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On Some Problems of a Statistical Group-Theory. I
By

P. Erpos and P. TurRAN

1. By statistical group-theory we mean the study of those properties of certain
complexes of a “large” group which are shared by ‘“‘most’’ of these complexes.
The group considered in this paper will be Sy, the symmetric group of » letters;
its group-elements will be denoted by P. The complexes considered here will be
simply the elements P of 8,; the property in question will be the group-order
O (P) of P. As to this LANDAU proved (see [4]) for

G(n) — max O(P)
PeSa
the asymptotical relation

(1.1) lim 1086 _
n—>co Yrlogn

On the other hand P’s of order as low as # are “many”; all P’s consisting in the
canonical cycle-decomposition of a single cycle (of length n) are of order » and

their number is
1

(1.2) (n— 1)1 =—-nl,
which is relatively large. The big contrast between (1.1) and (1.2) would sound a
bit discouraging as to a simple law of the distribution. Nevertheless we are going
to prove the

Theorem. For arbitrarily small positive g, 6 and n > no(e, 0) the inequality

e(l/z—e)logzn g O(P) é 6(1/2+s)log2n
holds, apart from
dn!

exceptional P’s at most.*

The value ¢!/21°¢°" falls surprisingly short compared with Lanpau’s upper bound
in (1.1). We entertain hopes to prove in the next paper of this series that for the
number N (n, {) of P’s satisfying with an arbitrary fixed real ¢ the inequality

(1.3) log O(P) < Llog2n - tlog32n

the limes-relation
¢
1 1
14 lim— N, f) =—— f 2
(1.4) im —+ N (n, {) om e di

~— 00

holds and even with a sharp remainder-term uniformly in » and #. Also the case
will be of int srest when ¢ varies strongly with n, e.g. t = nl/4,

* Actually a bit more; see (7.1) and (14.3); with a little more care our proof had given
even the inequality |log O(P) — flog2n} < w(n)logd2% with o(n!) exceptions at most if
only w(n) — « with n.
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2. Which results were known in this theory ? Quite a few only, as far as we
know. 8. CHowra, HERSTEIN and MooRrE (see [1]) for d = 2, and L. MosER and
WyMaN (see [5]) for d = p (= prime) proved that denoting by fz(n) the number
of P’s in 8, with O(P) = d, the relation

nl?

nyn (1=1ip)
) e
e

2.1) fpln) ~ p= 2 (%
holds for fixed p and n — co. We were unable to deduce our theorem from (2.1).
This is the only one which is directly related to our theorem. In our proof of it
we needed informations concerning the distribution of the cycle-lengths in the
canonical decomposition of the P’s; so we found that, denoting the number of
cycles by g(P), then — apart from o(n!) P’s* — we have

(2.2) g(P) ~ logn.

After having a ready manuscript we learned that this theorem was found first
by V. L. GoxCaAROV (see [2]) in 1944 already, even in a sharper form. Actually
what we need is not (2.2) but the corresponding theorem for %{P), the number
of the different cycle-lengths; also here the value log » is surprisingly low since
the best-possible limitation, one can give for all P’s, is the inequality

—1+V8n 41

5 .
This sharp preponderance in various problems seems to be characteristical to
this theory.**

LANDAU’s theorem in (1.1) gives at the same time the asymptotical maximum
for the order of cyclic subgroups of Sy. Our theorem does not answer to the
natural question, what is the ,,preponderating” order of non-isomorphic cyclic
subgroups of S, ; perhaps not even the number of non-isomorphic cycliec subgroups
of 8, is known. To all these and several other questions of the same sort we hope
to return in this series.

We also call the attention to the last sentence of this paper (though we do
not formulate it as an independent theorem).

(2.3) 1=k(P)=

As pointed out by W. H. H. HupsoN (see Rouse BariL [7]) in devising card tricks by
repeating the same shuffling procedure we encounter again problems on the orders of the P’s.
So using full pack of 52 cards having bad Iuck in selecting the basic shuffling procedure we
can need G (52) = 180,180 shufflings to come back to the original position of the cards.
According to our theorem we need with large probability only

el/21og? 52 2600
shufflings.

The proof of the theorem will be given in several stages. In Part I. we shall
deal with k(P), in Part I1. we give the proof of the upper bound, in Part IIL.
that of the lower one in our theorem.

The different cycle-lengths in the canonical cycle-decomposition of P will be
denoted throughout by

(2.4) IS)m<ng< - <ngppy=np=n

* The o-sign refers throughout this paper to n — oo,
** Somewhat in the same direction lies the paper of ErRDGS-SzEKERES on the mean-value
of 4 (n), the number of non-isomorphic Abelian groups of order n. See ERDOS-SZERERES [2].



On Some Problems of a Statistical Group-Theory. I 177

the number cyeles of length n, by m, so that

E(P)
(2.5) Z My Ny =N
v=1
and
E(P)
(2.6) > my=g(P).
v=1

The dependence of k(P) upon P will not be denoted explicitly later; ¢1, ¢a, ...
stand for explicitly calculable positive numerical constants.

Part I
3. We shall state GoNGAROV’s theorem as
Lemma L. For any fixed real ¢ for the number hy (8) of P’s satisfying (see (2.2))

g(P) =logn +¢]/logn

we have the relation
¢

. 1 1 2
3.1 lim L b, ()= 1 fe‘“zdl.
( ) N—>00 ! 71«( ) 2r Y
Applying the wellknown theorem of EssEEN one could replace the limes-
relation in (3.1) by a formula with error-term. We shall use lemma I in the follo-

wing weaker form.

Corollary I. If w(n) tends to infinity arbitrarily slowly monotonically then for
all but o(n!) P’s the inequality

lg(P)—logn| < w(n) Vlogn

holds.

We state the following wellknown result (see e.g. RI10RDAN [6]) as

Lemma I1. The number of P’s with fixed

k,mi,...,mg,n1,...,08
(see (2.4), 2.5)) is
n!
mitmel...omplnTinle ., npe "

Let w; and ws be positive integers with
20 < w1, we E£n
and [ [1 be the set of P’s with the following properties. If 7, < w; then

(8.2) 1 =my < wa;
if ny > w; then
(3.3) my=1.

This Hl is the set of P’s in which only “short” cycles ean occur more than once
and even these “not too often”. Denoting the number of P’s of | 1 by | [1] we
assert the

Lemma IIL The inequality

Hll*ll<3<w%+ wlzz)

|1
nl

holds.
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1
For the proof we remark first that pa |1—[1| is nothing else than the coefficient

of 2" in

(3.4) H {1 + Z il ( ; )} _EIH(I - 7:)

v=1

The »t* factor in the first product can be written as
< 122y Pl 1 /22
ezV/r . Z =+ (*) w[, {1 g ? v - (7) }
l=w1+1l! » l=wzl+1“ v

and analogously for the second product. Since for |z| < 1 we have

(==

1—[ ez”” = —i —E”" 2

v=1
the product in (3.4) can be written for |2| < 1 as

(65 2@ =]] {1 ey ,1, (z” )l} [T {1 - e_zyléozl:(z?p)l}'

i i . Q(z), where

=1 I=ws+1 v=awm1+1

Equating the corresponding coefficients we get

— |H1| —1= Z coeffs. 2 in 2(z).
=1
Replacing in (3.5) in each factor in curly brackets the term
—”’/v 2V

bye

we obtain instead of £2(z) a function £2* (2) whose coefficients (are positive and)
majorise the absolute values of the corresponding coefficients of Q(z). Hence

[—1] = z coeffs. 2zt in 2% (2) < 2% (1) — Q*(0)

=1

s Y 1 1 ~ r- 1l 1
=~1+1_[{1+€”Z sz} 11 {H"G”Zﬁ-ﬁ}-

(3.6)

=

p=1 I=ws+1
Here the first product is

< pe 1 1
<exp{ >el" > o<

v=1 l=ws+1 "

1
<exp{ez l_!+ w0+1)' z Z }

I=we+1 r=2 l—wz—i—l

2e 5
<eXP{<w 0T T Z vwz+l}< p{(u +1)'}

3
< exp {‘u:} .
From these and (3 6) we get

w w 1
= 1) = — 1 eienntesm <3 )

and analogously the second is

as stated.
This lemma gives immediately the following three corollaries.
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Corollary IL. If wi(n) and wa(n) tend arbitrarily slowly monotonically to oo,
then the canonical decomposition of all bui o(n!) P’s have the double property thai
no two cycles of length > w1(n) are equally long and at most we(n) cycles can have
the same length < w;(n).

Combining this corollary with Corollary. I. we get the

Corollary IIL. Apart from o(n!) P’s the remaining ones, whose tolality we may
call Hg, have the properties of Corollary I1. and

(3.7) [B(P) —logn| < w(n) |/logn

iof only w(n) tends to oo arbitrarily slowly.
Though we shall not need it here, we formulate the

Corollary IV. For all fized veal s for the number H, (1) of P’s satisfying simul-
faneously (3.7) and the two requirements of Corollary I11. we have the limit-relation

[4
. 1 _ 1 — A2
lim n;!Hn(t)gvﬁ—le .

n—>00
As well-known, the order of P is given by
(3.8) O(P)=[ny,ng,..., ng)

the bracket stands for the smallest common multiple.
Corollary II. gives for arbitrarily small ¢ > 0 at once for all but o(n!) P’s the
inequality

3.9) O(P) < ny,na...ngp < nk < 1Ol n

But this is much weaker than the upper bound in our theorem.

Part 11

4. In order to prove the upper bound in our theorem we shall show that if
w1(n) tends to co monotonically arbitrarily slowly, then for all but o(n!) P’s
the n,-numbers (in (2.4)) are in a certain sense equi-distributed in the interval
I = % =< n. More exactly we mean the following. We define N by

{4.1) N = [k173].

For each Pe 1_[2 we can determine uniquely the nonnegative integers
(4.2) S1,8z,..., 88

so that

(4.3) Lsm<ng <o <mg, =0l <mg, g <o <mg s, =Y <
< P81+ 82+1 << NG 48+ + 85y — Nk é n;

if there is no n; e.g. in 'Y << & < 2¥¥ we have 83 = 0 ete.
Of course 8, = S, (P) and

(4.4) 814+ 8+ -+ Sy=rFk.
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Let | |3 mean the subset of | [2 whose P’s satisfy the inequality

| k k \4/5
4.5 max |8, — — | < 4)
5) ,u=1,...,N’ R ' (N
and let |r13| be the number of its P’s. Then we assert the
L 1V. ; 1 —
emma IV nlixsom[nﬂ_l

5. For the proof of this lemma it will be sufficient to show that if E; stands
for the subset of 1_[2 for which (4.5) is false, i.e. the inequality
4/5

|
5.1) max |8 ’
( u=1,2,...,N| ‘o N

holds, and | E1| for the number of its P’s, then the estimation
(5.2) % l El] < 4om) g—1/5logtsn

holds for » > ¢; (of course w1(n) must be < 1/101log?5n say).
In order to prove (5.2) we write, using lemma II.

1
(5.3) = Bl=2 ) R T TR

j=1 my, ny
Pek,

where j = j(P) denotes the number of different cycle-lengths not exceeding w; (n).
We can perform easily the summation with respect to

mi, Mz, ..., Mj;

this cannot exceed the quantity

1 i 1/ . Qw1
mzl mz -t e~ L€ =D <o
and hence
(5:4) lEll <w12‘°‘z 2 v n1ng. <4mlzz n1Ng..

where the prime indicates that the summation is extended to all n,-systems with
properties (2.4) and (4.3)—(5.1). Since for » > ¢z we have

2logn > logn + w(n)l/logn =k
and from (2.4)

k i
2nglogn Zknp =D my=n— > (my— 1)y 20 — o?w, >%
v=1 v=1
we get
1 4logn
(5.5) %;< p
and hence

1
NLNG oo Tp—1

1 ! ’ © 5 logn
(5.6) F]Ell < 4oun)+2 O’in % Z d—LfLAL 1(@-!—-%_ %:Sk
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where >’ refers to the systems
8.7} IS <ne< " <#Hpi1<n

restricted by (4.3)—(5.1).
Let us consider now for a fixed k the quantity Sz. We have

1 1
Si...., 8y 1=m< PN - Ty PUN <ngy 1< nSl+1 .“nS1+S2

< vee<ng =LY < e <Ny sy SMEN

1
AN < s dr sy r0< Si+Set o+ Swr b1 1y
B (P =)

where the prime indicates that (5.1) must be satisfied. Hence
1 118 1\ 1 \Sw
6.8) Se=D' v w il ( 1 qyss
Sl’g’SNSI!Sz!.“SN! 1§l§"‘“’" ! n1/N<§l:§n21N ! nN—l/Nz<l§n !

Since for » > ¢3

1 1

T < prlogn+1,

LN <} VIV

(4.4), (5.8) and (5.6) give, changing also the order of summations, the iﬁequality

1 k
~logn 41
1 491+2]og <N ) p k!
(5.9) m]Ell<_n—*'2“—k!—“ Zsm
sea s ON

81,

6. Now we estimate the inner sum in (5.9) using (5.1). If e.g. u =1 this
can be written as

o= 3 ¥ — s
(Sl SatertSx=F—81 S2!831... 8y1 |81~k N> (e N}/ 81

k—S1 S
“w B AT
181 — B/ N[> (ke Wyws =L

181 —&/N|> (] N)s

But for # > ¢4 the last sum, owing to the law of large numbers cannot exceed
the quantity — (BN
¢~ URT G g LBEMS

=8

The same holds for g = 2,3, ..., N too; hence (5.9) gives the estimation

(<]

4o1+3 logzﬁ Z 13RS (log nk_'}_ Nk < 401+3 . g —1/4log?5n )

1
ar | B <— n

1k —logn| < o(n) {loga
. Z (logn + (2logn)1/3)%k 42178 g—1/dlogin

. Zlpgn) w1, ,—1/5logsn
n e < 4*i.e
k! 7

E
for n > ¢5, which proves lemma IV,
7. Lemma IV, gives the possibility to improve (3.9). We get this time
O(P) Zming...np < (nI/N)Sl (nZIN)Sz . (nN/N)SN < n@d+1)[2 m:x Sy
and owing to lemma IV.
O(P) § n(N+1)12 (B[N 4+ (k| N)25) < nk/2+k4/SN1/>



182 P. ErpOs and P. TURAN:

for n > ¢g which is only another form of the assertion, (even with
(7.1) O(P) < elf2tog*n2(lognyens
for all but o(n!) P’s).

Part III

8. Before turning to the proof of the lower bound we need some further lem-
mata. Let U(m) stand for the number of different prime-factors of m, further
@Q(m) resp. g(m) for the maximal resp. minimal prime-factors of m. Then each
integer m =< n can obviously uniquely be decomposed in the form

(8.1) m = a(m)b(m)
where

(8.2) Q(a(m)) < logtn
(8.3) gb(m)) > logbn.

Let further be R the set of integers defined by
(8.4) m=n, a(m)=elelznt

Then we assert the
Lemma V. For n > ¢y the inequality
1 1
ng a(m) =~ log10 »
holds (the summation being extended only to different a(m)-values!).

9, For the proof of this lemma we split our sum in the form

1 1
meR i>loglogn meR
T(m) < loglogn Uim) =1

The inner sum in Ky is evidently for n > ¢

1\! 1
éli,( Z -;><ﬁ(210glog]ogn)‘
»

P& P
=logtn
and thus
1 _ 1
92) Kp< 7 (2logloglogn)t < ¢~1/2loglognlogloglogn STog0n

1>loglogn

As to K1 let us observe that each term of it contains, as factor, a “large” prime-
power. Namely if ¢ is the maximal exponent in a(m), then owing to (8.1) and
(8.4) and U (m) =<loglogn we have
(logﬁ ,n)tloglogn _>~_. e(loglogn)"
i.e.
t= %— (loglog n)2.

Thus all m-values of K are divisible by a prime-power p? satisfying the inequalities
(9.3) 21/60oglogm® < gt <, p <logbn.
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Fixing this p? the contribution of the terms divisible by this p¢ is (roughly)

1
=p -tz %<2]ogn-p—t

M=
ie. K< 2logn z pt
where the summation is restricted by (9.3). Since the number of terms is
log n
< Tog2 ' logbn << 2log"n

(9.3) gives for n > ¢y
K1 < 2logn - 2log? n - 2~ H6deglogn)®

This, (9.2) and (9.1) prove lemma V.

10. Next let H4 be the subset of Hg (defined before lemma IV.) with the
additional property
(10.1) Q((ny,ny)) = logbn
for each 1 < u <» <k — 1 pairs and || [4| be the number of its P’s. Then we
assert the

Lemma VI. The relation

1
< 2Togl0y *

lim Tl =1
holds.
In other words for almost all P’s, in addition to what was previously said, no
pair g, 7y (1 = p <y =k — 1) have “large” common prime-factors.
11. The lemma will obviously be proved if we can show that, denoting by Es
the subset of 1_[3 whose elements have the property

(11.1) max Q((ry, ny)) > logén
Ispu<r=k—-1

and denoting by | Ez| the number of its P’s, the inequality

1 4ou1n)+6
(11.2) ;'_IEZI <- logn
holds. For the proof of this assertion we can start from (5.6) in the form
1 log n 1
il oi(n)+2 707 L
(113) n! IEZI <4: ® n Z Z N1IN2 oo Ngp-1

|k—logn| =logdin

where Z'” refers beside (5.7) also to the restriction (11.1). Fixing the g, » pair in
(11.1) as k—2, k—1 say
the corresponding part of the double-sum as (11.3) is

1 s 1
< 2 2 et <

p>logtn
n 2
(log — 1>
< z - pz T Z : <
p>logtn P 1Sm<e<np-s=n 172 Rip-3

1\ (1 + logn)%-3
< log2n ( z p\2> =T

p>logtn

7. Wahrscheinlichkeitstheorie verw, Geb., Bd. 4 13
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Summing for all p, y-pairs we get for > '’ the upper bound

([2 log n])l % - 1 (14 logn)e3 4 (14-logn)k3
2 logén (k—3)! log?#n (k. — 3)!

Summation with respect to & gives from (11.3)

4o1+2logn 4 41 +6
7 log? n en < logn

1
al | Bs| <
as stated.

12. We have to make a final selection from 1—[4. For all of its P’s we form
their canonical decomposition and for all n, cycle-lengths the decomposition (8.1)

ny = &(ny) b (ny)
(a(ny), b(n,) functions of P)
shortly. Let 1_[5 be the subset of 1_[4, for whose P’s the inequality

12.1)

max a(n,) < elloglogn)*

holds. Denoting by |] [5| the number of these P’s we assert the
Lemma VII. The relation

.1
s sl =1
holds.

By other words for almost all P’s, in addition to what was previously said,
the contribution of the “‘not too large” prime-factors of the P’s is “not too large”.

13. Again the lemma will be proved if we can show that, denoting by E3 the
subset of 1—[4 whose elements have the property

(131) max a (%) > elloglogn)*

and denoting by | 3| the number of its P’s, the inequality

1 4o1+5
(13.2) al ] E3] < Tog7n
holds.
For the proof of this assertion we can start again from (5.6) in the form
1 log n 1
el w1+2 727 [ —
(133) n! IE3I <4 n %Z* NLNS oes Npp-1

where > * means that in addition to the properties of | [4 also (13.1) is fulfilled.
We split the inner sum (13.3) into % partial-sums, the wu*» of which replaces
(13.1) by

(13.4) a(ny) > etlogloent,

First we perform the summation with respect to the n;’s with j + ; this gives
at most
(1 + log n)¥—2
k—2)!
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Next we perform the summation with respect to n, but taking in account (13.4).
Fixing a value for a{n,) the corresponding n;’s contribute to our sum by

(1 + logn)

a(nu)
at most; thus

1 (1 + log n)k-2 1
- — 7 .9
z NEN2 ... RE—1 <§H: (k—2)! lOg?’LZ a(ny) ’

Using lemma V. this is

(1 4 log n)%—2 2
<S}; (E—2)1 log9n °

Summing with respect to u gives

Z* < 2 (1 logm)b?
log8 n (k — 2)!

Putting this in (13.3) we get

4o+3 (14 logn)e—2  4o+5
nlog?n “~ (& —2)! log? »

1
a1 1 B8] <

which proves lemma VII.

14. Now we are in the position to establish the lower bound in our theorem.
According to lemama VII. apart from o(n!) P’s the remaining ones have the
following properties (w1(n), wz(n) and o (n) equals ]/log logn e.g.)

a) |k(P)—logn| < w(n) Ylogn

b) no two ny-cycles of length = w;(n) in P have the same length

c) at most ws(n)-cycles in P can have the same length < wy(n),

d) the different cycle-lengthsin P are “equidistributed’ in the sense (4.3)— (4.5)

e) no ny, ny pairs (1 < u <v =k — 1) have a common prime-factor > log$ »,

f) for all n, cyele-lengths the contribution of the prime-factors not exceeding
logbn cannot exceed exp.((loglogn)4).

For these P’s we have with the notation (8.1)—(8.3) the inequality

(14.1) O(P)=[n1,...,n¢) = [b(n1), b(na), ..., b{ng_1)]
and since owing to the definition of b(ny) and property e., we have
(b (14); b(ny)) =1

also
[6(na),b(n2),...,b(ng-1)] = b(n1) b(ns)...b(ng—1) =
and thus from (14.1)

N1 N oo Npp—1
a(m) a(ng) ... a{ng-1)

nyng ... g i
Ya{ng) ...a{fig-1) » °

(14.2) 0(P) 2 55

But owing to properties f} and a)
a(n)a(ng)...a(ng_y) < eloslogn)izlogn

we get for the remaining P’s, i.e. for all but o(n!) P’s

(14.2) O(P) = nyms...ng- ¢ Slognlloglogn)

13%*
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The lower bound will be established at once using property d). This gives
namely
1N ... By 2 (nllN)Sz (ni&/N)Sa . (n(N—l)/N)SN g p - /2 mfilnSﬂ .
But from (4.5)

. E % \4/5
= e [
mﬂlnSu__ 7 (N)
i.e.

NN ... Mg > nk/2—2k4l5N1/5 > el/210g’n—3log28/15n

which establishes the upper bound for # > ¢3¢ {even with
(14.3) O(P) > ¢l/2log?n—4log®%n

for all but o(n!) P’s).
Finally we remark that what we actually proved (see (14.2) and (3.9)) is that
apart from o(n!) P’s the inequality

(14.4) e—3logn(loglogn)4 < O(P)
— N1N2 ... Nk

A

1

holds i.e. O(P) is “‘essentially” ninz...ng, for “almost all” P’s,
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