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Variations of Processes with Stationary, 
Independent Increments 

Priscilla Greenwood and Bert Fristedt* 

1. Introduction 

Let X(t), t>O be a stochastic process in R N with stationary independent 
increments. We wish to consider limiting behavior of sequences of variational 
sums: 

f (X( t , , k ) -  X(t,,k_ i)), (1.1) 
k 

where f :  RN----~ R is a certain function and {P,} is a sequence of partitions, as the 
mesh of P, = {t,,k} tends to zero. 

Theorem 3.3 gives sufficient conditions that (1.1) converge in probability 
and identifies the limit. Theorem 4.3, almost a converse of Theorem 3.3, gives 
conditions under which truncated expectations of (1.1) diverge. Then (1.1) diverges 
at the same rate. Theorems 3.1 and 3.2 give sufficient conditions that (1.1), ap- 
propriately centered, converges in probability or, in one case, in distribution. 
Theorems 4.1 and 4.2, on the other hand, give sufficient conditions that truncated 
variances of (1.1) diverge. The distribution of (1.1) appropriately centered and 
normalized then converges to a normal law. In Section 2 we introduce notation 
and state some well-known facts. In Section 5 we present the results of calculations 
for special cases. 

In [9] Lo~ve considered a triangular array {X,,k: k= 1 . . . . .  kn; n= 1 . . . .  } of 
random variables which are independent for each fixed n. Assuming ~ Xn, k to 

k 
converge in law, he asked about the limiting behavior of ~ f(X~,k), appropriately 

k 
centered, and obtained convergence in law for most f such that if(0) exists. With 
X,,~=X(t,,k)--X(t,,k_l), (1.1) takes the form ~f(X~,k). Remarks3.11 and 4.2 

k 
show that our results about convergence in law cannot always be proved for 
triangular arrays; however we have so stated and proved Theorems 4.1 and 4.3. 

In order to facilitate the statement of our results we have divided the processes 
with stationary, independent increments into four types which are defined in 
Section 2. Most previous studies have treated processes of what we call type A 
or type C. Conditions for the convergence of(1.1) for type A processes are discussed 
by Fristedt in [4]. In case f(x)=lxl', O<p<2, Millar in Theorem4.1 of [12] 
gives necessary and sufficient conditions that the variational sums (1.1) converge 
in probability if X(t) is of type A or type C. Sharpe, [13] and [14], places a con- 
dition on the L6vy measure v sufficient to prove theorems similar to our Theo- 
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reins 3.1 and 3.3. For Gaussian processes the limiting behavior of (1.1) has been 
studied extensively, beginning with L6vy [8]. Theorem 4.3 is an extension of 
Theorem4 of [7]. There, Greenwood considers f (x)=lx]  ' for a stable process 
of index ]?. 

Millar, [11], gave an almost sure convergence theorem for variational sums 
of certain symmetric processes where the sequence of partitions is nested. Cogburn 
and Tucker, [3], obtained almost sure convergence in the non-symmetric case 
under rather restrictive conditions on f. We know of no theorem similar to our 
Theorem 3.3 for non-symmetric type C processes and giving almost sure conver- 
gence. Several additional problems exist connected with the suprema of families 
of variational sums, as opposed to the limits of sequences considered here. Some 
results in this direction appear in [1, 2, 5, 7, 11]. 

2. Preliminaries 

The general process X in R N with stationary, independent increments has 
the following well-known characterization [6, p. 273]: 

log Eei<"'x(')>=t[i(u,7)-u'Su/2 +~[ei(U'X)- l - i ( u , z ( x ) ) ]  v(dx)], (2.1) 

where ( , )  denotes the inner product, 3~ denotes integration over the domain 
R N -  {0}, 

i 1 if x i< - 1 
[)~(x)]i= i if Ixil<l 

if xi>= 1, 

x~ is the i-th coordinate of x, 7 is a real vector, S is a non-negative definite, symmetric 
matrix, and v, called the L6vy measure, is a Borel measure on R ~ -  {0} such that 

:} Iz(x)l  2 v(dx) < oo. 

Given such a 7, S, and v, there exists a corresponding process with stationary, 
independent increments. Here it is understood that X: [0, oo)x t 2 ~ R  N where 
(f/, ~,  P) is a complete probability space. We usually write X(t) for X(t, co). We 

define v (0)= 0 for notational convenience. 
We have X(0, co)= 0. It is well-known that we may assume X to be a strong 

Markov process and X(. ,  co) to be right continuous and to have left limits every- 
where. 

In consequence of(2.1), if S Ixl v(dx)<oo, then 
Ixl>l 

EX (t) = t [7 + ~ ( x -  X(x)) v(dx)]. (2.2) 

Also, if ~ IxI 2 v(dx)< oo, then 

E IX(t) -  EX(t)I z = t [trace (S) + ~ [x12 v(dx)]. (2.3) 

Let J(t, co)= X(t, co)- X ( t - ,  co). Ito's representation [6, p. 271] states that 

x(t ,  co)=Tt§ co)§ co):]J(s, co) l>e,s<t}- t  ~ Z(x)v(dx)] (2.4) 
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where W is a Gaussian process with stationary, independent increments (i.e. 
Brownian motion possibly flattened in some directions and stretched in others) 
such that W and X - W are independent. 

In case S = 0  and ~[Z(x)[ v(dx)<o% we say that X is of type A or type B, 
type A if ct = 0 and type B if ct ~ 0, where 

= ~ - ~ z (x) v (dx) .  (2.5) 

We say that X is a type C process if S = 0 and it is not a type A or type B process. 
If S q= 0, we say X is of type D. In case X is of type A or B, (2.5) simplifies: 

X(t, co) = ~ t + 3~ {J(s, co): s =< t} (2.6) 

where the sum converges absolutely. If, in addition, ~ [xl v(dx)< 09, (2.2) becomes 

E X  (t) = t [~ + ~ x v(dx)]. (2.7) 

Let f :  R N -+ R be measurable with f (0 )=  0. Suppose that ~]Z (f(x))l v (dx)< oe. 
()~ is one-dimensional here.) Then we let X(f ,  t, co)=X(f,  t ) = X ( f )  be the type A 
process with L6vy measure vy defined by 

vy (C) = v ( f  -1 (C)) (2.8) 

for Borel subsets C of R. We can use (2.4) to define X ( f )  on the same probability 
space (~2, ~, P) on which X was defined; specifically 

X(f ,  t, co)=• {f(J(s, co)): s=< t}. (2.9) 

Formulas (2.7) and (2.3) become: 

EX( f ,  t)= t 5 f(x)  v(dx), (2.10) 

Var X(f ,  t )= t~  I/(x)l 2 v(dx), (2.11) 

in case 5 If(x)l v(dx)< o0 or ~ If(x)[ 2 v(dx)< o% respectively. 

Let f be as above but assume only that 5 I (f(x))l 2 v(dx)< oo. Define vy by 
(2.8) and let Y(f ,  t, co)= Y(f ,  t)= Y( f )  be the process characterized by the basic 
formula (2.1) with X, y, S, and v replaced, respectively, by Y(f),  O, O, and v s. We 
can use (2.4) to define g( f )  on (f2, ~ P): 

Y(f,  t, co)=lim [ ~  {f(J(s, co)): tJ(s, co)[>e, s<_t}- t  ~ "z(f(x))v(dx)]. (2.12) 
~ o  Ixl>~ 

Formulas (2.2) and (2.3) become: 

E Y ( f  t) = t ~ I f ( x ) -  Z (f(x))] v (dx), (2.13) 

Var Y(f, t) = t ~ f(x) 2 v(dx), (2.14) 

in case ~ If(x)l v(dx)< oe or ~ f (x)  a v(dx)< o% respectively. 
Fxl>l 

Let f :  R N --, R and h: [0, tl --* R u. Let 

V ( f  , h, t, P,)= ~ f (h( t , ,k) -  h(t,,k_ l) ) 
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where Pn={t,,k: k = 0  . . . .  , kn} is an ordered partition of [0, t]. We are interested 
in the limiting behavior of the sequence V(f, X(. ,  r t, In). Throughout, {Pn} is 
some fixed sequence of partitions of [0, t] with mesh(Pn)--~0 as n - , o o .  When 
no confusion results we write Vn(f) for V(f, X, t, P,). 

If f :  RN--~ R M, X(f) ,  Y(f), and V~(f) are defined as above and Theorems 3.1 
and 3.3 can be proved by considering the components of f one at a time. With a 
slight modification (see Remark 3.4) Theorem 3.2 remains true. 

We shall need some further notation. Let F,, k be the distribution measure of 
X(tn,k)--X(tn,k_l)=Xn,k. For OeR N, [01-~ 1, and we[0, oe) define 

f,(O, w)=f(O w). (2.15) 

The symbol S denotes an integral whose domain is a bounded neighborhood of 
o 

0 in R s. Ira, beR, a v b and a A b will denote max {a, b} and min {a, b}, respectively. 
The Central Convergence Criterion ([-16, p. 184 for N = 1] for example) will 

be useful. Note that an infinitely divisible random variable Y in R N has a canonical 
characterization similar to (2.1): 

log Eei~u'r>=i(u, ? ) - u ' S u / 2 + ~  [e i<"'x>- 1 - i ( u ,  X(x))] v(dx). (2.16) 

Central Convergence Criterion: Let {Y,,,k: k - - i , . . . , k  n, n = l ,  2 . . . .  } be an 
infinitesimal triangular array of random vectors in R N, independent for fixed n, 
with distribution measures Fn,k. Let {fin} be a sequence in R N. In order that 

Y,,k--fln converge in distribution to a random variable Y having characteristic 

exponent (2.16) it is necessary and sufficient that: 

~Fn, k(U)--*v(U), for all Borel sets U with v(SU)=0, 0r (2.17) 
k 

l i m l i m 2 (  j" xx ' f , ,~(dx) -[  ~ xFn, k(dx)][ [, x'F~,k(dx)])=S, (2.18) 
~ o  n~oo k Ixl<~ Ixl<~ Ixl<~ 

2 ~ Z(x) Fn, k(dX)-ft,--* 7. (2.19) 
k 

Throughout, in place of Z one could write any bounded, continuous function 
whose difference from x is O(]x[ 2) as x - . 0 .  There would be a compensatory 
change in the vector 7. 

3. Convergence of  Variational Sums  

We first state as a lemma an elementary fact which will be used often in the 
sequel. 

L e m m a  3.1. Let f: RN--~ R be a continuous, bounded function. Let U be a 
Borel subset of R N such that v(SU)=0 and O(~U. Then 

~ f ( x ) F n ,  k(dX)--~tSf(x)v(dx ) as n - - ~ .  
k U  U 

Proof. Clearly ~, Xn, k ~ X(t) in distribution. In fact, equality holds. Condi- 
tion (2.17) of the Central Convergence Criterion together with the Helly-Bray 
Theorem [10, p. 182] implies the lemma. 
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In Lemmas 3.2 and 3.3 the condition 0~U is removed, under additional 
hypotheses. 

If X is of type A and f ( x ) =  g(Ixl) where g is concave, it is possible to obtain a 
necessary and sufficient condition, namely condition (3.1) below, for {V,(f)} to 
converge almost surely. We state the next lemma in order to record the resulting 
convergence of expected values, used later in obtaining convergence of {Vn(f) } 
in probability for more general f. 

Lemma 3.2. Let  g: [0, oo)-~ [0, oo). Suppose that g (0)= O, and that g is concave 
in a neighborhood of O, continuous, and bounded. Suppose that X is a process of 
type A and that 

g(Ix]) v(dx)<oo. (3.1) 
Then 

2 ~ g(lxl) F~,k(dX)-4 t ~ g(]xl) v(dx) (3.2) 
u u 

as n -4 0% for any BoreI set U c R  N such that v(0U)=0. 

Proof Suppose we prove the lemma for U = R  N and g concave everywhere. 
Then from Lemma 3.1, the result follows first for U with 0r U, then for comple- 
ments of such sets, and finally, by a limiting argument, for U with 0e0U. 

Let f (x )  = g ([xl). Then, 

g , ( f )=  2 g(IX,,kl)< 2 (2  {g(IJ(s)]): tn,k-a <s<=tn,k})= X( f '  t). 
k k 

On the other hand, 

lim inf Vn (f)  > 2 {g (fJ(s)]): s =< t} -- X(f, t). 

The dominated convergence theorem implies that EV, ( f ) - - .EX( f ,  t), which, by 
(2.10), is statement (3.2). 

Next we prove a lemma which is related to type C processes as Lemma 3.2 
is to type A processes. The hypothesis that g is concave makes Lemma 3.2 almost 
trivial. If X is of type C a concave g will not satisfy (3.1). However, the analogous 
hypothesis that g (IF) is concave leads eventually to the same conclusion. 

Lemma3.3. Let g: [0, oo)-4[0, oo). Suppose that g(0)=g'(0)=0, that g is 
continuous and bounded, and that in a neighborhood of O, g is convex and x -4 g(x ~) 
is concave. Suppose that X is not of type D and that 

g(lxl) v(dx)< oo. (3.3) 
Then, 

2 ~ g([xJ) Fn,k(dx ) ~ t ~ g([x]) v(dx) (3.4) 
u u 

as n -4 oo, for any Borel set U c R n such that v (0 U) = O. 

Proof With no loss of generality we may assume that v(x: Ixl>a)--0;  a 
limiting argument [11] for a--~oo completes the proof. For each Wo>0 write 
g = gl + g2 w h e r e  

w<=wo 
gt(w) [g(wo)+(W-Wo)g'(Wo) ' w>w o. 
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Since v(x: [xl > a)=0 we may apply Lemma 3.1 to x ~ g2(lx[) even though g2 
grows linearly at Go. Hence (3.4) is true with g2 in place of g. With g replaced by 
gl and U by R N the left side of (3.4) is, by Theorem 4.1 of [11], bounded by the 
right side of (3.4). But by the monotone convergence theorem ~ gl(Ix])v(dx) 

R N 

can be made as small as desired by a choice of w o > 0 sufficiently small. 

Theorem 3.1. Let f:  RN--~ R be continuous and suppose that there exists a 
continuous function g: [0, ~ )  ~ [0, ~ )  such that f(x) 2 <g(lxl) for x in a neighbor- 
hood of O, g(0)=0, 

j" g(lxl) v(dx)< ~ ,  
0 

and: if X is of type A, g is concave; 

if X is of typeB, g is concave and ] f (x+y)2- f (y)2l<g(lx])  for all x ,y  in 
some neighborhood of O; 

if X is of type C, g'(O)=O, g is convex and x -+ g(x ~) is concave; 
if X is of type D, g'(O) = g"(O) = O. 

Then, 
V , ( f ) -  EV,(zof  )--+ Y ( f  t) 

in probability as n-~ ~ .  I f  in addition, f is bounded, then this convergence also takes 
place in L 2. 

Proof Write f i , ( f )=EV,(zof ) .  Since we may write f as the difference of two 
non-negative functions and treat these two functions separately, we assume that 
f itself is non-negative. Let 6 be a small positive number such that v {x: Ixl =6} = 
v {x: Ix] = 1/6} = O. Write f = f l  +f2 q 'L,  where fl(x) = 0 if Ix[ > 6, f2 (x) = 0 if Ixl < 6 
or Ixl> 1/6, and f3(x)=O if Ix[=< 1/6. Let e>O. We shall complete the proof by 
showing, for sufficiently small 6 and sufficiently large n depending on 6, that: 

E r ( f l )  2 < ~; (3.5) 

E [ V. (fj) -/~ (fl)]2 < e; (3.6) 

E [ V. (fz) - /? .  ( f2) -  Y(f2)] 2 < e; (3.7) 

P {Ir(f3)l >e} <e; (3.8) 

P {I V. (f3)l > e} < e. (3.9) 

These inequalities constitute a proof since /~,(f3)=0, and if f is bounded then 
f3 = 0 for sufficiently small 6. 

Proof of (3.5), For 6 sufficiently small EY(fl)=O. By (2.14), EY(fl)2= 
t ~ f~ (x) 2 v(dx)< e for sufficiently small 8. 

Proof of (3.6). For sufficiently small 6, f l , ( f0=EV,(f0.  Since the variance of 
a sum of independent random variables is the sum of the variances we may 
rewrite the left side of (3.6) as 

~{~fx(x)2Fn, k(dx)--(Sf~(x)F.,k(dx))2}<=~ ~ g([x])F~,k(dx ). (3.10) 
Ixl<6 
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In case X is of type A or type C, use Lemma 3.2 or Lemma 3.3 to deduce that the 
right side of (3.10) approaches 

t S g(]x])v(dx) 
IxJ<a 

which is less than e for sufficiently small b. 

If X is of type D we obtain the result by combining the result for type C 
processes with what is known about Brownian motion. The hypotheses on f are 
designed so that the linear deterministic part of a type B process has no effect. 

Proof  of  (3.7). We use Sharpe's argument [14, p. 1434]. We have 

ft. (f2) = E V. (f2) - ~, ~ [ f2 (x) - Z (f2 (x))] F~, k (dx). 

By Lemma 3.1 and (2.13) 

~ If2 (x) -  Z (f2 (x))] F,, k (dx) --+ t ~ [f2 (x) -  Z (f2 (x))J v (dx) = E Y(f2). 

If suffices, therefore, to prove 

E [(V, (f2) - EV,(f2)) - ( Y (  f 2 ) -  E Y(f2))] 2 --+ 0 (3.11) 

as n-+ ~ .  The left side of (3.17) equals, by (2.14), 

E [ V, (f2) - E V, (f2)] 2 + t ~ f2 (y)2 v (dy) 
(3.12) 

- 2 E [(V, (fz) - E 17, (fz))(Y(f2) - E Y(fz))J. 

The first term of (3.12) is the variance of the sum of the independent random 
variables fz(X,,k). It equals 

2{~f2(x )2F. , k (dx) - (~ f2 (x )F . , k (dx) )Z} -+t~ f2(x )2v(dx)  (3.13) 

by Lemma 3.1. 

From (2.9) and (2.12) we see that 

Y(f2, t) + t ~ Z (f2 (x)) v (dx) = X( f2 ,  t), (3.14) 

an increasing type A process. The negative of the third term in (3.12) equals 

2E[(V.(f2)-EV,(f2)) X(f2) ] . (3.15) 

It is clear that lira infV,(f2)>__X(f2). Apply Fatou's Lemma and Lemma 3.1 to 
the first and second terms of (3.15) respectively: 

lim inf 2 E [(17, (f2) - E V, (f2)) X(f2)]  ----> 2 E [(X(f2) - t ~ f2 (Y) v (dy)) X(f2) ] 

= 2E [(Y(J2) - EY(f2)) X(f2)] (by (2.13) and (3.14)) 

= 2 E [ Y(f2) - E Y(f2)] 2 = 2 t ~ f2 (x) 2 v (dx). 

From (3.12), (3.13) and the last calculation, (3.11) follows. 

Proof of  (3.8). The process Y(f3) is of type A with finite L6vy measure. By 
choosing 5 sufficiently small, we can make the probability that Y(f3,  s)=-0 for 
0_< s_< t larger than 1 - e. 
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Proof of (3.9). For 6 sufficiently small 

P {2 sup [[X(s)l : 0 <__ s_< t] > t/6} < e. (3.16) 

Now V,(f3)=0 unless the event on  the left side of (3.16) occurs. The proof of the 
theorem is complete.. 

Remark 3.1. Certainly the L 2 convergence mentioned in Theorem 3.1 is often 
obtained even when f is not bounded. A "natural"  conjecture might be that it 
is obtained whenever f f ( x )  2 v(dx)< oe, Here is a counter-example. Let X be the 
Poisson process (type A) with v({1})= 1 and v(R-{1})=0 and define f so that 
f(x) = x ! x  ~ if x is a positive integer. Then EV,,(f)= oo. 

Remark 3.2. The most interesting special cases of Theorem 3.1 are probably 
those where f (x)=[xf ,  p>0.  If X i s n o t  of typeD and p>/3/2 where /3 is the 
largest of Blumenthal and Getoor's indices [2, p.494], the conclusion of the 
theorem is valid. Among other valid cases are p = �89 if X is of type A or B and p = 1 
if X is of type C. If X is of type D the conclusion of the theorem is valid for p>  1. 
The interesting case p = 1 when X is of type D is covered in Theorem 3.2 and 
Remark 3.5. 

The next lemma will enable us to compare two sequences of variational sums. 

Lemma3.4. For n = l , 2 ,  ..., let U,= ~ U,, k and Y,= ~ Y~,k be sums of non- 
negative independent random variables. Suppose that, as n ~  o% ~ (EU,,k)z~ml, 
~ EU~k ~ m2 < oo, and 

lim sup E y'  IU, e u - Y2k[ < 6. (3.17) 
rhen~ 

Var U, ~ m 2 - m 1 ; (3.18) 

lim sup I Z (E Y,, k) 2 - m 11 --< [ 12 6 (m 2 + 6)]~; (3.19) 

lim sup 12 Ey2k-m2] <3;  (3.20) 

lim sup IVar Y. -  (m 2 - m0j < 6 + 126(m 2 + 6). (3.21) 

Proof. Since Var U . = ~  Var U., k, (3.18) follows. Inequality (3.20) follows by 
the triangle inequality. To show (3.19) we calculate 

1~ [(EY.,k) 2 --(E U., k) 2] 12 = ]Z E(Y.,k- U.,k) E(Y.,k + U~,k)l 2 
<-_ Z [E ( Y.,k- U.,k)]2. ~, [E (Y.,k + U.,k)] z 

<=Z 2 Z + U.,k) 

Apply Schwartz's inequality to E Y,, k U,, k and (3.20) to obtain 

lim sup ~ E ( Y,, k + U,, k) 2 < 4 (m 2 + 6). (3.22) 

For the other factor we have 

Z E(Yn, k-  Un, k) z ~ E  E(y.2,kC U2k)+Z 2E [Un.k[Un. k-  Y., k]] 

<=2 E lYdk-- V~k] + 2 2  E [U#k-- rd~l. 

Then (3.19) follows from (3.17) and (3.22). Since Var Y , = ~  Vat Y,,k, (3.21) follows 
from (3.19) and (3.20). 
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Theorem 3.2. Let X be a process of type D. Let f :  RN--+R be a continuous 
function such that s w)/w ~ fr'(O, 0) [-Def. 2.15] uniformly in 0 as w ~ O. Suppose 
that, for some k > O, 

k ] f ( x  + y)2 _ f(y)2 f < f xl2 + I f(Y)[ f x l (3.23) 

for all x, y in a neighborhood of O. Then 

V, ( f )  - E V,,, (Z of) --+ y ( f  t) + B c (t) (3.24) 

in distribution as n - - - ~ ,  where Bc(t ) is one-dimensional Brownian motion with 
variance c t and 

c =N .ff/(s~o/Is+OI, 0) 2 Is~oI 2 ~(dO) (3.25) 
_2 [ F((N+ 1)/2) ]: 

r(u/2) [~f/(S+O/lS~OI, O)IS~OI u(d0)] 2. 

The measure # is the uniform probability measure on the unit N-1-dimensional 
sphere. 

Proof As in the proof of Theorem 3.1 we may assume f > 0. We wish to show 
that conditions (2.17), (2.18), and (2.19) of the Central Convergence Criterion 
are satisfied by the infinitesimal triangular array of random variables {f(X,,k) } 
with the centering sequence {EV,(zof)} ,  and vy, c, and 0 in place of v, S, and y, 
respectively. 

Condition (2.17)follows from Lemma 3.1. Condition (2.19) takes the form 0 = 0. 
For each e>0,  define f~(x)=f(x)  for [x[<e and L ( x ) = 0  for [xi>e. Let M~= 

sup s  2. We wish to prove (2.18), which can be written as 

lira lira Vat V(f~, X, t, P,) = c t. (3.26) 
E ~ O  tI~oO 

Let X( t )=  W(t)+ Z(t) where W is Gaussian and Z is not of type D. Let fo (x)= 
f" (x/I x [, 0)Ix [. A straight-forward calculation gives 

Var V(fo, l/V,, t, P,) = c t. 

Also Z (E fo (W,k)) 2 = ml and Z E(fo (W,,k) z) = m2 are independent of n. 

By the use of the Gaussian density and (3.23) it can be shown that 

lim sup ~ EIfo (W,,,k) 2 -f~(W,,k)21 = 0 (3.27) 
and 

k lim sup ~ E ] f~ (W,,k) 2 -L(X,,k)2I =< 2H~ + (m 1H,) ~, (3.28) 

where h~(z)=2 fz[ 2 A M, and H~=~ h~(z) v (dz). These two facts enable us to apply 
Lemma 3.4 twice: U,, Y,, and 3 are replaced first by V ( f  o, W, t, P,), V(f~, W, t, P,), 
and 0, respectively; and, second by V(f~,W,,t,P,), V(f~,X,t,P.), and [2H~+ 
(m~ H,) ~] k -  t, respectively. In each case m 2 - -  m~ = c t. On the second application of 
the lemma, (3.21) yields (3.26), since H~ ~ 0  as e ~ 0. 

Remark 3.3. Fix t and {P,}. Define 
k 

U,( f  t,,k)= Z f (X, , j ) .  
j=l 

13 Z'Wahrscheinl ichkei ts the~ verw. Geb., Bd. 23 
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For se(t,,k_ 1, t,,k), define U,(f, s)= U,(f, t,,k_l). Then from Theorem 2, p. 477 
of [6] we see that U,(f)--+ Y( f )  + B c in the sense of weak convergence of processes 
in D [0, 1] with Skorohod's PD metric. 

Remark 3,4. If f :  R N ~  R M, M >  1, Theorem 3.2 remains true. The process 
Bc(t ) is then an M-dimensional Gaussian process with stationary, independent 
increments, mean 0, and covariance matrix c t. The square of each vector on the 
right side of (3.25) should be interpreted as the matrix product. 

Remark 3.5. (See also Remark 3.2.) Let X(t )= W(t) be a standard one-dimen- 
sional Brownian motion with Vat X(t) = t and let f (x)  = ]xl. Let P, be the partition 
of [0, 1] into 2" equal intervals. It follows from Theorem 3.2 that U, = V , ( f ) -  
(21+"/rc) ~ converges in distribution to a normal random variable with variance 
1 -  2/~. We shall show that U, does not converge in.probability. Suppose to the 
contrary that U, ~ U in probability. We may assume U , - ,  U a.s. by considering 
a subsequence if necessary. Let B , =  {co: UU,>O}, Then P{B,}--+ 1. Let I be the 
indicator function. By Fatou's Lemma, 

lira inf E (U, U~ I(B, Bin)) > E (U 2) = 1 - 2/n. (3.29) 
t t l , n ~  

Also, 
E(] U, U,~I I (Y2- B, Bm))< [E(U,2 I (Y2- B,Bm)) E(U22 I ( f2 -  B,B,,))] ~. (3.30) 

An easy calculation shows that E(U2)= 1-2/re and Fatou's Lemma implies that 

lira inf E(U2 I(U,S~))>= 1 - 2 / ~ .  
t n ,  n ~  oo 

Therefore the right side of (3.30) goes to 0. From (3.29), (3.30), and Schwartz's 
inequality we conclude that EU, Um--~ 1-2/re asm,  n ~  oo. But for fixed m one 
can calculate E U, U m -+ 0 as n ---, o% a contradiction. 

In the following theorem we consider type C processes only. Almost sure 
convergence of V,(f) with appropriate f for type A, and therefore type B, processes 
is an immediate corollary of Theorem 3 of [4]. Classes of functions for which 
V.(f) converges in probability and for which the convergence is almost sure are 
also known for Brownian motion. 

Theorem 3.3. Let X be of type C. Let f :  R N -~ R be continuous and suppose that 
there exists a continuous function g: [0, ~)--> [0, oo) such that g (0)= g' (0)= O, 

g(Ix]) v(dx) < oo, (3.31) 
0 

g is convex, x ---> g(x -~) is concave, and, for x in a neighborhood of O, If(x)[ <g(lx[). 
Then V,(f)--~ X( f ,  t) in probability as n--~ oo. lf, in addition, f is bounded, this 
convergence takes place in L 2. 

Proof. From Theorem 3.1, 

V , ( f ) -  ~ ~ 7~ ( f  (x)) F,,k(dx)-§ Y ( f  , t). (3.32) 

Since If(x)] <g(]x]) for small [x], condition (3.31) implies that X ( f ,  t) can be 
defined;moreover, from (2.9) and (2.12), 

r ( f ,  t ) = X ( f ,  t ) -  t ~ x(f(x))v (dx). (3.33) 
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We see from (3.32) and (3.33) that it suffices to show 

S Z (f(x)) F,, k (dx) ~ t ~ Z (f(x)) v (dx) + c t. (3.34) 

Lemma 3.1 allows as to restrict the domain of integration in (3.34) to A, a 
small neighborhood of 0 with v (0A)= 0. Then Lemma 3.3, together with the Helly- 
Bray Theorem [10, p. 182] applied to the function (Z ~  1 on A, yields (3.34). 

Remark 3.6. The convergence in distribution contained in Theorem 3.3 can 
be proved directly by using the Central Convergence Criterion and Lemma 3.3. 

Remark 3.7. In Theorem 3.3 we require ]f[ to be bounded by a radial function 
g(l" I)- The question arises whether the assumption that the bounding function is 
radial is needed. The following example shows that it is. Let X be a one-dimensional 
stable process of index ~ and mean 0 and such that X ( t + ) < X ( t - )  for all t; this 
can be done by letting v ( - ~ ,  x )=  Ix l- ~ i.f x < 0 and v (0, oo)= 0. Let f ( x )=  0 v x. 
Because of the above-mentioned assumption Theorem 3.3 does not apply; 
however ~ If(x)[ v(dx)< oo. We show that the conclusion of Theorem 3.3 is not 
true. Theorem 3.1 is applicable so we have only to show that 

1 

0 
1 

This is true since ~ ~ xFn,k(dX ) converges by condition (2.19) of the Central 
-1  

Convergence Criterion and 
0 0 

l i m s u p ~  ~ xFn,k(dX)< ~ x v ( d x ) = - o o .  
- 1  - i  

Remark3.8. The conclusion of Theorem 3.3, if f (x)=fx]  p, p>0,  is part of 
the conclusion of Theorem 4.1 of [-12]. The conclusion of Theorem 3.3 holds if 
p > fl where fi is the largest of Blumenthal and Getoor's indices [2, p. 494]. 

Remark 3.9. Theorem 3.3 cannot be generalized in the obvious manner to 
infinitesimal triangular arrays {Xn,k} of random variables. In fact even the cor- 
responding result in the type A case does not hold as the following example shows. 
Let F,,,k , the distribution function of X~,k, be one-dimensional and given by 

0 if x = n  

F~,k(X)= 1 
1 - - -  if x > n  -~. 

n X-k 

By using the Central Convergence Criterion one checks that ~ X,, k converges 
in distribution to a "type A" stable, non-negative random variable of index �89 

1 

Even though ~ x~ v(dx)< o% where v is the L~vy measure for this limiting random 
o 

variable, the Central Convergence Criterion shows that ~ X~, k does not converge 
in distribution to a finite random variable. 

Remark 3.10. The hypothesis t h a t f  is continuous which appears in Lemma 3.1 
and Theorems 3.1, 3.2, and 3.3 can be relaxed. The hypothesis 

suffices, v {x: f is discontinuous at x} = 0 (3.35) 

13" 
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4. Divergence Theorems 

We can prove Theorems 4.1 and 4.3 in a setting more general than that of 
the previous section. Let {X.,k} be a infinitesimal triangular array of random 
variables, independent for each fixed n, such that ~ X., k converges in distribution 
to the infinitely divisible random variable X with distribution characterized by 
v, S, and 7. We may still speak of the type of X and retain the notation established 
in Section 2 except where pertinent only to processes. By V,(f) we mean ~ f(X.,k). 
Note that Lemma 3.1 is still valid with F., k the distribution measure of X., k. 
Although Lemma4.1 is needed only in the proof of Theorem4.3, it appears 
first because its method of proof is used in the proof of Theorem 4.1. 

Lemma 4.1. Let f :  R N ~ [0, oo) be continuous with f (0 )=0 .  Suppose either that 
~ f (x)  v(dx)=- oo or that X is of  type B (type D, respectively) and for each M there 

0 

exists e > 0  such that if ]xl<e, f ( x ) > M  Ixl ( f ( x ) > M l x [  a, respectively). Then 
EV.(x o f)--~ oo as n --* oo. 

Proof. We may assume f <  1. We wish to prove that 

Z Sf (x)  F,,k(dX)~ oo. (4.1) 

Suppose S f (x)  v (dx) = oo. There exists { fro} with f,, continuous, fm <f,  f,,(x) = 0 
for x in a neighborhood of 0, and S f r o ( x ) v ( d x ) ~ .  By Lemma 3.1 

2 i f ( x )  F,,k(dX) a ~ ,  i X ( x )  F,,k(dX ) --~ j fro(x) v(dx), 

from which (4.1) follows. 

Suppose X is of type B. Modifying (2.19) by using Lemma 3.1 we obtain for a 
proper choice of ~ > 0, 

liminfl~] ~ ~ MlxlF,,k(dX)>=M]~]2/2, 
Ixl<e 

and (4.1) follows. 

Suppose X is of type D. From (2.18) and the hypothesis, 

lira inf ~ ~ M Lxl 2 F,, k(dx) > M (trace (S)), (4.2) 
n Ixl<~ 

from which (4.1) follows. 

Theorem4.1. Eet f:  RN---~R be continuous with f ( 0 ) = 0  and suppose that 
f(x)  2 v(dx)= w~. Then Var Vn(zof)--+ ~ and 

0 

V . ( f ) - E V . ( x o f )  
[Var V.(7of)] + .9l(0,  1) (4.3) 

in distribution as n-~ oo. 9l denotes the normal distribution. 

Proof. We prove 

Var V.(zof)= ~, ~ (x ( f  (x))-- fin.k) 2 F.,k(dX )--+ oo. (4.4) 

Suppose first that ~ ( f ( x ) v O ) 2 v ( d x ) = ~ .  We, re it not for the terms ft.,k= 
0 

E )s ( f (X. ,  k)), Lemma 4.1 would give the result immediately. Note that max ft., k--* 0. 
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Let 6 > 0, f~ (x) = 0((f(x)) - c~) v 0, and f, ,  k(x) = (Z (f(x)) - ft,, 1,) v 0. For  sufficiently 
large n, f,,k(x)>f~(x). In a neighborhood of 0, fa is 0, and Lemma 3.1 implies 

Z 5 fa ( x )2  Fn,k (dx) --~ ~ L (X) 2 V (dx) --+ oO 

as a--~ 0, and (4.4) follows. The proof  is similar if ~ (f(x)/x 0) 2 v(dx) = m. 
0 

Let f l ,=EV,(zof)  and 2 p,  = Vat  t7, (X of). 
To prove (4.3) we apply the Central Convergence Criterion to the triangular 

array {f(X,,k)/p,} with centering constants ft,~p,. We verify (2.17), (2.18), (2.19) 
with 0, I, and 0 in place of v, S, and 7, respectively. Since p,--~ m, (2.17) follows 
from Lemma 3.1. Condit ion (2.19) is equivalent to 

~ [x( f (x) /pn)-  7~(f(x))/p,] F,,k(dx)--+ O. (4.5) 

To prove (4.5), let be(0, 1) and for each n such that bp ,>  1 write the integral as 
the sum of three integrals, I1, I2, I3, with domains 

Aa={x:l f(x)[<=l},  A2= {x: l < [ f ( x ) l < b p , } ,  A 3 = { x : b p , < [ f ( x ) [  } . 

Clearly, I 1 = 0. We have 

lira sup lI21<-_b lira sup ~ ~F,,k(dx)<=bv{x: I f ( x ) l > l } .  (4.6) 
n n A2 

For  sufficiently large n, i lal < 2 b v {x: If(x)[ > 1 }. Since p, --+ m, it follows from 
Lemma 3.1 that  13 ~ 0 as n--+ oc. Since b can be chosen small and then n large, 
(4.5) follows. 

Let e>0 .  Condit ion (2.18) will follow from 

[2 S + Iz(f(x))l] v.,#x)]/p. ->~ 
If(x)l > 

which is true since Lemma 3.1 implies that  the numerator  is bounded. 

In particular Theorem4.1 is applicable to processes, with X, , k=X( t , , k ) -  
X(t,,k_O. 

Remark 4.I. Let f ( x )=  I xl r, p > 0. If p > fl/2 where/7 is the largest of Blumenthal 
and Getoor 's  indices [-2, p. 494] then Theorem 4.1 implies that I V, ( f )  - a,  I--+ oo 
in probabili ty for any sequence {a,}. 

Theorem 4.2. Let X be a process of type D. Let f :  R N ~ R be continuous, f (O) = O, 
and such that for each M there exists c5>0 such that [f/(O, w)i> M for w<c5 and 
all O. Then Var V,(Z of) -+ ~ and 

V , ( f ) - E V , ( x o f )  
(Var V,(7~of)) ~- ~ 9l(0, 1) 

in distribution as n --~ ~ .  

Proof Fix M and choose ~5 > 0 as in the hypothesis. Let fo (x) = f ( x )  if [xl < ~5, = 0 
if Ixl => 5. Then, by Lemma 3.1 

Var V,(7~ of) = Var 1~ (f~)+ O(1). 
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By writing each Varf~(X,,k) in terms of the expectation conditioned on 0= 
X,, k/IX,, k I, we calculate 

Varfo (X,, k) > M2 Var I X~, k l~, 

where w~=w if w<6,  =0  if w>c~. The function [xla satisfies the hypothesis of 
Theorem 3.2 with g(x)=4 Ixl 2. From (3.27) with 1x[o in place off~ we conclude that 

lim Var V,(f~)> M 2 ct, 
n 

where c is given by (3.26) with f l  = 1. Since M was arbitrary, Vat V,()~of)--, oo. 
The remainder of the theorem follows as in the proof of Theorem 4.1. 

Remark 4.2. Theorem 4.2 cannot be proved for triangular arrays. Let X,, k = --+ 
each with probability I, k=  1, 2 , . . . ,  n 2. By the Central Convergence Criterion 

X~, k converges to gt (0, 1) in distribution. I f f (x) = f (  - x), V, (f)  - E V, (Z of) _- 0. 

Theorem 4.3. Let f: RN ~ [0, oo) be continuous with f (O)= O. Suppose either that 
f(x) v(dx)= oo or that X is of type B (type D, respectively) and for each M there 

0 

exists e>0  such that if Ixl<~, f (x)> Mlx[ ( f (x)>Mlxl  2, respectively). Then 
EV,(zof)--, oo and V,(f) 

1 (4.7) 
EV~(z of) 

in probability as n --~ oo, 

Proof That EV,(zof)-~ oo is the conclusion of Lemma 4.1. To prove (4.7) 
apply the Central Convergence Criterion to the triangular array { f(X,,k)/E V,(Z ~ 
with centering constants 0. Condition (2.17) with v replaced by 0 is a consequence 
of E V, (Z ~  oo. Condition (2.18) with S--0 will follow from (2.19) with 7 -- 1. As 
for (2.19), it is equivalent to (4.5) with p, replaced by EV,(xof), and the proof is 
then identical to the proof of (4.5). 

Remark 4.3. (See Remark 3.10.) In this section the hypothesis that f is contin- 
uous can be relaxed to v { x : f  is discontinuous at x} = 0 and f is continuous at 0. 

5. Examples 

The hypotheses in Theorem 3.3 enabled us to show that {EV,(xof)} has a 
finite limit and to evaluate that limit. A similar remark applies to Theorems 3.1 
and 3.2 with the sequence {Var V,(xof)}. The proofs of Theorems 4.1, 4.2, and 
4.3 consist primarily in showing that Var Vn(ZOf)~o0 or that EV,(zof )~ov .  
The conclusions of these theorems, except Theorem 3.3, involve EV,,(xof) and 
Var V,(xof). Evaluations of EV,(xof) and Var V,(zof) for a variety of special 
cases follow. In all these examples X will be a process rather than just the limit of 
row-sums of a triangular array and P, will always be the partition of [0, 13 into n 
equal intervals. The last assumption simplifies the resulting formulas. 

Example 5.I. Let X be Gaussian, i.e. v =7 = 0. Let p > 0. By using the scaling 
property and the exponential tail of the Gaussian density we obtain 

EV,(z(lxle))-- E IX(DI p n (2 -p ) / 2  4- O(1), 

Var V,(Z(IxIP))=Var IX(1)lVnl-p+o(1), 

EV,,(Z(lxl 2. [log IxlZ[))= E IX(l)] 2 log n -  g IX(l)[ 2 log IX(1)l 2 4- o(1). 
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Example 5.2. Let X be a strictly stable process of index/~ < 2 with 

E e i(u' x(t))  = e- lul ~ h(u/Iul) 

with Re h (0) = ~ [< q~, 0)]~ r/(d~b) where r/is a finite measure on the N -  1-dimensional 
unit sphere. We normalize X by specifying that t /be  a probability measure. It is 
known [15, p. 157 for N = I ;  5 for N > I ]  that [X(1)] has a density (J with 

O( r )=Cr- ( l+~)+O(r  -(l+2B)) as r--.oo, (5.1) 

where C = (2/z 0 F(1 + fi) sin (re/3/2). Let p > 0. We use the scaling property and 
(5.1) to obtain 

EV,(z(IxF))=EIX(1)J'n (~-p)/~- 2p C fl(fl_p) f-o(1) if p<fl, 

Var V,()~(lx]P))~Var[X(1)tPn (~-2p)/~ if 2 p < / L  

c /ix(1)l~ c EV,,,()~(lx[ ) ) = ~ - ( l o g n + l ) + E  ~ --(IX(1)l+ 1)~9(1X(1)1)) +o(1). (5.2) 

Theorem 4.3 with f(x)= ]x] p and formula (5.2) is Theorem 4 of [7]. 

Define lg + = lgl + = 1 v log and lgf = tg +o lgf_ 1. Then 

1+/~ 

=C [q(n)+~+log(lgq,.)n)] +o(1) 
Ixl p ~ 1 + 

J] 
where q(n)=max{j: l g f n > l } .  Note that for Theorem4.3 the quantity 
1 
fl ~- log (lg~(n) n) is irrelevant since log (lg~,) n) < 1. 

Example 5.3. Let N = 1 and let X be the increasing type A process with 

oo 

v(x, oo)= ~ y-le-Ydy. 
x 

The distribution of X(t) is given by F(t, dx)= e -x x t-1 dx/F(t), x > 0. With lg + as 
1 X 1 / n - X  

in Example 5.2 we use [ dx = log n to obtain 
x log x71 6 

where 

e - 1  

C =  

(lg+l 1))_1og +c+o 1) 
e-Xdx (1-x )dx  ( 1 - x - e - X ) d x  

x e-1 x log x-~ x log  x-1 
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