A Probabilistic Example of a Nowhere Analytic C^{∞}-Function*

J. Fabius

Received May 24, 1965

It is well known that there exist functions which are infinitely differentiable but nowhere analytic. In fact, Morgenstern [1] has shown that the nowhere analytic functions are by far in the majority among the infinitely differentiable functions on $[0,1]$. A number of examples, as well as an extensive bibliography, are given by Salzmann and Zelleer [2].

It is the purpose of this note to show that another example is provided by the restriction on $[0,1]$ of the distribation function F of $X=\sum_{1}^{\infty} 2^{-n} \xi_{n}$, where ξ_{1}, ξ_{2}, \ldots are independent random variables, uniformly distributed on $[0,1]$.

One easily verifies that $F(0)=0, F(1)=1$ and $0<F(x)<1$ for all $x \in(0,1)$. Moreover, since $2 \sum_{2}^{\infty} 2^{-n} \xi_{n}$ is independent of ξ_{1}, and has the same distribution as X,

$$
F(x)=\int_{0}^{1} F(2 x-y) d y= \begin{cases}\int_{0}^{2 x} F(t) d t & \text { for } x \in\left[0, \frac{1}{2}\right] \tag{1}\\ \int_{2 x-1}^{1} F(t) d t+2 x-1 & \text { for } x \in\left(\frac{1}{2}, \mathbf{1}\right]\end{cases}
$$

which implies that F is a continuous function. For notational convenience we introduce another function f, which we take to be the unique function on $[0, \infty)$ which coincides with F on $[0,1]$ and satisfies the relations

$$
f(x)=\left\{\begin{array}{lll}
1-f(x-1) & \text { for } & x \in(1,2] \tag{2}\\
-f\left(x-2^{n}\right) & \text { for } & x \in\left(2^{n}, 2^{n+1}\right],
\end{array} \quad n=1,2, \ldots .\right.
$$

Clearly f is continuous and vanishes only at the nonnegative even integers. Moreover,

$$
\begin{equation*}
f(x)=\int_{0}^{2 x} f(t) d t \tag{3}
\end{equation*}
$$

for all $x \in[0, \infty)$. For $x \in\left[0, \frac{1}{2}\right]$ this is just a restatement of (1), for $x \in\left(\frac{1}{2}, 1\right]$ and for $x \in(1,2]$ it follows from (1) and (2) by easy computations, and for $x \in\left(2^{n}, 2^{n+1}\right]$, $n=1,2, \ldots$ we prove (3) by induction on n : If (3) holds for all $x \in\left[0,2^{n}\right]$ and some $n \geqq 1$, then we have for $x \in\left(2^{n}, 2^{n+1}\right]$

$$
f(x)=-f\left(x-2^{n}\right)=-\int_{0}^{2 x-2^{n+1}} f(t) d t=\int_{2^{n+1}}^{2 x} f(t) d t=\int_{0}^{2 x} f(t) d t
$$

[^0]since (2) implies that
$$
\int_{0}^{2^{n+1}} f(t) d t=0
$$
for all $n \geqq 1$.
It follows from (3) that f, being continuous, is differentiable with
$$
f^{\prime}(x)=2 f(2 x)
$$
for all $x \in[0, \infty)$ and hence, that f is infinitely differentiable with
\[

$$
\begin{equation*}
f^{(n)}(x)=2^{n(n+1) / 2} f\left(2^{n} x\right) \tag{4}
\end{equation*}
$$

\]

for all $x \in[0, \infty), n=1,2, \ldots$
In view of the fact that f vanishes only at the nonnegative even integers, (4) implies that at any binary rational of the form $x=(2 k-1) 2^{-n}$ with k and n positive integers all derivatives except the first n vanish. Consequently the Taylor series expansion of f around such a point is a polynomial of degree n, which cannot possibly coincide with f on any neighborhood, since at every binary irrational point all derivatives of f are nonzero. Thus f is nowhere analytic, being singular at all binary rationals.

References

[1] Morgenstern, D.: Unendlich oft differenzierbare nichtanalytische Funktionen. Math. Nachr. 12, 74 (1954).
[2] Salzmany, H., und K. Zellere: Singularitäten unendlich oft differenzierbarer Funktionen. Math. Z. 62, 354-367 (1955).

[^0]: * Report S 345, Stat. Dept., Mathematisch Centrum, Amsterdam.

