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On Some Problems of a Statistical Group-Theory. I 
By 

P. ERD6S and P. TCR~N 

1. By  statistical group- theory  we mean the s tudy  of  those properties of  certain 
complexes of  a " large" group which are shared by  "mos t "  of  these complexes. 
The group considered in this paper  will be Sn,  the symmetr ic  group of  n letters; 
its group-elements will be denoted by P.  The complexes considered here will be 
simply the elements P of  Sn; the proper ty  in question will be the group-order 
0 (P) of  P .  As to this LANDAV proved (see [4]) for 

G(n) def" = max O(P) 
P e S n  

the asymptot ical  relation 

lim log G(n) __ 1 . (1.1) 
" n--+ r V ~ g n  

On the other hand  P's  of order as low as n are " m a n y "  ; all P ' s  consisting in the 
canonical cycle-decomposition of  a single cycle (of length n) are of  order n and 
their number  is 

(1.2) ( n -  1)! = Ln!  
n 

which is relatively large. The big contrast  between (1.1) and (1.2) would sound a 
bit discouraging as to a simple law of  the distribution. Nevertheless we arc going 
to prove the 

Theorem. For arbitrarily small positive e, ~ and n > no (e, (~) the inequality 

e(1/'~-~)log: n ~ 0 (P) =< e (l/2+e)l~ 

holds, apart /rom 
~n !  

exceptional P'  s at most.* 
The value e 1/21~ n falls surprisingly short  compared with LA~DAU's upper bound 

in (1.1). We enter tain hopes to prove in the next  paper  of  this series t ha t  for the 
number  N (n, t) of  P ' s  satisfying with an arb i t rary  fixed real t the inequali ty 

(1.3) log O(P)  ~= �89 2 n + t log a/2 n 

the limes-relation 
t 

1 1 F 
(1.4) lira ~ N(n ,  t) - -  i / ~  ]e  - z !e  d2 

holds and even with a sharp remainder- term uniformly in n and t. Also the ease 
will be of  int ~rest when t varies s trongly with n, e.g. t = n 1/4. 

Actually a bit more; see (7.1) and (14.3); with a little more care our proof had given 
even the inequality [ log O (P) -- �89 log 2 n I ~ o) (n) logS/2 n with o (n !) exceptions at most if 
only o)(n) -+ ~ with n. 



176 P. E~])Ss and P. TVR~: 

2. Which results were known in this theory ? Quite a few only, as far as we 
know. S. CHOWLA, ItEgST]~I~ and MoogE (see [1]) for d = 2, and L. MoswR and 
WYMA~ (see [5]) for d = p ( ~  prime) proved tha t  denoting by  ]a (n) the number 
of P ' s  in Sn with O(P) ---- d, the relation 

(2.1) f ~ ( n ) -  p-1/2 (~-)'(1-1!P) e~'~" 
holds for fixed p and n -> r We were unable to deduce our theorem from (2.1). 
This is the only one which is directly related to our theorem. In  our proof of it 
we needed informations concerning the distribution of the cycle-lengths in the 
canonical decomposition of the P ' s ;  so we found that ,  denoting the number of 
cycles by g(P), then - -  apar t  from o(n!) P ' s*  --  we have 

(2.2) g(P) ,,~ log n .  

After having a ready manuscript  we learned tha t  this theorem was found first 
by V. L. G o ~ a ~ o v  (see [2]) in 1944 already, even in a sharper form. Actually 
what  we need is not (2.2) but  the corresponding theorem for k(P),  the number 
of the digerent cycle-lengths; also here the value log n is surprisingly low since 
the best-possible limitation, one can give for all P's, is the inequality 

(2.3) l < k ( P ) < [  - 1 + 1 / ~ 1  

This sharp preponderance in various problems seems to be charaeteristical to 
this theory.** 

LA~DAV'S theorem in (1.1) gives at  the same time the asymptotieal  maximum 
for the order of cyclic subgroups of Sn. Our theorem does not answer to the 
natural  question, what  is the ,,preponderating" order of non-isomorphic cyclic 
subgroups of Sn; perhaps not even the number of non-isomorphic cyclic subgroups 
of Sn is known. To all these and several other questions of the same sort we hope 
to return in this series. 

We also call the at tention to the last sentence of this paper (though we do 
not formulate it as an independent theorem). 

As pointed out by W. It. H. Hw)soN (see Rous~ BALL [7]) in devising card tricks by 
repeating the same shuffling procedure we encounter again problems on the orders of the P's. 
So using full pack of 52 cards having bad luck in selecting the basic shuffling procedure we 
can need G (52) ~ 180,180 shufflings to come back to the original position of the cards. 
According to our theorem we need with large probability only 

e l l 2  log 2 52 ~ 2600 
shnfflings. 

The proof of the theorem will be given in several stages. In  Par t  I .  we shall 
deal with k (P), in Par t  I I .  we give the proof of the upper bound, in Par t  I I I .  
tha t  of the lower one in our theorem. 

The different cycle-lengths in the canonical cycle-decomposition of P will be 
denoted throughout by  

(2.4) (1 ~ )  nz ~ n2 ~ "'" ~ nk(p) = nk ~= n 

* The o-sign refers throughout this paper to n --> r 
** Somewhat in the same direction lies the paper of ERDSs-SZEKERES on the mean-value 

of y~(n), the number of non-isomorphic Abelian groups of order n. See ERD(~s-SZEKERES [2]. 
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the number cycles of length n~ by m~ so that  
~(P)  

(2.5) ~ m~ n~ = n 
v = l  

and 
~;(P) 

(2.6) X m~ = g ( P ) .  
, = 1  

The dependence of k(P)  upon P will not be denoted explicitly later; el, e2 . . . .  
stand for explicitly calculable positive numerical constants. 

Part I 

3. We shall state GON~AROV'S theorem as 

Lemma L For any fixed real t /or  the number hn (t) o / P ' s  satis/ying (see (2.2)) 

g (p) < log n + t ~ o ~  
we have the relation 

t 

(3.1) lira ~ h n ( t )  - 1 fe_.J2d~. 
- o o  

Applying the wellknown theorem of Ess]~N one could replace the limes- 
relation in (3.1) by a formula with error-term. We shall use lemma I in the follo- 
wing weaker form. 

Corollary I. I /  r (n) tends to infinity arbitrarily slowly monotonically then /or  
all but o(n!) P ' s  the inequality 

l g(P) - log n I =< ~' (n) VEg n 
holds. 

We state the following wellknown result (see e.g. RIORDA~ [6]) aS 

Lemma II.  The number o] P 's  with fixed 

]~, m l ,  �9 �9 mk,  n l ,  . . . ,  nk 
(see (2.4), 2.5)) is 

n! 
roll m2! ... mk ! nT~ n'~"~ ... n2* " 

Let wl and ~ be positive integers with 

2 0 ~ o l ,  w2~<n 

and ~[1 be the set of P ' s  with the following properties. I f  n~ g col then 

(3.2) 1 ~ m~ g e)2; 

if  nv > 0)1 then 

(3.3) m~ = 1. 

This ~ 1  is the set of P ' s  in which only "shor t"  cycles can occur more than once 
and even these "not too often". :Denoting the number of P ' s  of l~1  by ll~l we 
assert the 

Lemma IIL The inequality 

(1 1) 
~,~.1 1 1 ~ 1 _ 1 1 < 3  o~ + ~ . ,  

holds. 
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For  the p r o o ]  we remark  first t ha t  n ! l l l  1 l is nothing else than  the coefficient 

of  z ~ in 

{ (,+:). 
( 3 . 4 )  v~=ll 1 ~ - / ~ 1 l '  ' V ] J  . . . . .  + 1  

The vth factor  in the first p roduc t  can be wri t ten as 

= " l = w ~ + l  " ~ " J 

and analogously for the second product .  Since for ]z] < 1 we have  

ez'Jv - -  1 - z ' 

1 
the product  in (3.4) can be wri t ten  for I z [ < 1 as 1 - z $2 (z), where 

l 1 e_z,,/v ~ 1 l (3.5) f2(z) = 1 - -  e - z " /~  ) y  . 1 - -  
/ = w 2 + 1  "" v = m l + l  1=2 l! " 

Equa t ing  the corresponding coefficients we get  

t t = l  

Replacing in (3.5) in each factor  in curly brackets  the t e rm 

- -  e - z ~ / ~  by  e z~l~ 

we obtain  ins tead of ~2 (z) a funct ion ~2" (z) whose coefficients (are posit ive and) 
majorise the  absolute values of the corresponding coefficients of /2(z) .  Hence  

' 2 ' n !  l - I~ l - -  11 < coeffs, z,* in sg* (z) < D * ( 1 ) -  D*(0)  

(3.6) ~o 
= 

Here  the  first p roduct  is 

exp l! " ~ ~ 
v w e + l  

< e x p  e E + (~2q-1)! ~ < 
( / =  ro2+l  v = 2  l =  1 ~ -  

< exp ~(m2 + 1)! @ (o)2 + 1)' v,~+l < exp (c,)2 + 1)! 

and analogously the second is 

< exp ~ . 

F rom these and (3.6) we get 

I ~ t  1-- 1) < - -  1 + e ~5/(~+~): +3 /~  < 3 - ~  + ~ 

as s ta ted.  
This l emma gives immedia te ly  the following three corollaries. 
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@orollary II .  I] Col(n) and e92 (n) tend arbitrarily slowly monotonically to co, 
theft the canonical decomposition o/ all but o(n !) P 's  have the double prope~'ty that 
no two cycles of length > o)1(n) are equally long and at most w2 (n) cycles can have 
the same length ~ wl  (n). 

Combining this corollary with Corollary. I .  we get  the 

Corollary I IL  A p a r t / r o m  o(n!) P's  the remaining ones, whose totality we may 
call ~-~2, have the properties o/Corollary I I .  and 

(3.7) [k (P)  - -  log n [ < co(n) Vlogn  

i[ only ~ (n) tends to r162 arbitrarily slowly. 
Though we shall not  need it here, we formulate  the 

@orollary IV. For all fixed real t's /or the number H ,  (t) o[ P ' s  satis/ying simul- 
taneously (3.7) and the two requirements o/Corollary I I .  we have the limit-relation 

t 

1 l fe_~:12d~" lim H n ( t ) - -  ~ /~  . 
~ - - -~  o o  " 

- - o o  

As well-known, the order of  P is given by 

(3.8) 0 (P) = In1, n2 . . . . .  nk] 

the bracket  s tands for the smallest common multiple. 
Corollary I I .  gives for arbitrari ly small s > 0 at  once for all bu t  o (n !) P ' s  the 

inequali ty 

(3.9) O(P)  -<__- n~, n2 . . .  n~ < n ~: < e (1 + ~)~og~ 

But  this is much weaker than  the upper  bound in our theorem. 

Part I I  

4. I n  order to prove the upper  bound in our theorem we shall show tha t  if 
(.ol(n) tends to oo monotonical ly  arbitrari ly slowly, then for all but  o(n!) P ' s  
the n~-numbers (in (2.4)) are in a certain sense equi-distributed in the interval 
1 ~ x --< n. More exact ly  we mean  the following. We define N by  

(4.1) N ~- [kl/a]. 

For  each P ~ I~2  we can determine uniquely the nonnegative integers 

(4.2) $1, $2 . . . .  , Sly 

so tha t  

(4.3) 
1 <: nl  ~ n2 ~ "" ~ ns, ~. ~I/~ ~ ns,+ 1 ~ . . .  < ns,+s, ~ n2/.~ 

if there is no ny e.g. in n 1/~ < x < n u/~ we have $2 = 0 etc. 
Of course S~ -~ S~ (P) and 

(4.4) $1 + $2 A- "'" -}- S.v = k. 
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Let  1~8 mean  the subset  of  ~-[~ whose P ' s  sat isfy the inequal i ty  

m a x  S u - -  --~ 
~ = 1  . . . . .  N N -  - -  

and let 1I-~31 be the number  of  its P ' s .  Then  we assert  the  

a I[I.I  = 1. L e m m a  IV. lira ~., 
n ---r 

5. For  the  proof  of  this 1emma it  will be sufficient to show t h a t  if  E1 s tands 
for the subset  of  I - I2  for which (4.5) is false, i.e. the  inequal i ty  

(5.1) m a x  11S u - -  > 
# =  l , 2 , . . . , N  

holds, and I EI]  for the number  of  its P ' s ,  then  the es t imat ion 

I 4 ~(n) e - -  1 1 5  I o g  ~15  n (5.2) n~ l E l I  < 

holds for n > cl (of course ~oz(n) mus t  be < 1/lOlog2/an say). 
I n  order to prove  (5.2) we write, using l emma  I I .  

(5.3) E l=X E X .... . . . . .  

k j = l  m~,n~, 
PeP~x 

w h e r e j  = j (P) denotes the number  of  different cycle-lengths not  exceeding Wl (n). 
We can per form easily the  summat ion  with respect  to 

m l ,  m 2 ,  . . . ,  m j  ; 

this cannot  exceed the quan t i ty  

1 I = 1-[ (~1/.. _ a) < 
m l  = 1 m~ = 1 m l  ! m 2  ! . . .  m ]  ! T~T1 n ~ 2  . . .  n T ~  v = l  n l  n 2 . . .  n ]  

and hence 

1 IE I<  2~ 1 <4~ 1 ( ),5.4. n~ = ni n2... nk 1"-" ni n2... nk '  
k k 

where the  pr ime indicates t h a t  the summat ion  is extended to all n , - sys tems with 
propert ies  (2.4) and (4.3)--(5.1). Since for n > c2 we have  

2 log n > log n + o~ ( n ) / l o g n  ~ k 
and f rom (2.4) 

k i 

v = l  v = l  

we get  

(5.5) 

and hence 

(5.6) 

1 4 log n 

~ ] E 1 1  < 4~1(~)+ ~ log~ ~ ~ , ,  1 
�9 Tb  ~ n l  3 2  �9 �9 �9 ~ / C - 1  - -  

k 

def. 4 ~1(n)+2 log n 2 S~ 
k 
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(5.s) ~ =< y'  
~'I . . . .  , ~ r  

Since for n > ca 

where ~ "  refers to the systems 

(5,7) I --_< n~ < n2 < --" < nx_t < 

restricted by  (4.3)--(5.1). 
Le t  us consider now for a fixed k the quant i ty  Sx. We have ( 1)( 1 )  

" ' ' ~ $ 1  -~ nl/Z~ ~ " '"  ~ S l + ~ g 2  ~ r~21N 

where the prime indicates tha t  (5.1) must  be satisfied. Hence 

1 1 
T < ~ - l o g n +  1, 

(4.4), (5.8) and (5.6) give, changing also the order of  summations,  the inequali ty 

1 4o~1+21ogn . ~. N - I ~  k! 

(5.9) ~ ] E l l  < n k s . . . . .  sN k! ~ '  81!$2! . . . SN!  " 

6. Now we estimate the inner sum in (5.9) using (5.1), I f  e.g. # - -  1 this 
can be v~itte~ as 

y 
(k - :s,), (S~) ( N  - 

]SI--kI.N]>(klN) ~1~ Ss+'"+SN=k--S1 ]St--k~ I>(k/N) ! 

k 
- -  - -  W )  k ~ - )  �9 

]Sx-k/lCl>(k/N)+~ \ I / \  

Bu t  for n > c4 the last sum, owing to the law of  large numbers  cannot  exceed 
the quant i ty  _(~./~)~,,, 

- - o o  

The same holds tbr tt --: 2, 3 . . . . .  N too; hence (5.9) gives the est imation 

n~.[E1 l 1  < 4")x + an l~ n ~ e~lla kv5 (log Ski + N)~ < 4~'+a" e-lt41~ 

(lc)g n + (2 logn)l/s)~ 4 +~+a c-a/41og:+Sn 
_ _  n e ( 2 l D g n ) ~ t ~  < 4 wl . e - l / 5 1 o g e / ~ n  

k! n k 

for n > c5~ which proves lemma IV. 
7. L c m m a  IV, gives the possibility to improve (3.9). We get this t ime 

0 (P)  G n l  n u . . .  nk < (n;t:v) s'  (n2/N) s '  (nNIN) s'~ G n (u+ 1)12 max s t, 

and owing to lemma IV. 

0 (P) ~ / t  (N+l)12 (k/2+:+ {klN)a/~) .~ n~l~+V+~.,, 
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for n ~ c6 which is only another form of the assel~ion, (even with 

(7.1) 0 (P) ~ e 1/21~176 

for all but o(n!) P's). 

Part  III  

8. Before turning to the proof of the lower bound we need some further lem- 
mata.  Let  U (m) stand for the number of different prime-factors of m, further 
Q (m) resp. q (m) for the maximal  resp. minimal prime-factors of m. Then each 
integer m <= n can obviously uniquely be decomposed in the form 

(8.1) m ---- a (m) b (m) 

where 

(8.2) Q (a (m)) ~ log 6 n 

(8.3) q (b (m)) > log 6 n .  

Let  further be R the set of integers defined by 

(8.4) m ~ n ,  a(m) ~ e (l~176 

Then we assert the 

Lemma u For n > c7 the inequality 

1 1 

m ~ R  

holds (the summation being extended only to different a (m)-values /). 

9. For the proof of this lemma we sprit our sum in the form 

1 1 
(9.1) ~ a(m) + ~ ~ ~ def. K1 ~- K2. 

mE_R t>loglog~ m E R  
U(m) _~ loglogn U ( m )  ~ l 

The inner sum in K2 is evidently for n ~ c8 

<F., 

and thus 

1 1 
(9.2) K2 ~ ~ /~. (2 log log log n) z ~ e -1/ul~176176176176 ~ ~ogl0 n" 

l>loglogn 

As to K1 let us observe tha t  each term of it contains, as factor, a "large" prime- 
power. Namely if t is the maximal exponent in a(m), then owing to (8.1) and 
(8.4) and U (m) ~ log log n we have 

(log6 n) ll~176 ~ e (l~176 

i.e. 
1 

t ~ ~- (log log n) ~ . 

Thus all m-values of K1 are divisible by a prime-power pt satisfying the inequalities 

(9.3) 21/6(loglogn) n =< pt < n, p ~ log 6 n .  
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Fixing this pt the contribution of the terms divisible by this pt is (roughly) 

~- < 2 log n .  p-t 
m ~ n  

i.e. K1 < 2 log n ~ p-t 

where the summation is restricted by (9.3). Since the number of terms is 

log n 
< ~ .  log6 n < 2 log7 n 

(9.3) gives for n > c9 
1 

K1 < 2 log n .  2 log 7 n �9 2 -l/6(l~176 < 2log10 n . 

This, (9.2) and (9.1) prove lemma V. 

10. Next  let ~-[4 be the subset of ~-~3 (defined before lemma IV.) with the 
additional property 

(10.1) Q((nu, n~)) <= log 6 n 

for each 1 ~ ,u < v ~ k - -  1 pairs and ]]-[4] be the number of its P 's .  Then we 
assert the 

Lemma u The relation 

1 I1-[~1 lira ~.. ---- 1 
n---~oo 

holds. 
In  other words for almost all P 's ,  in addition to what was previously said, no 

pair nit, n~ (1 __< # < v  ~ / c  - -  1) have "large" common prime-factors. 

11. The lemma will obviously be proved ff we can show that,  denoting by  E2 
the subset of I ~ a  whose elements have the property 

(11.1) max Q ((nu, n~)) > log 6 n 

and denoting by [Ee I the number of its P 's ,  the inequality 

1 4 C~ + 6 
(11.2) ~ .IE2[  < ~ o g ~  

holds. For the proof of this assertion we can start  from (5.6) in the form 

1 levi  < 4o~(.)+~ logn Z'"  1 (11.3) .~ . ~ .~  ~ . . .  n~_~ 
[k--logn] _~ logat4n 

where ~ ' "  refers beside (5.7) also to the restriction (11.1). Fixing the kt, v pair in 

(l l .1) as ] c - - 2 ,  / c - - 1  say 

the corresponding par t  of the double-sum as (11.3) is 

1 Z " '  1 
< ~ ~ ~ . . . .  . . . . . . .  ~, ~_~, < 

p>log6n 

p>log~n ~0 2 l < n ~ < . . . < n ~ _ a < n  n l  n2  . . .  n]c-3 

( 1 )  (1 -~ l~ n)~-u 
< l o g ~  ~ p~ ( ~ z ~ . ,  �9 

p>log~n 

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 4 13 
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Summing for all ~u, v-pairs we get for ~ ' "  the upper bound 

( ) 1 ( l+ logn)  ~-a 4 (1 ~- logn) ~-3 
[212g n] log 2 n �9 log 6 n (k -- 3) l < log~"  (k -- 3) ! 

Summation with respect to k gives from (11.3) 

1 4~1+21ogn 4 4 ~1+6 
hi- I E21 < n "log 2 n" e n < log n 

as stated. 

12. We have to make a final selection from 1~4. For all of its P 's  we form 
their canonical decomposition and for all nv cycle-lengths the decomposition (8.1) 

(12.1) nv = a(nv) b (n~) 
(a (nv), b (n~) functions of P) 

shortly. Let  1-~5 be the subset of 1-I4, for whose P's  the inequality 

max a (n~) =< e (I~176 
v = l  . . . . .  k--i 

holds. Denoting by 11-[5 ] the number of these P 's  we assert the 

Lemma u The relation 

1 
lim ~T 11 51 = 1 

n - - > o o  

holds. 
By other words for almost all P's, in addition to what was previously said, 

the contribution of the "not  too large" prime-factors of the P's  is "not  too large". 

13. Again the lemma will be proved if we can show that,  denoting by Ea the 
subset of 1--~4 whose elements have the property 

(13.1) max a(nv) > e ( l ~ 1 7 6  

v = l  . . . . .  k - - I  

and denoting by lEvi the number of its P's, the inequality 

1 4 ~1+5 
(13.2) n-T ] E31 < log7 n 

holds. 
For  the proof of this assertion we can start  again from (5.6) hi the form 

1 log n ~ ,  1 

k 

where ~ * means that  in addition to the properties of 1-~4 also (13.1)is fulfilled. 
We split the inner stun (13.3) into k partial-sums, the ju th of which replaces 
(13.1) by 

(13.4) a(n~) > e (1~176 

First we perform the summation with respect to the ni's with j =~/x; this gives 
at most 

(1 q- log n) k-2 
(k  - 2)  t 
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N e x t  we per form the  summat ion  with respect  to ng bu t  taking in account  (13.4). 
Fixing a va.lue for a (nj~) the  corresponding nz's  contr ibute  to our sum b y  

a t  mos t ;  thus  

~, 1 

ni n2...  n~-i 

Using l emma  V. this is 

1 
a(nz) (1 -{- log n) 

(1 + log n) ~-2 <Y  -2)i .21ogny  

< ~ (1 + log n) z-~ 2 
~-~ (k - -  2) ! l og  9 n " 

Summing  with  respect  to tt gives 

2 (1 + log n)~-2 
* < log s n " (k- -  2)! 

Pu t t ing  this in (13,3) we get 

1 4 ~ (1 + logn) ~-2 4 ~+5 

k 

which proves  l emma V I I .  

14. Now we are in the position to establish the  lower bomid  in our theorem.  
According to l emma VI I .  apar t  f rom o ( n ! ) P ' s  the remaining ones have  the 

following propert ies  (vii(n), o2 (n) and o~ (n) equals Vlog log n e.g.) 

a) [ k ( P ) -  logn[  g o ( n ) V l ~  
b) no two n r cyc l e s  of  length > o l  (n) in P have  the  same length 
c) a t  mos t  ~o2(n)-cycles in P can have  the same length ~ Col(n), 
d) the different cycle-lengths in P are "equid is t r ibu ted"  in the sense (4.3)-- (4.5) 
e) no nu, nv pairs (1 <= ~ < v =< k - -  1) have  a common  pr ime-factor  > log 6 n, 
f) for all nv cycle-lengths the  contr ibut ion of the  pr ime-factors  not  exceeding 

log 6 n cannot  exceed exp. ((log log n)4). 
For  these P ' s  we have  with the no ta t ion  (8.1)--(8.3) the  inequal i ty  

(14.1) O(P)  = [ni ,  . . . ,  n~] > [b(ni), b(n2) . . . . .  b(n~-i)]  

and  since owing to the definition o /b  (nv) and property e., we have 

(b (nu), b (nv)) = 1 
a l s o  

n l  n2  . . .  n k - 1  
[b (ni),b (n2) . . . . .  b (n~-i)] ---- b (nl) b (n2). . .  b (nk-i) = a(nl) a(n2) ... a (nk-1) 

and  thus  f rom (14.1) 

n l  ?~2 - - .  n k  1 
(14.2) 0 (P) > a(nD a(n~)..,  a(n~,-D n " 

But  owing to propert ies  f) and a) 

a ( h i )  a ( n 2 ) . . .  a ( n k - 1 )  g e (l~176176 

we get  for the remaining P ' s ,  i.e. for all bu t  o(n!)  P ' s  

(14.2) 0 (P) > ni  n2 . . .  n~.  e -8bgn(bgbgn)' . 

13" 
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The  lower bound  will be es tabl i shed  a t  once using p r o p e r t y  d). This  gives 
namely  

n ln2  . . .  nk ~ (nllN) z~ (n2#V) s~ (n(zv-1)/zv) 8~ -~- n .(zV- ~)12 minS/x �9 

Bu t  f rom (4.5) 

i .e.  
nl  n2 . . .  n~ > n l~/2- 2kat~ Nl15 :> e 1/21~176 

which es tabl ishes  the  uppe r  bound  for  n > el0 (even wi th  

(14.3) 0 (P) > e 1/21~176 

for all  b u t  o(nl) P 's ) .  
F ina l l y  we r e m a r k  t h a t  w h a t  we ac tua l ly  p roved  (see (14.2) and (3.9)) is t h a t  

a p a r t  f rom o(n!) P ' s  the  inequa l i ty  

(14.4) e_31ogn(logiog~)~ < O(P) <~ 1 
- -  / b  1 T ~ 2  �9 �9 �9 n k  - -  

holds i .e .  O(P) is "essen t ia l ly"  n~n2 . . ,  nk,  for "a lmos t  a l l "  P ' s .  
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