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Properties of the Sample Functions 
of the Completely Asymmetric Stable Process 

J.L. Mijnheer 

1. Introduction 

In [3] Chung, Erd6s and Sirao proved the following theorem for the Wiener 
process {X(t): O < t <  1}. 

Theorem 1.1. Let 0 be a non-negative, continuous and monotone non-increasing 
function and ~,(t -1) = ~b (t), then 

P [{co: there exists some A o (co) such that 

IX(t+ A, co)-X(t, ~o)1 < A~ ~(~) 
for all O< t<- l -  A and 0<A<Ao(cO)} ] = 0  or 1 

according as the integral 
oo 

f ~3 (t) e -+02(t) dt 
diverges or converges. 

This theorem generalizes a result of P. L6vy, who proved 

(1.1) 

IX(t+~)-x(t) l  
lim sup [z'~ A - 1.,~ - 1 a.s. log (A e~,O O < t < l _ A  )) 

0<A<~ 

Recently, Hawkes [-4] proved for the completely asymmetric stable process 
{X(t): 0 < t_< 1 } with characteristic exponent c~ with 0 < c~ < 1 and fl = 1 (stable 
subordinator): 

Theorem 1.2. 

lim inf X(t  + A) - X(t) 1 -- 

s,[O O<-t<-l--Ao<~<~ A1/~(I~ 1-~ =(2B(c~)) ~ a.s. 

The constant B (e) will be defined in Lemma 2.1. 

In this paper we extend the last theorem in a similar way as Theorem 1.1 
generalizes L6vy's result. We shall give similar theorems for the completely 
asymmetric stable processes with characteristic exponent ~ with 1 < ~ < 2  and 

= 1. The proof is analogous to that of Theorem 1 in [3]. 
11" 
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2. Preliminaries 

The characteristic function (ch. f.) f of a stable distribution is given by 

logf(t)=-It l~{1-i /3sgn(t) tan(zcc(2)} if ~ . 1  

= -I t [ - i /3(2 /~) t  log Itl if c~ = 1 
(2.1) 

where e and/3 are real numbers with 0 < c~_< 2 and 1/31 --- 1. (See for example [2] or 
[5].) Distributions with 1/31=1 are commonly called completely asymmetric 
stable distributions. In this paper, however, we restrict this terminology to the 
case where/3 = 1. We have chosen the sign of/3 in (2.1) such that the completely 
asymmetric stable laws (with/3= 1) are the limit distributions of normed sums of 
positive independent and identically distributed random variables. For 0 < e <  1 
we call these stable laws one-sided, since their support is (0, oe). When c~> 1 the 
support is ( - ~ ,  oe). The following estimates for the tails of the distribution 
function can be deduced from the expansions for the densities given by Skorohod 
[9], (See also Polya and Szeg6 I, part II, problem 208 and Ibragimov and Linnik 
[5].) Estimate (2.2) is proved directly in [-4]. 

Lemma 2.1. Let U be the standard normal random variable and X the r.v. with 
ch. f (2.1). I f0<c~< 1 and/3=1 then 

p[X<x]..~(2/e)~-p[u>(2B(cO)~x 2o:-~)] for x+O (2.2) 

cx 1 

where B (e) = (1 - o 0 o~ 1= ~ (cos (re o~/2)) 1- 

I f  c~ = 1 and/3-=- 1 then 

P [ X < x ] ~ 2 ~ P [ U > 2 ( n e ) - ~ e  -~/4] for x ~ - o o .  (2.3) 

I f  1 < ~ < 2 and/3 = 1 then 

p[X<=x]~(2a)~p[u>=(2B(a))~(_x)2(~ 13] for x ~ - o o  (2.4) 

a 1 

where B(~)=(c~- 1) c~ ~--1 [cos(n~/2)]~-i 
Remark. In the case a=�89 and/3= 1 the stable r.v. X has the same distribution 

as U - 2  Then (2.2) can be replaced by 

P[X<x] - - -P[[U[>x  -~] for all x. 

From (2.1) we obtain the following property. Let Xa, . . . ,  X~ be i. i. d. following 
a stable law, then the sum S, = X~ + . . .  + X, has the same distribution as n 1/~ X 1 if 

=~ 1 and as n X 1 + (2/n)fi n log n if a = 1. This property and Lemma 2.1 were also 
used in the papers [7] and [8], where generalized laws of the iterated logarithm 
are proved for completely asymmetric stable random variables. 

One may give a construction of stable processes analogous to the one for the 
Wiener process in [1]. Let X be a r.v. with ch.f. (2.1) then on (D, 9)  (defined in [1], 
Chapter 3) there exists a stable measure P~,a characterized by the following three 
properties. 
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P~,0 [X(0)= 0] = 1, 

P~,~[X(t)<=x]=p[tl/~X<-x] if c~4=1 

=P[tX+(2/rOfl t logt<x] if a - - l ,  

X(t) has stationary and independent increments. 

(2.5) 

(2.6) 

(2.7) 

For all stable processes the strong Markov property holds, (See [2].) The sample 
paths are discontinuous, but there are no fixed discontinuities. The completely 
asymmetric stable processes have only positive jumps. (If f l= - 1  the jumps are 
negative.) For 0<c~< 1 the paths are non-decreasing. (See [2].) For ~= 1 and 
1 < e < 2 we don't have this monotonicity property. In those cases we apply the 
following lemmas. 

Lemma 2.2. Let {X(t): 0_<t_< 1} be a stable process with 1 <r and [fl[=< 1. 
There exists a positive constant k~ such that for all t~(O, 1] and all negative x 

a) P [  inf X(s)<_x]<=k~P[X(t)<x] 
O < s < _  t - -  

b) P [o <!nf<t{X(s)- X(r)} < x] _-< k 2 P IX(t) = x].  

Proof We follow the method of Kiefer in [6]. An analogous method for 
partial sums is well-known. Let y < 0 and let F be the event that for some s s [0, t] 
we have X(s)<y. On F we define S=inf{s:  X(s)<y}. The right-continuity of the 
sample paths implies that X(S)<y on E From the strong Markov property and 
(2.6) it follows that 

P[X(t)-X(s)<=OIF AS=s]=P[X(1)<O] for s<t  

=1 for s=t  
and hence 

P IX( t ) -  X(S) < 0[ F] __> P IX(l) =< 0]. 

Define the constant k~ by k~ -1 = P  IX(I )=0] .  Then 

P [o ~ f  t X (s) < y] = P [F] < k~ P IX( t ) -  X(S) < 0 A F] 

< k~ P IX(t) < y].  

Taking a decreasing sequence y, J, x, we obtain part a) of the lemma. 

Now we prove part b).We first remark that the process {X(r): 0 < r < t}, where 

2(r)=x(t)-x((t-r)-), 
is again a stable process with the same parameters c~ and ft. (We define X(0 - ) = 0.) 
The paths of the processes ~7(r) and X(t) are in D. Therefore we have for almost 
all co 

o=<~<t inf X(t, co)-X(( t -r) - ,co)} .  inf {X(t, ( o ) - X ( t - r ,  co)} =o=<r=<t{ 

Let F 1 be the event that for some r and s in [0, t] with r<s we have X(s, co)- 
X(r, co)<x. The r.v. S is defined on F 1 by 

S(co)=inf{s: 3 r<s with X(s, co)-X(r, co)<x}. 
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Let e>0 .  On the event {F 1 A S = s }  we define the r.v. R by 

R (c~) = sup {r: X (s, o9)- X (r, co) < x + e}. 

Then, for all co~F~, at least one of the inequalities 

X(S(a)),co)-X(R(o)),a))<=x +e or X(S(co),ca)-X(R(co)-,o~)<=x +e 

hold. The r.v. S is a stopping time, therefore 

P[X(t)-X(S)<=OIF~] ~k21 . 
Then 

P[Ft]  < k~P[X ( t ) -  X (S )<  O A F~] 

= k~ P I X  (t) - X (R - ) __< X (S) - X (R - )/x X (t) - X (n)_-< X (S) - X (R)/x F~ ] 

< k~ P [min (X (t) - X (R - ), X (t) - X (R)) =< x + e] 

< k~n[oin f  ( X ( t ) -  X(r - - ) )N  x + e] 

<= k 2 PEX(t)<= x + e]. 

Part b) follows if we take sequences x,  ~ x and e, $ 0. 

Lemma 2.3. Let {X(t): 0_< t_< 1} be a completely asymmetric stable process with 
= fi = 1. Let the function x (p) such that for some constants c I and c2 Ca < - x (p) + 

(2fir) logp+ 2/~ <c 2 for P>Po. There exists a positive constant k a such that for 
all ts(O, 1] and for sufficiently large p 

a) for O<(t-s)/t<-_p -1 

P [ inf X ( s ) - ( 2 f f O s l ~  <- - x ( p ) ]  
Lt - tp  - l<s<t  S - -  

= < k i P  [ X( t ) - (2 /~ ) t log t t  =< - x ( p ) ]  

< k 1 P [X(1) =< - x (p)]; 

b) forO<r<_tp -1 andO<=(t-s)<=tp -1 

P [  o=<r__<,p-linf X(s)-X(r) - (2 /~)(s-r ) l~  

t--tp-l~s<_t 

<=k~ PEX(1)<-_ - x (p ) ] .  

Proof The proof  is similar to that  of L e m m a  2.2. Let F be the event that  there 
exists some s e It - t p -  1, t] with (X (s) - (2fiz) s log s)/s < - x (p). The r.v. S is defined 
on F to be the infimum of these numbers s. Then by the right-continuity 

(X (S) -  (2/~) S log S)/S N -- x (p). 
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By the strong Markov  proper ty  we have for s e I t - t  p-1,  t) after some calculus 

p [ X(t) - (2/~) t log t X ( s ) -  (2flz) s log s < 0IF/x S = s] 
L t s / 

= P IX (1) < - x (p) + (Z/re)(t log t - s log s - (t - s) log (t - s))/(t - s)] 

> P IX(l)_< ca - 1] 

for sufficiently large p. Define the constant  k 1 by ki -a = P I X ( l ) <  c a - 1 ] .  Thus 

P [X(t)-(2flz)tlogtt X(S)-(2/rc)SlOgSs =<0]F] >ki-1 

Part  a) follows as in the p roo f  of L e m m a  2.2. a). 

Again the process {J)(r): 0 < r < t}, with J ( ( r )=  X ( t ) - X ( ( t - r ) - ) ,  is a comple- 
tely asymmetr ic  stable process with ~= /~=1 .  Define the event F~ and the r.v. S 
and R by 

F 1={co: 3(r ,s)  with r e [0 ,  tp ~a] and s e [ t - t p  -a, t] 

such that  (X(s)  - X ( r ) -  (2/re)(s - r) log ( s -  r ) ) / ( s -  r) < - x (p)} ; 
on F~ 

S(co) = inf{s :  s e [ t - t p  -1,  t]/x 3 r e [ 0 ,  tp  -1] 

such that  (X(s)  - X ( r )  - (2/~)(s - r) log ( s -  r))/(s - r) < - x (p)} 

and for s e [ t - t p  -1 , t ]  on {F 1 /xS=s}  

R (co) = sup { r: r e [-0, t p -  1]/x (X (s) - X (r) - (2/z 0 (s - r) log (s - r))/(s - r) < - x (p)}. 

Then  we have 
X (S) - X (R) - (2/~) (S - R) log (S - R) 

_-< -x(p) 
( S - R )  

on F 1. Remember  X( t ,  co) has only positive jumps. 

The r.v. S is a s topping time, therefore, by the strong Markov  proper ty  and 
similar calculations as in the p roof  of part  a), we have for s e [ t - t  p-1,  t) and 
re[O, t p  -1] 

p [ X ( t ) - X ( r ) - ( 2 / ~ ) ( t - r ) l o g ( t - r )  X ( s ) - X ( r ) - ( 2 / ~ ) ( s - r ) l o g ( s - r )  
t - r  s - r  <OI l 

F 1 A S = s A R = r ]  

=P[X(1)< -x(p) 
+ (Z/re)((t - r) log (t - r) - (s - r) log (s - r) - (t - s) log (t - s))/(t - s)] > ki -a 

for sufficiently large p. Thus  

P [_X(t) - X ( R )  - (2 /~ ) ( t -  R) log (t - R) 

t t - R  

< X ( S ) - X ( R ) - ( 2 / r O ( S - R  ) l o g ( S - R )  F~] 
= S - R  ] >k~l= " 
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As in the proof of Lemma 2.2. b) it follows that 

P[F~]_<klP [o=~,~tp-1 [ inf X( t ) -X(r - ) - (Z /n ) ( t - r ) t_r  l og ( t - r )<=_x(p ) ]  

P [ inf X ( s ) -  (Z/n) s logs < _ x (p)] < kl 
L t - t p  - l  <-s<-t S = 1 

<-k2 p[x(1)<= -x (p ) ] .  

The assertion in part b) follows as in Lemma 2.2. b). 

With Lemma 2.2. a) we can prove a generalized law of the iterated logarithm 
for the completely asymmetric stable laws with 1 < a < 2. (This extends Theorem II 
in [7].) 

As in [8] we make use of the following extension of the Borel-Cantelli lemma. 
(See for the proof [10].) 

L e m m a 2 . 4 .  Let {A,} be a sequence of events with ~ P [ A , ] = ~ .  Then 
P [ A , i . o . ] > c  -1 if 

/ n  \ - 2 n  

l im in f (~ ,P [Ai ]  ) ~ ~P[AiAAj ]<=c .  
i = 1  t i = 1  j = l  

3. The Case 0 < �9 < 1 

In this section we shall prove a generalisation of Theorem 1.2. Let {X(t): 0_-< t_< 1} 
be the completely asymmetric stable process (fl = 1) with characteristic exponent 
0<  a < 1 and 4) a non-negative, continuous and monotone non-decreasing func- 
tion. We define the function ~ by 

~t 

~b(t-1)= {2B (a)}�89 (4) (t)} 2(1--~) (3.1) 

Before stating the theorem we prove some lemmas. In these lemmas we suppose 

O<A < t ' < t  (3.2) 
and 

t - A + t ' < l .  (3.3) 
We write 

P1 = P IX(t) =< t i/~ 4) (t)/x X( t  - A + t ' ) -  X (t - A) <= (t') 1/~ 4) (t')]. 

X denotes a r.v. with the same distribution as X(1). 

L e m m a  3.1. Let 4) (s) -+ 0 for s --> O. For all positive ~ there exist positive constants 
t o and 5 such that for all t <_ to, all A satisfying A �9 t -  1. ~2 (t- i) < 6 and all t' satis- 
fying (3.2) and (3.3), 

Pl__<(l +~) P [ X  <=4)(t)] PEX <=4)(t')]. 
Proof. 

PI < P [ X  ( t -  A) <= t i/~ 4) (t) /x X ( t -  d + t ' ) -  X ( t -  d)-< (t') 1/~ 4) (t')] 

the paths are non-decreasing 
(3.4) 

<= P I X  <= ( t / ( t -  A)) '/~ 4) (t)] P IX < 4) (t')] 

the increments are independent. 
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F r o m  estimate (2.2) it follows that 

P I X  <= (t/(t - A))I/~ (o (t)]/P [X  < (o (t)] < 1 + 

for bo th  t and A �9 t -  1. ~2 ( t-  1) sufficiently small. (This implies A/t is small.) 

Lemma  3.2. Let  ~b(s)-oO for s-oO. For every constant c~(0, 1), all t and A 
with A/t < c and all t' satisfying (3.2) and (3.3) there exist two positive constants C 1 
and C 2 (independent of  t, A and t') such that 

PI <= C 1 e -c2q'2(~ ~) P [ X  <=(o(t')J. 

Proof  Consider  the factor 

P I X  <= ( t / ( t -  A)) 1/~ () (t)] 

on the right side of (3.4). It follows from estimate (2.2) and t / ( t - A ) <  (1 - c ) - 1  that 

P [X <= (t/(t - A ))1/~ q~ (t)J =< P IX =< (1 - c) -1/~ q~ (t)] 

<-_ C 1 e -c2q'2('-') for all re(0, 1). 

Lemma3.3 .  Let  (o (s) ~ O for s o O. Let  c E(O, 1) and C > 0  be two constants. 
Then, for all t and A such that 

O < c < A / t <  1 (3.5) 
and 

( t / ( t -  A)) (1-~)/~ (9 (t)<= C (3.6) 

and all t' satisfying (3.2) and (3.3), there exist two constants C 3 and C 4 (independent 
of  t, A and t') such that 

PI ~ C3 e-  c4 ((t-- A)lt) 0 2 (t-') p [X  < 0 (t)-I. (3.7) 

Proof 

P ,=P [X  (t) < t 1/~ O (t) A X (t-- A + t ' ) -  X ( t -  A)<(t')  TM (o(t') 

A X ( t ) - - X ( t - -  A ) ~  A (1+~)/~ t -1 q~ (t)] 

+ P [X  (t)< # ~ (~(t) A X (t-- A + t')-- X ( t -  A)< (t') 1/~ (o(t') 

A X( t ,  - X ( t -  A)> A (1+~)/~ t -1 (o(t)J 

<=P[X(t ) -  X ( t -  A)<=A (1+~)/~ t -1 ~(t)] 

+ P [X  (t - A + t') - X (t - A) <= (t') TM ~9 (t') A X ( t  -- A) ~ t TM (9 (t) - A (1 + a)/a t -1  (~ (t)] 

<= n I X  <= (A/t) c~ (t)] 

+ P [X  =< r (t')] P IX  =< (t - A ) - 1/~ (tl/~ _ A (1 + ~)/~ t -  1) q5 (t)]. (3.8) 

By (2.2) we obtain that 

P [ X < ( A / t )  r  ~ ( A / t )  2(1-~) e -~((An)-'~" -1)q,2(t-~) P[X<dp(t)]  for t+O. 
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Then there exist two constants A~ and A 2 (independent of t and A) such that  

P [ X  < (A/t) 0 (t)] < A~ e -  A2 ((t- a)/O q,~ (t ~) p [ X  < 43 (t)] (3.9) 

for all t and A satisfying (3.5). We now estimate the last factor on the right side 
of (3.8). There exists a constant  c 1 ( independent of t and A) such that for all t 
and A satisfying (3.5) 

(t -- A) - i/~ (tl/~ _ A (i +.)/~. t -  1) 43 (t) < c i (t/(t -- A ))(1 - a)/a 43 ( t). 

Then by (2.2) and (3.6) it follows that  there are two constants B~ and B 2 (in- 
dependent  of t and A) such that  

P [ J < q ( t / ( t - A ) )  (1-~)/~ 43(t)]__< B 1 e - B2((t- ~)#)~ (~-'). (3.10) 

F r o m  the estimates (3.9) and (3.10) and the monotonic i ty  of q5 it easily follows that 

PI < C3 e - c~ ((t- ~)/t) 0 ~ (t-~) p [X  _-< 43 (t)], 

where 
C 3 = 2 m a x ( A  1,B1) and C 4=min (A2 ,B2) .  D 

We now state our  theorem for the case 0 < c~ < 1. 

Theorem 3.1. Let  43 be a non-negative, continuous and monotone non-decreasing 
function and {X(t): 0_<t_<l} the completely asymmetric stable process ( f l= l )  
with characteristic exponent 0 < c~ < 1. Then 

P [{co: there exists some A o (co) > 0 such that 

x (t + a, co) -x ( t ,  co)> A 1/~ 43(A) 
for  all O N t N 1 - A  and 0<A=<Ao(co)}]=0 or 1 

according as the integral (1.1) diverges or converges, where ~ is defined by (3.1). 

Proof. Without  loss of generality we may restrict at tention to the case where 

(2 log t -  10 log log t) ~_< 0 (t)=< (2 log t + 10 log log t) ~ . (3.11) 

(See L e m m a  1 in [3].) This is equivalent with 

i--~( 1 - ~  

{2B(e)} ~ (2 l o g t - l + 1 0 1 o g l o g t  - i )  ~ =<43(t) 
(3.12) 

i - ~  i -c( 

__< {2B(cQ} ~ (2 log t -1 - 10 log log t -~) 

a n d  yields 1 - a  1--a 

43(t),,~{B(c0} " ( logt  -1) ~ for t$0 .  

Thus  the restriction (3.11) implies that  43 (t)--+ 0 for t ~ 0. 

(3.13) 

Suppose the integral (1.1) converges. For  p = 1 , 2  . . . . .  k = 0 , 1 , . . . , 2  p and 
l =  [p/3] . . . . .  p we define the event D~,~ by 

X \  2 p ] - X = < \ ~ - !  0 �9 
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By (2.2) we have uniformly in k and l 

1 
2 (1 -- ~) 2p 

=O(1)P  U>O / ~ 2  for p ~ o o ,  

1 
since 

~ ( ~ 2 ) = ~ t ( 1 2 ~ 2 ) + 0 ( 1 / ~ ( ~ )  fo r  p--+ oo .  

Convergence of the integral implies (see [31) 

i 2? p 

Z e[o ,,l<oo, 
p = l  k=O l=[p/3] 

and hence P IDa, t i. o.1 = 0. 

For arbitrary fixed t, t+A el0, 11 we define p, k and l by 

(p+ 1) 2-p-1 < A < p  2 -p (3.14) 
and 

(k -1)2-P<t<=k2-P<(k+l)2-P<t+A<(k+l+l)2  -p. (3.15) 

This implies [p/3] < l<p for p > 9 and 

k 
- 

Hence, for almost all co, we have for all sufficiently small A (i. e. sufficiently large p) 
and all ts[0,  1 - A  1 

/1+2  [l+2  

Because of the monotonicity of ~b the right member is larger than A 1/~ 4)(A). Thus 
the theorem is proved for the case of convergence. 

In the divergent case, we define the event E~,I by 

{k+l~  < (  I ~ I'~ 

for p=  1, 2 . . . . .  k =0, 1, ..., 2 p and l=  [p/2] + 1 . . . . .  p. It is sufficient to prove 
P[E~, 1 i.o.]---1. To prove this assertion we apply Lemma 2.4. Rearrange the 
events E~, l- If E, = E~, z and E,, = E~; 1, then n < n' iff one of the following conditions 
holds: 

I. p<p' 
2. p=p' and t>l' 
3. p=p', l=l' and k<k'. 
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This rearrangement implies 12 -p > l' 2-v' for n < n'. Divergence of the integral 
(1.1) implies ~ P[E,] = ~ .  (See [3].) 

For estimating the liminf in Lemma 2.4 we have to estimate P [E,/x E,,]. 
Consider two events En=E ~ t and E,,,=E~; r with n<n' and let A, ,, denote the 
length of the intersection of '[k 2 -p, (k + l) 2-P] and [k' 2 -p', (k + l')'2-P']. If 

k 2-P<k'2-P'<(k+l) 2-V<(k'+l ') 2 -p' (3.16) 

and k=0 ,  we may apply one of the Lemmas 3.1, 3.2 or 3.3. If either (3.16) holds 
and k # 0 or if 

O<k' 2-P'<k 2-P<(k'+l ') 2-v '<(k  + l) 2 -p<  1 
or if 

O<k 2-V<k ' 2-v'<(k' Wl')2-P' <(k +l)2 -p< 1 

similar estimates may be derived. 
Proceeding in this manner we arrive at the following three conclusions. 

1. For any positive 5, there exist a number Po and a positive 6 such that 

P [E. A E.,] < (1 + 5) P [E._] P [E.,] (3.17) 

for all events E. and E., with n < n', p > Po and 

A,,,,,, . 1-1.2 p" ~2 ( 2P/l) < 6. (3.18) 

2. Computations similar to those in [3] give that for fixed n' 

~* P[E, A E,,,,] < M  1P[E,,,], (3.19) 

where ~* denotes the summation over all events E, with n < n' and A ,, ,,. l- 1.2 v < c 
and (3.18) does not hold. M 1 is a constant independent of n'. 

3. In the case 
, 1-1  2 v < 1 (3 .20)  � 8 9  �9 

(for c >�89 (3.20) restricts the values ofp' to p' =p,  p + 1 or p+  2) we apply Lemma 3.3 
or its analog. The construction of the events E~,~ and the assumption (3.12) yield 
that (3.6) is fulfilled for large p. Following the computations in [3] we get for 
every fixed n 

~** P [E ,  A E,,] _--< M 2 P[E,_], (3.21) 

where ~** restricts the summation to all m where (3.20) holds and n < n'. From 
the estimates (3.17), (3.19) and (3.21) it follows that 

N - - 2  N N 

l i m i n f ( 2 P [ E ~ )  2 2 P[E. AE,,,] 
" , n = l  / n = l  n ' = l  

N \ - - 2  N / 

=l iminf (  ~ P[E,]) . 2. ~ P[E, AE,,]<I +5. 
\ n = l  / n-< tl' 

Taking e J, 0 we obtain liminf< 1. D 
i - - ~  I--o( 

Remark 1. Taking q~(A)= {2B(~)} ~ {2(1 +~5)log(A-i)} ~ one obtains The- 
orem 1.2. 

Remark 2. Let the function ~b (A) be defined by 
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ct 

{2B(~)} -~ 4)(A) 2(1--a) = {2 log A - 1 + 5  log(z ) A - 1 + 2  log(3 ) A - l +  ... 

+ 2  log(,_1) A - l + c  log(,)A-~}~ 

(tog(,) A - i = log (log(,_ 1) A - 1)) 

then the integral converges if c > 2 and diverges if c < 2. 

Remark  3. For  every non-negative,  cont inuous and mono tone  non-decreasing 
function 4) we have either 

lira inf X ( t + A ) - X ( t )  < 1  a.s. 
~ + 0 0 < t < l - ~  A1/~4)(A) 

O < A < e  

or  

lira inf X ( t + A ) - X ( t )  > 1  a.s. 
~ o  o<=t<=l-~ A1/" 4)(A) - 

O < A < ~  

4. The Case  1 < ~t < 2 

In this section we prove a similar theorem for the case 1 < ~ < 2 .  The  proof  
does not  differ essentially f rom that  of Theorem 3.1. We shall only give the points 
of difference between the two proofs. 

{X(t): 0_< t _  1} is the completely asymmetric  stable process with 1<  ~<2 .  
Let  4) and 6 be non-negative and mono tone  non-increasing functions with 4) < 6.  
Define the function ~b by 

~t 

~b ( t -  1) = {2 B (c0} ~ 4) (t) 2 r 1). (4.1) 

We first give the lemmas corresponding with the Lemmas  3.1, 3.2 and 3.3. 
Again we suppose (3.2) and (3.3). Now 

P~ = P [ - x ( t )  < - t I/~ 4) (t)  A x ( t -  A + t ' ) -  x (t - A)  < - (t') I/~ 4) (t')] . 

The  r. v. X has the same distr ibution as X(1). 

Lem ma  4.1. Let  4 ) ( s )~  ~ for s ~ O. For all e > 0 there exist positive constants 
t o and 6 such that for all t < t  o, all A satisfying A .  t -~ .  6"(A) .  ~ 2 ( t - 1 ) < 8  and all 
t' satisfying (3.2) and (3.3) 

PI<-P[X<- - 6 ( A ) 3 + ( I + O P [ X <  - 4) (t)] P[X<= - 4) (t')-I. 

Proo f  

~=P IX(t)__< - t 1/~ 4) (t) ^ x ( t -  4 + t ' ) -  x ( t -  4) <= - ( t ' )  "~ 4)(0  

/, x ( t ) -  x ( t -  4 ) <  - 41/~ 6(4)3 
+ P IX(t) ~ - t '/~ 0 (t)/x X ( t  - A + t') - X ( t  - A) <- - (t') 1/~ 4) (t') 

A X( t ) - -  X ( t - -  A)> - A 1/~ 6(A)] 
<=P[X<= - 6 ( 4 ) ]  

+ P [ X  ( t -  A + t ' ) -  X ( t -  A) <= - ( t ' )  '/~ O (t') A X (t-- A) <= -- t '/~ O (t) + AI/~ 6(A)] 

= P [ X ~  - 6(A)] + p [ x < =  - 4) (t')] 

�9 P I X  <= - (t/(t - A))I/~ 4) (t) + ( A / ( t -  A)) 1/~ 6 (A)]. (4.2) 
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By (2.4) it fol lows tha t  

P [X <= - ( t / ( t -  A)) TM r (t) + (A / ( t -  A)) TM ~ (A)]/P I X  < - 4) (t)] < 1 + 

for t < t  o and  A.  t - I .  q~(A).  ~ 2 ( t - 1 ) < 8 .  

L e m m a  4.2. Let 4)(s)~ oo for s ~ O .  For every constant cE(O, 1), all t and A 
with (A/t)l/" r (A)/4)(t)<c and all t' satisfying (3.2) and (3.3) there exist two positive 
constants C 1 and C 2 (independent of  t, A and t') such that 

P I < P  [ X <  - ~(A)]  + C 1 e -c2qm'-') P [ X <  - 4)(t')]. 

Proof  T he  last factor  in (4.2) is less than  

P [ X  _-< - 4) (t)(1 - (A/t) TM 0 (A)/r (t))] 

<=P[X<=-(1-c ) r  -c2~'2(t-') by (2.4). [7 

L e m m a  4.3. Let r  oo for s ~ O .  Let ce(O, 1) and C > O  be two constants. 
Then, for all t and A such that (3.5) and 

(t/(t-  A)) (1- r (t)__> c 

hold and for all t' satisfying (3.2) and (3.3), there exist two constants C 3 and C 4 
(independent of  t, A and t') such that 

PI ~ C3 e-  c, ((t- a)/t) ~,2 (t ~) p [ X < - 4) (t)]. 

Proof Just  as in (4.2) we have  

PI<=P[X<= - r  + ( t - A ) A / t ) ]  + P [ X <  - 4) (t')] 

�9 n I X  <= - ( t / ( t -  A)) TM 4) (t) + (A/ ( t  - A))  TM 4) (t)(1 + ( t -  A)  A / t ) ]  

where  A is some  cons t an t  with 0 < A < ~-1.  F r o m  (2.4) we get tha t  there  exist two  
cons tan t s  A 1 and  A 2 such tha t  

P [ X  =< - 4) (t)(1 + (t -- A ) A/t)] =< A 1 e - A2 ((,- a)/0 q,~ (t-') n I X  < -- 4) (t)]. 

F o r  any  ce(0 ,  1) there  exists a posi t ive c o n s t a n t  c I such that  

- - ( t / ( t  - -  A)) 1/~ 4)(t)  + (A/ ( t  - A))  1/~ 4) (t) (1 + (t - A ) A / t )  <= - c 1 ( t / ( t  - A))(1 - ~)/~ 4) (t) .  

Thus  there  are  two cons tan t s  B 1 and  B 2 such tha t  

P I X  <= - (t/(t - -  A)) 1/~ 4) (t) + (A/(t - A)) 1/~ 4) (t) (1 + (t - A) A/t)] 

< P [X < - C 1 (t/(t - A))(1 - ~)/, 4) (t)] < B 1 e - "2  ((t- a)m q,~ ~- ' ) .  

The  l e m m a  fol lows if we take  C 3 = 2 m a x ( A  1 , Bt), C 4 = m i n ( A  2 , B2) and  m a k i n g  
use of  the  m o n o t o n i c i t y  o f  4). D 

T h e o r e m  4.1. Let  4) be a non-negative, continuous and monotone non-increasing 
function and {X( t ) :O<_t<l}  the completely asymmetric stable process with 
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1 <c~<2. Then 

P [ {co: there exists some A o (co) > 0 such that 
X (t + A, co)-  X( t ,  co)>__ - A 1/" O(A) 

for all t e ( 0 , 1 - A )  and 0<A<Ao(co )} ]=0  or 1 

according as the integral (1.1) diverges or converges, where ~ is defined by (4.1). 

Proof Again we may restrict ourselves to functions 0 satisfying (3.11). Hence 
it follows by (4.1) 

s( - - i  ( x - - i  

~b (t) ~ {B (e)} ~ (logt -1) ~ for t,L0 

and this implies q~(t)~oo for t~0 .  
Suppose the integral (1.1) converges. For p = l ,  2, ..., k=0 ,  1 ...2 p and l=  

[p/3] . . . . .  p we define the event D~,~ by 

By Lemma 2.2.b) we have 

( l ] 1/~ / l + 2 t 1  P[Df , ]  < k 2 P [ [  l+2]*/~X(l)  < -  0 
' = L \  2 v ] \ ~ 7 1  \ 2 p ].] 

By (2.4) we have uniformly in k and 1 

P[Dg,~] = O ( 1 ) P  [ U > ~ ,  ( / ~ 2  ) ]  for p--+ oo. 
2 v 

Hence, as in Section 3, it follows that 

P [DP,, i. o.] = 0. (4.3) 

For any t and A we define integers p, k and 1 by (3.14) and (3.15). For all co we have 

X ( t + A , c o ) - X ( t ,  co)>=o_<r,s__<2_pinf X ~ + s ,  CO - X  - r ,  co . 

By (4.3) we have for almost all co, sufficiently small A and all t 

_ (  I 1 ~" ( / + 2 t  _A1/~ X ( t + A , c o ) - X ( t ,  co)> \ ~ 7 1  (a \ 2 p ! > O(A) 

by the monotonicity of qS. 
In the divergent case we define E p, t by 
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for p = 1, 2 . . . . .  k = 0, 1 . . . . .  2 p and l =  [p/2] + 1,..., p. We rearrange the events 
E~,, as described in Section 3. It follows that  ~P[E,]  = oo. The remainder  of the 
proof  closely resembles the p roof  of Theorem 3.1. However ,  the necessary esti- 
mat ion  of the liminf occurring in L e m m a  2.4 differs on two points. The  first 
difference is the appearance of a term P [ X <  -q~(A)] in Lemmas  4.1 cf. 4.2. We 
choose ~ - 1 ~- 1 

q~ (t) = (2 log t - '  + 12 log log t -  1) a (2 B (~) )  a (4.4) 

for t in the ne ighbourhood  of zero. By (2.4) we have for small A 

13 

nIX< -q~(A)] <=P[X <= -q~(t')],-~(~/(2~)) ~ t'(log(1/t')) 2 

For  a fixed event E,, = E~;,z, the number  of events E,  with n < n' and PIE, A E,,] 
P[E,].  P[E,,] is less than 3 (p,)3. The number  events E n, for a fixed in tegerp '  is 
less than 2 r  '. Fo r  every fixed integer p' the sum of all terms p[X<_-q~(A)] 
occurring in the estimates of PIE n/x E,,] is O(1)(p')-~ for p'--~ oo. Hence the sum 
of all terms of this kind is finite. 

The other difference arises in connect ion with L e m m a  4.2. We want to use 
this lemma in the case 0 < A/t < c 1 < 1. In that case (A/t) 1/~ (a (A)/~ (t) is not  neces- 
seraly less than 1. However ,  one only has to invoke L e m m a  4.2 in the case that 
p' -51ogp'<p<p' .  Then by the restriction (3.11) and (4.4) we know that  for 
any pair of constants ( q ,  c), with 0 < c l  < c <  1, the restriction A/t<ca implies 
(A/t) 1/~ ~o(A)/(o(t)<c for sufficiently large p' (or p). D 

a - -1  ~ - 1  

nemark. TakingO(A)={2S(a)} ~ (2 (l + 6) log A -1) " w e o b t a i n  

X( t  + A) - -X( t )  a-1 
lim inf ~- 1 = - {2 B (~)} ~ a.s. 
~,LO O<-t<-l-A 

o<a<~ A1/~(2 log A -1 ) " 

5. T h e  C a s e  ~t = 1 

Let {X(t): 0_<t_< 1} be the completely asymmetric  stable process with ~ = 1  
and let ~b and q~ be non-negative,  mono tone  non-increasing functions with ~b < q~. 
Define the function ~p by 

0 ( t - 1 ) = 2 ( n  e) -~ exp(n ~b (t)/4). (5.1) 

In the lemmas, corresponding with the Lemmas  3.1, 3.2 and 3.3, we suppose 
(3.2) and (3.3) and write 

P~=P[X(t)--(2/~)t log t=< -- t ~b(t) 

A X ( t -  A + t ' ) -  X ( t -  A ) -  (2/~) t' log t' =< - t' q~ (t')]. 

The  r.v. X has the same distr ibution as X(1). 

Lemma 5.1. Let ~ (s)~ oo for s-~O. For all ~ > 0 there exist positive constants t o 
and 5 such that for all t<=to, all A satisfying A. t -1.o2(t-1).(~(A)+(2/n)+ 
(2/~) log A-1) < b and all t' satisfying (3.2) and (3.3) 

P~<=P[X<= - ~(A)] +(1 + e )p [x=<  - q~ (t)] P [ X <  - q~(t')]. 
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Proof 

P~=P[X( t ) - (2 / r t ) t  log t <  - t 4)(t) 

A X ( t -  A + t ' ) -  X ( t -  A ) -  (2flt)t' log t ' <  - t' 4 (t') 

/x X ( t ) -  X( t  - A ) -  (2/re) A log A < - A ~ (A)] 

+ P [X ( t ) -  (2/n) t log t < - t 4) (t) 

A X ( t -  A + t ' ) -  X ( t -  A ) -  (2/re)t' log t ' <  - t' 4) (t') 

A X ( t ) - X ( t - A ) - ( 2 / ~ ) A  log A > - A  q~(A)] 

<=P[X<_ - 6 ( A ) ]  +e[x<= - r (t')] 

�9 P [ X ( t - A ) <  - t  4)(t)+A dp(A)+(Z/~)t log t - (2/rr)A log A]. (5.2) 

The last factor is equal to 

P [X <= - ( t / ( t -  A)) 4) (t) + (A/(t + A)) 4, (A) 
(5.3) 

+ (2/=) (t - A)-* (t log t -  A log A - ( t -  A) log ( t -  A))]. 

For  A/t--+O we have 

A (t, A) = (A/(t - A)) ~0 (A) + (2/r 0 (t - A)- 1 { t log t - A log A - (t - A) log (t - A)} 

(A/t) ( ~ (A) + (Z/n) + (2/~) log (t/ A)} . 

F r o m  estimate (2.3) it follows that t o and 6 exist such that  

P [ X ~  - 4 ) ( t ) + A ( t ,  A)-]/P[X<= -4)(t)]  =< 1 + e  

for t < t  o and A . t -1 .  {(o(A)+(2/l t)+(2/rOlogA-1} �9 r  13 

Lemma 5.2. Let 4)(s)--+oo for s--+O. For every constant ce(O, 1), all t and A with 
A ( t - A )  - l { (o(A)-4)( t )+(2/rOlog 2 } < c  and all t' satisfying (3.2) and (3.3) there 
exist two positive constants C 1 and C 2 (independent of t, A and t') such that 

P ~ < P [ X <  - ~ (A)] + Ci e-C2~ - 4) (t')]. 

Proof  By convexity o f x  log x and (2.3), (5.3) is less than 

P [X  < - (t/(t - A)) 4) (t) + (A/(t - A)) ~ (A) + (2 t/r~ (t - A)) log 2] 

< P [X < - 4) (t) + c + (2/r 0 log 2] 

< C1 e -c2~ for all re(O, 1). 13 

Lemma5.3 .  Let 4)(s)--,oo for s~O. Let ce(O, 1) and C>O be two constants. 
Then, for all t and A such that 0 < c < A/t < 1 and 

4) (t) -- (2/~) log (t/(t -- A)) > C (5.4) 

and all t' satisfying (3.2) and (3.3), there exist two constants C a and C,~ (independent 
of t, A and t') such that 

19i < C a e -  c4 ((t- a)/o,I, 2 (t- ,) p I X  < - 4) (t)]. 
12 Z. Wahrscheinlichkeit stheorie verw. Geb., Bd. 27 
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Proof As in (5.2) we have 

e, __< e I X  _<__ - q~ (t) + (2/r~) log (A 03 + P I X  5- - q~ (t')] 

�9 P [ x  __< - ~ ( t ) -  (2/,~) ( a / ( t -  a))  log (a/t)  (5.5) 

+ (2/=) (t - A)- i  (t log t -  A log A - (t - A) log (t - A))]. 

F r o m  (2.3) it follows that there exist two constants A 1 and A 2 such that  

P[ X < - qS(t) + (2/n) log(A/t)] < A 1 e - n2((t- A)/t)q~z(t- ') P IX  <= - q5 (t)] 

for all re(0, 1) and A/te(c, 1). After some algebra one finds that there is a constant  
cl such that 

- ( 2 / z 0  (a/(t - a ) )  log (A/t) + (2/~z) (t  - A ) - 1  (t l o g  t - A l o g  A - (t - A)  l o g  (t  - A))  

< (Z/z) tog( t / ( t -  A)) + c 1 

for all A/te(c, 1). Then  we can bound  the last factor in (5.5) by 

P IX < - ~b (t) + (2/~c) log (t/(t - A)) + c 1 ]. 

Then there exist two constants B, and B2 such that  (5.5) can be est imated by 

B1 e_Bz((t_a)/t)Oa(t- 1) for all te(0,  1). 

The  lemma follows as in the cases 0 < ~ < 1 and 1 < ~ < 2. 

Theorem 5.1. Let dp be a continuous non-negative, monotone non-increasing 
function and {X(t): 0 <  t <  1} the completely asymmetric stable process with ~= 1. 
Then 

P]-{co: there exists some A o (co)> 0 such that 

X ( t + A ,  co) -X( t ,  co)-(2/rc) A log A > - A  ~b(A) 

for all te(O, 1 - A )  and 0 < A < A o ( c o ) } ] = 0  or 1 

according as the integral (1.1) diverges or converges, where ~ is defined by (5.1). 

Proof Again we restrict ourselves to functions tfi satisfying (3.11). Hence  

qb(t),-~(2/rt) log log t -a for t ~ c ~  

and this implies ~b(t)~oo for t~0. 

Assume (1.1) is convergent.  Fo r  p = 1, 2 . . . .  , k = 0, 1, . . . ,  2 p and l =  [p/3] . . . . .  p 
we define the event D~.~ by 

inf { X ( ( k + l ) 2 - v + s ) - X ( k 2 - p - r ) - ( 2 / ~ ) ( 1 2 - p + r + s ) l ~  } 
o-<,,,_-<2-p 12-~ + r + s 

The  restriction (3.11) implies that  the condit ions in L e m m a  2.3 are fulfilled uni- 
formly in I. Thus  

[ (1+2]]. 
P[D~,I] ____k~ P i X ( l )  < - \~7-/j L 
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By (2.3) we have uniformly in k and 1 

P[DP, I-I=O(1) P [ U>__~p ( ~--~-2 ) ] for p ~ o o .  

Convergence of  (1.1) gives P[D~,z i .o . ]=0 .  For  arbi t rary t, t + A ~ [ 0 , 1 ]  we 
define p, k and 1 by (3.14) and (3.15). For  almost all co, we have for sufficiently 
large p 

X (t + A)- X (t) - (2/=)A log A 

A 

~ - - O < r , s < 2 - P  > inf { .X((k+l)2-p+s)-X(ke-p-r)-(2/rc)(le-p+r+s)l~ } 
12-V+r+s 

[1+2] 
> - ~  2~ I>-q~(A). 

In the divergent case we define E~,~ by 

X ((k + l) 2 - ' )  - X (k 2 -  P) - (2/r 0 (l 2 - v) log (l 2 - ' )  < - 12- p ~b (l 2 -  v) 

for p = 1, 2 . . . .  k = 0, 1, . . . ,  2 p and l = [p/2] + 1, . . . ,  p and the function q~(s) by 

2 (re e) -  ~ exp (~z 4; (s)/4) = (2 log (s-  1) + 12 log log (s-  ~))~. 

There  is no difference with the p roo f  of the divergent part  of Theorem 4.1. 

Remark. Taking 

q5 (t) = (2/n) log (re e/2) + (2/7c) log log ( t -  1) + (2/~) log 2 

the integral (1.1) converges if 2 > 1 and diverges if 2 < 1. Then  

lim~o o_<t <t+A =~ l i n f  { X(t+A)-X(t)-(Z/rOAI~ ~- (2/re) l~ l~ A - ~ } 

0 < A < e  

= (2/re) log(u e/2) a.s. 
and 

{ X(t+A)-X(t)-(2/~)AlogA } 
lim inf - = - 1 a.s.  eJ~O O<t<t+d~=l (2/7r) A log log(A -1) 

O < d < e  
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