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A Functional Central Limit Theorem Connected 
with Extended Renewal Theory 

Allan Gut 

1. Introduction and Statement of Result 

Let (~2, d ,  P) be a probability space, let ~-1, ~ 2 '  " ' '  be a sequence ofi. i. d. random 

variables with expectation 0 > 0  and variance cr2<oe. Set So=0  and S ,=  ~ ~,, 
n = l ,  2 , . . . .  ~=1 

[n t] 

Let X, (t, co) = (St, tl (co)- In t] 0) = �9 0/, and,et  

denote the Wiener measure on (C, cg), (cp. [2], Section 9). 
By Donsker's theorem, (see [2], 137), X, ~ W, as n - + ~ .  
Let N ( c ) = m i n { k ;  S k > c .  kV}, c>O,  0__<p< 1 and define 

N (n t, co) - 2 (n t) 
Z,(t, co)= o . 0 - 1 . ( 1 - p ) - ~ -  2 ~  ' 0< t_< l ,  0=<p<l ,  

where 2 (x) = (x/O) l/q, x > O, q = 1 - p. 

Theorem. Z ,  ~ ~ W' ,  as n ~ o% where  W ' ( t ) =  W(?/q), 0<_ t <  1. 

If p = 0 and if ~l, ~2 . . . .  , are assumed to be positive random variables, the 
theorem is contained in Billingsley [2], Theorem 17.3:, p. 148. 

If p = 0, the theorem has been proved by Basu [1] and Vervaat [11]. 
As is pointed out in [2], n may tend to infinity in a continuous manner. 
Since the projections from C to R k are continuous mappings, (see [2], 20), it 

follows that the finite-dimensional distributions converge to multidimensional 
normal distributions (cp. [2], 30). In particular, the following corollary holds. 

Corollary. Z , ( 1 ) -  N ( n ) - 2 ( n )  ~ , N(O, 1), as n - ~  o% O < p <  1. 
o" 0-1(1--p)-1 V~ ~ 

This result has already been proved by Siegmund [10] and later, differently, 
in [5], Theorem 3.5. If p = 0  the corollary reduces to Heyde [7], Theorem 4. 

The method in [11] is first to prove that the maximum cumulative process 
converges weakly to the Wiener measure and then that its inverse, which is Z, ,  
converges. The present proof follows the lines of [2], (see also [1]), and is presented 
in Section 2. Finally, in Section 3 we show that, if p = 0, it is possible to derive the 
above theorem by an application of [2], Theorem 17.3 and its proof. 
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. 

Assume in the proof  that  0 > 1. This is no restriction. 

I. Define the random change of time 

t N((nt)  q,co) if N(n q ,cO)<l  
~,  (t, cO) = n n ----- 

t/O 1/q otherwise. 

The first step is to prove that  q5 converges in probability in the sense of the 
Skorohod topology, (see [2], 111 ff.), to ~p, where ~o(t)= t/O 1/~, O< t<  1. 

Since 
sup Iq~,(t, co)- q~ (t)[ < sup ]T,~P)(t, co)l, 

O__<t=<l O_<t_<l 
where 

T (p) (t, (D) -~- N ((n t) q, co)/n - t/O l/q, 

this follows from the first of the following lemmata. 

Lemma 1. sup IT, ~v)(t)[ as ) 0, as n--~ ~ .  
o___t___ 1 

Lemma 2. Suppose that f,(t), n = 1, 2, . . . ,  is a sequence of  real valued functions, 
such that f ,  (t) is a non-decreasing function of  t, 0 < t < 1, n = 1, 2 . . . .  , and suppose that 
f ,  (t) ~ t ~, as n --+ ~ ,  ~ > O, for any f ixed  t ~ Q, where Q is the set of  rationals in [0, 1]. 
Then, the convergence is uniform, i.e. 

sup If , ( t )- t ' l - --~0,  as n ~ .  
O_<t_l  

The proof of Lemma 2 is omitted. 

Proof  of  Lemma 1. By Siegmund [9], Lemma 4, ( 0 < p <  1), and Heyde [-6], 
Theorem 7, (p = 0), 

N(c) 
. . . .  , 1 ,  a s  c - +  ~ .  (1)  

Therefore, T~ (p) (t) as ~ O, as n -~ 0% for any fixed t, 0 < t = 1. Since this is trivially 
true when t=O, it follows that  T~(P)(t)~O, as n-+ ~ ,  O_<t=< 1, or, equivalently, 

N ((n t)q) t 
a s  > _ _  as n - * o e ,  O_<t< l .  (2) 

n 0 l/q ' 

Let A t = {co; T, ~p) (t, co) v~ O, as n --~ m } and set A = U At. Then P (A) = 0. Further- 
tsQ 

more, N ((n 0% co) is non-decreasing and piecewise constant  as a function of t. It 
follows that  

T.CP)(t, co)--~O, as n ~ m ,  t e Q ,  co(~A, (3) 

and hence, by Lemma 2, that  

sup [T,(P)(t, co)]---~0, 
o_<_t~l 

i.e. Lemma 1 is proved. 

as n --~ oo, for any co ~ A, 
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Similarly, 

and 

are obtained.  

sup ,s , 0, as n --* oe (4) 
O _ t < l  n 1/q 

sup N(~-nl"t) ( O f / q  _ .s  ) 0 ,  a s  n - - - , o e ,  
O_<t_<l 

_ _ n 2 q  

II. X,  o 4~, ~ Wo cp, as n --* 0% where (x o q~)(t)=x(cp(t)). (Cp. [2], 144.) 
1 N((nt)q,~) 

III .  Define Y, (t, ~o) = - -  . ~ (~ , -O) ,O_<t_<l .  
G ] / / ~  v = l  

I1, ~ , Wocp, as n ~ o o .  

IV. Define Z*  (t, co)= (n t) q. NP((n t) q, co)-  O. N((n t) q, co), O< t <  1. 

Z*  ~ , Wo~o, as n - ~ o e .  

(5) 

V .  i 
- - 0 2 q ' z * n  ~ , W, as n - + o o .  

Steps II, I II ,  IV and V follow as in [2], (and [1]). In part icular ,  if p = 0, then 

1 

- 0 2 q .  Z*(t ,o))=Z,( t ,o~),  0 < t _ < l ,  

and the theorem is proved.  

VI. Assume dur ing the rest of  the p roo f  that  0 < p < 1 and define 

1 O .N(n t ,  co )_n t .  NP(nt, co) N(n t ,  co)_2q(nt) .NP(nt,  co) 
Z *  n * ( t ,  r = 0 - ~  " 1 - -  ' 

o.  n 2~ a . 0 -~ . l / ~  

0 < t _ < l .  

(6) 

F r o m  V it follows that  

Z** ~ , W ' ,  as n ~ o o ,  where 

VII.  The  final step is to prove  tha t  

W'(t) = W(tl/q), 0 < t < 1. (7) 

sup [Z**( t ) -Z , ( t ) [  p , 0 ,  a s  n - + o o .  
0 < t < l  

The theorem then follows f rom (7), (8) and [2], Theo rem 4.1. However ,  

(8) 

sup [Z**( t ) -Z . ( t ) [<  = sup [Z*n*(t)-Z.(t)] 
o<t<=l o<-_t<=Ug~ 

+ sup [Z**( t ) -Z . ( t ) [<  sup ]Z**(t)[+ sup IZ.(t)[ 
1/Vn<-t<_ l 0 <_t<1/,r O<_t<__l/]/~ 

+ sup IZ~'*(t)--Z~(t)[. 
1/k/nSt<_l 
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Therefore, it suffices to show that  

sup [Z**(t)[ e ,0 ,  as n - . o o ,  (9) 
o _ < t < l / ~  

sup [Z,(t)[ P ,0 ,  as n ~ o o ,  and (10) 
o <=t<= l/V~ 

sup IZ**(t)-Z~(t)[ P~O, as n -~oo .  (11) 
1/v~<_t<=l 

(9) follows from (7) and Corol lary 1 to Theorem 5.1 of [2] (cp. also [2], 70). 

[N(n t ) -2(n  t) ] 
sup I Z . ( t ) l = O ' ( 1 - p ) ' a  -~ .  sup - [ 

0 1 + ~  sup 
o_-<t v~-<- 1 n 2 ~  L I 

= 0 l+~q �9 ( l - p ) .  cr - t -  sup [ N(l /n.s) l  _ (~_)l/q - e ~ 0 ,  as n - . o %  
0 - < s < l  y/2~ 

by (5). Thus (10) holds. 
Now,  suppose that  c > 0. Taylor  expansion gives (cp. [5]) 

N(c, ~ ) -  2q(c) �9 NP(c, ~) 

= N(c, co)- 2 t-  p (c). {2 p (c) + p .  (2 (c) + p. (N(c, e)) - 2 (c))) p-t .  (N(c, e))-  2(c))} 

= (N(c, co)-2(c)) .  (1 - p + p { 1  - ( 1  + p .  (2- l(e)  �9 N(c, o~)- 1))P- ~}), 

where 0 =< p = p (c, o )  =< 1. 
Therefore, if t > 0, 

N(n t, co) - ) .  (n t) . (1 - p + p.  n n (t, co)) = Z ,  (t, o ) .  (1 + p/q. R n (t, o~)), 
Z**(t, co)- .0_1 

where R,  (t, co) = 1 - (1 + p .  (2- l(n t). N(n t, e)) - 1)) p- 1. 
p. R,(t, co) 

Hence, Z** (t, co) - Z ,  (t, e)) = Z* * (t, co). , and q + p . R,(t, co) 

sup [Z**(t)-Z,(t)l  < sup LZ**(t)l" sup I P'R~(t) I (12) 
1/g,<_t<=~ o<=t<=l ~/V~<=t<=l q+p" Rn(t) " 

By (7) and Corol lary 1 to Theorem 5.1 of [2] (cp. also [2], p. 70), 

sup IZ**(t)[ ~ ,  sup IW'(t)l = sup IW(t)l, as n---~oo. (13) 
0_<t<l  o<t<_l  o<t_<l  

Furthermore,  

sup [~.-l(nt).N(nt, co)-l[ 
1/g~=<,_< a 

= sup [,~-l(nt).N(nt, e ) ) - l ]< sup [~.-l(c).N(c, oo)-l]---~O, 
]/~<nt<_n c> V ~ 

a s  n ---> oo ~ 
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for almost all o,  because of(l). Since 0__<p<~ 1, it follows that sup [Rn(t) [ as, 0, 
as n ~  o% which together with (12) and (13) implies (11). 1/v~__<t__<~ 

The proof is complete. 

Remark. The theorem remains valid if 41,42 . . . . .  are independent random 
variables with common expectation 0 > 0  and variance 0-2< 0% provided they 
satisfy Lindeberg's condition (see also [1]). 

~ 

In classical renewal theory one studies sums of positive random variables and 
functions thereof, whereas in extended renewal theory one allows the summands to 
assume negative values. In this section we show that by applying [2], Theorem 17.3, 
and the steps of the proof which led to it, to specifically chosen sequences of positive 
i. i.d. random variables and a specific first passage time, the general result follows. 
Only the case p - -0  is considered. 

Let everything be given as before and suppose that p = 0. An investigation of 
the proof of [2], Theorem 17.3 (cp. also [1]), shows that only the first step, i.e. 
the proof of 

N(n t) t 
sup e * O, as n--~ oo, (14) 

0 - < t ~ l  H 0 

depends on the fact that the summands are positive random variables. To prove 
the theorem it thus suffices to show that (14) also holds in the general case. 

The idea of the following argument is the use of ladder variables. This method 
was introduced in Blackwell [-3] to prove an extension of a renewal theorem. 

Let N 1, N~ + N 2 , N I + N 2 + N3, ... be the strong ascending ladder indices, i.e. 
N~ =rain  {k; Sk>0 }, N~ + N  2 =min{k>N1;  Sk>SN1}, ... and let ~h =SN1, ~/1 -~-/~2 ~ 
SN~+s 2 . . . .  be the corresponding ladder heights. Then Nz,N 2, ... and ~h,~/2, ... 
are two sequences of i.i.d, positive random variables. (See [3].) 

Define the first passage time 

t m } M(c)=min  m; ~ t / v > c  , c > 0 .  
/ .  v = l  

By e.g. [5], Theorem 2.1, the variances of N1, ~/1, N and M are finite. 

Furthermore, p = E ~h = 0. ENI _-> 0 > 1, by Wald's lemma and the assumptions. 

Since a first passage must occur at a ladder point, it follows that 

N(n t )= N 1 +...+NM(.t ). (15) 
Thus 

N(n t) 
n 

t .M(nO t 

o : 

<= ~nl . ~ M(n t).n EN1 + M(n t).n EN1 ot 

~ M(.t) [ M(n t) t 
= "v ~T1 (N~- ENd) + - �9 ENI, n O. EN 1 
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and so 

sup < sup - - .  Z (N~-ENO +ENI" sup (16) 
O=<t~l /7, 0 - - O = t = l  /'/ v = l  O__<t=<l /q, ]A 

Set z z =Va t  N 1 and define 

1 [nt] 
X'.(t, co) --= .c ]//~ ~=I(N~ - EN,), O< t<_ 1. 

[ M(n__t, @ if M(n' c~ < 1 
qb;(t, co) = ~ n n = 

/ 

( t/# otherwise 
1 M(nt,  co) 

Y , ' ( t , ~ o ) = - -  Z (N~-EN~), O-<t_<l. 
"C ] / /~  v = l  

Since rh,/~2, " ' "  are positive random variables with positive, finite expectation/~, 
and finite variance, Theorem 17.3 of [2] yields 

where 
V ~ , W, as n-*  ~ ,  (17) 

v. (t, o~) = 
M(n t, ~o)-n t/# 

(Var th)~. # -~ .  l fn  ' 
0 _ t _ l .  

Hence, 

sup M (n t) t I P ,0,  as n--.oo. 
I 

0_<t__<l /'/ I 

(Cp. [2], formula (17.22), 149.) 

Since N 1, N2 . . . .  are positive i.i.d, random variables, 
applies, i.e. 

X" ~ , W ,  as n ~ .  

As in [2] it follows that 

(18) 

Donsker's theorem 

(19) 

and 

X~o~' ~ ,  Wotp', as n ~ ,  where q~'(t)=t/#, O__<t<l, (20) 

Y,' e ~ Woqr as n--,oo, (21) 

VP" Y,'- ~ '  W, as n--~ ~ ,  (22) 

1 M(.,)=~ -ENd) sup ~ (N~ ~ 0, as n ~ ~ (23) 
0 < t < l  n - ' v  

Now (16), (18) and (23) yield (14), which thus holds in the general case. 

In Section 2 of this paper Lemma i is used instead of (14). The lemma is a 
consequence of (1) and Lemma 2. In the case of positive summands, (again p = 0), 
(1) was proved in Doob [4], Theorem 1. However, with the above method it is 
possible to deduce the general result from Doob's result as follows. 
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According to the strong law of large numbers, 

1 .  i N ~ - ~ E N ,  
H v = l  

From Richter [-8], Theorem 1, it follows that 

1 M(c) 
M(c) " ~ N~ as, EN,, 

V = I  

and thus, by (15), 
N(c) 

as , EN1 ' 
M(c) 

as n-~ oe. 

a s  c - - ~  o e .  

as C--~ O0. 

Finally, by Doob's  theorem and Wald's lemma, 

N(c) _ N(c) M(c) ~ , E N ~ . I = E N ~  1 1 
c M(c) c # O. EN 1 0 ' 

a s  c - - ,  o e .  
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