The situation in the case 
sup r(x)=m is not clear. Our conjecture is that there exists a a-finite (but not 
finite) invariant measure for P, in that case. 

Let q, be the left-hand limit of Xt at z,, that is, 

th = q (Xo, zl) 
(4.1) 

rl,+l=q(q,+c~.,z,+l-%), n = l , 2  . . . . .  
and put  

(4.2) r i d , :  a ( X o ,  ~ 1 ,  . . . ,  qn  ; T1 ,  T2 . . . . .  Tn) gl = 1, 2 . . . . .  
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The following (whose proof we omit as fairly easy) is central to our development 
(cf. [2] for the definitions). 

(4.3) Proposition. (f2, ~,, Jg, ,  (q,, ~,), PX) is a delayed Markov  renewal process 
with semi-Markov kernel Q ( that  is, 

PX {tln+ l e A, "Cn+I - zne BIJ~n} = Q  (rl,, A x B) 

for  all A, B~Y2 and n = 1, 2 . . . .  ), where 

(4.4) Q (x, F) = ~S b e -  bs ds 7 (dy) Ir  (q (x + y, s), s) 

for  all x e R ,  F e N  2. 

(4.5) Corollary. Y=(f2, ~ ,  dan, tln , px) is a Markov  chain with transition kernel 

(4.6) N ( x , A ) = Q ( x ,  A x R ) = S ~ b e - V S d s T ( d y ) I a o q ( x + y , s ) .  

We next will show that the assumptions of Foguel [4] are satisfied by N and 
further that the a-finite invariant measure v he constructs for N is actually finite 
in our case. 

Throughout the following we denote by T~ the operator defined as 

Tf g (x)=f (x)  g(x) 

and write T A instead of T I when f =  I A. The following is of interest on its own. 

(4.7) Theorem. Let  i )=  {x: r ( x ) > c }  be non-empty for  some constant c > m .  Then, 

a) (TD N TD)" 1 (x) --+ 0 as n ~ oo for  all x ~ R ; . . 

b) ~ ( N T D ) ' l ( x ) < o o f o r a l l x e R ;  
n=O 

c) ~ Tc(NTD)" 1 is bounded for  any bounded set C e ~ .  
n = 0  

Proof  Note first that (NTD)"=(NTD)(TDNTD) "-1 so that b) implies a). 

Since r is continuous non-decreasing, the set D is of form D = (d, oo). Thus, if 
q(x, t)e D, then q (x, t) < x -  c t and x - c  t e D. From (4.1) therefore 

(4.8) 

Define 

{ / ~ k + l ~ D }  C {r/k+x eD ,/7k+1 <tlk+(Zk--C(Tk+l --Zk)~D}. 

S O = 0  

(4.9) & 
S.= )-2 [~-c(~+1-~0] ,  

k = l  

Then, from (4.8) we have 

(4.10) 

where 

n = l ,  2 . . . . .  

{t/2 ffD, ..., q,+16D} c {t h + S t u D , . . . ,  th + S , 6 D }  = {U,1 >n} 

(4.11) Ux= inf{k____ 1 : x + Sk6D } . 
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On the other hand, writting/sx for the conditional probability PY {. ]rig1} on 
{rh = x}, we have 

(4.12) (NTD)" l(x) =/sx {it2 ~D . . . . .  t/,+a ~D}; 

thus, from (4.10) and (4.11), 

,(4.13) ~ (NTD)" l(x)< ~, PY{Ux>n}=EY[Ux]. 
n=0 n=O 

But {Sn} is a random walk and the expected value of one of its steps is m/b- 
c/b<O since c>m. Thus, {Sn} drifts to -oo .  From standard results for random 
walks, since D is of form (d, oo), E r [,Uj < oo for any x. This proves b) via (4.13). 

To show c) it is sufficient to take C =  [,0, k]. Then, the result is immediate 
from b) once we note that 

sup ~ Tc(NTDy l(x)= sup ~ (NTD)" l(x) 
x n=0 x~C n=0 

<sup Er(Ux)<EY(Uk). [3 
xGC 

(4.14) Lemma. If f e N  is continuous, so is N f. 

Proof From Corollary (4.5) 

N f (x) = ~S b e-bS ds 7 (dy) f o q (x + y, s) 

and this is continuous since x --> q (x, t) is continuous by Lemma (2.3). [3 

(4.15) Theorem. If  sup r(x)>m, then Y has a unique invariant measure v and 
v (R) = 1. x 

Proof By the hypothesis of the theorem, there exists c > m with D = {x: r (x) > c} 
non-empty. Thus, Theorem (4.7) holds. The statement a) of(4.7) is assumption (2.1) 
of Foguel [,4], and Lemma (4.14) is assumption (3.5) in [,41. Thus all the results 
of [-4] hold for the process Y. In particular, the theorem of that paper shows that 
there exists a measure v for Y which is constructed as follows. 

Let C be a closed interval containing the complement C D of D; and let f be a 
continuous function with 

0 < f < l ,  
Then 

f=0 on ~D, f = l  

N~= ~ (NTf)'NT~_y 
n=O 

o n  C C .  

is a well defined contraction on bounded measurable functions defined on C. 
Further, by the corollary to Lemma 3 of [-41, there exists a probability measure 2, 
on C, with 2 N~ = 2. We have 

(4.16) v= ~ 2(NTy)" 
n=0 

as the desired a-finite measure satisfying v N = v. 
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Since f < I D ,  N T y < N T  D and by iteration we have (NTy)"<_(NTD)". Thus, 
from (4.16), 

v 1 < 2 ~ (NTD)" 1 < sup ~ (NTD)" l(x) 
n = O  x ~ C  n = 0  

since 2 is a probability measure concentrated on C. Hence v 1 < ~ by c) of 
Theorem (4.7). Then we can take v (R)= 1 by a suitable normalization. 

To show that v is the only invariant measure we note that, for any x e R  
and A e ~  with positive Lebesgue measure, there exists n such that N,(x, A)>0. 
This follows from the nature of the exponential distribution since, if f l= 
sup {x: 7 (0, x) < 1 } and A = [ao, al] c [0, x + f i -  el, then 

N(x,A)>= ~ 7(dy)~be-bSds>O 
- e  B y  

where By={t: q ( x + y , t ) e A } .  [7 

(4.17) Theorem. Let N(t)=sup {n: r,_<t}. Then, if sup r(x)>m, 
x 

(4.18) 2(A x B)= lira W {tlN(t)eA, t--ZN(t)eB} 
t---~ OO 

exists for open sets A, B and is given by 

(4.19) 2(A x B)=v(A)  ~ b e -bs ds 
B 

where v is as defined in Theorem (4.15). 

Proof. Existence of the limit (4.18) is assured by Theorem 4 of Orey [6] whose 
conditions we satisfy as follows. Conditions (i) and (ii) of [6] on the state space are 
satisfied by (R, N); condition (iii) is satisfied by our Theorem (4.15); and the finite- 
ness of the integral (0.1) of [6] is evident since v is finite and the expected sojourn 
times involved are 1/b. 

That (4.19) is true follows from Theorem (3.1) of Pyke and Schaufele [7] 
(though their state space was discrete, their proof goes through for our case). 

(4.20) Theorem. I f  sup r(x) > m, then 

#(A) = lim px {Xt~A} 
t - - ~  

exists and we have 
# (A) = ~ v (dx) ? (dy) b e-  b~ ds I A o q (x + y, s). 

Proof From Theorem (2.4) and (4.1) we have 

Xt=q( t l ,+e , ,  t - z , )  on {%=<t<z,+l} , 

that is, if N(t) is defined as in Theorem (4.17), 

X t = q (tlN~) + C~N( O, t - rN(t) ) . 

Proof follows now from Theorem (4.17) and the independence of t/,, %, % + ~ - z ,  
for each n. [3 
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(4.21) Remark. Suppose sup r ( x ) = c < m .  Then, f rom (1.1) we have 
x 

X t > X  o + A  s -  c t. 

Since E x [At] = m t > c t, this implies that  lim X, = + oo almost  surely for any W. 
t 

5. A Special Case 

Consider  the case r ( x ) = c x  where c > 0  is a constant.  According to 
Theorem (4.20), a limiting distr ibution for X exists if m is finite. We will now 
show by an explicit calculation that  it may  still exist when m is infinite. Fur ther-  
more,  in this case we do not  need to assume the rate of  jumps  to be finite. Fo r  the 
reasons explained in Section 4 we assume, wi thout  loss of  generality, that  {At} is 
a pure jump  process. Then, 

(5.1) E ~ [exp ( - 2 As)] = exp ( - t g (2)) 

where 

(5.2) 
co 

g(2)=  y (1 - -e  -~x) v(dx) 
0 

for some measure v on the Borel  subsets of(0, oo) satisfying S (x/(1 +x) )  v (dx)<  oo. 

(5.3) Theorem. Let  r ( x ) =  c x. In order that X t have a limiting distribution when t 
approaches + c~, it is necessary and sufficient that 

oo 

(5.4) y (log x) v(dx)< oo. 
1 

Proof In this case the Eq. (1.1) can be solved explicitly to yield 

(5.5) X t (09) = X o (co) e-cs+ i e-C(t-~) dA~ (co) 
o 

where the integral on the r ight-hand side is a Riemann-Stiel t jes integral. If we 
write (5.5) as a limit of  Riemann-Stiel t jes sums, it follows from (5.1) that  

ut(x, 2)=  E ~ [e -~x'] 
t 

 'tex  q 
If we now make  the change of  variable y = 2 e -cs above, it becomes clear that  
lim ut(x , 2) exists s imultaneously with 
t-+OO 

(5.6) lim f l ~ g ( y ) d y .  
~o 2 Y 

oo 

But this last expression is of the form yf~(x) v(dx) where 
0 

f~(x)= d 1 -e -YX dy. 
Y 
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As e+0, f~(x) increases to the limit 
1 -  e - y x  

(5.7) f (x )=  J 
o Y 

dy. 

Thus, by the monotone convergence theorem, the limit (5.6) exists simultaneously 
with the integral 

oO 

(5.8) ~ f(x) v(dx). 
o 

But f is locally bounded and asymptotic to log x as x --* oe. Therefore, the con- 
clusion follows from the continuity theorem for Laplace transforms. D 
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