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1. Introduction 

Let {z (t); t ~ 0} be an irreducible semi-Markov process whose transitions 
occur at instants 0 = To, T1, T~ . . . .  Suppose z (t) is continuous to the right and 
zn = z ( T n ) ,  n ~ O. We shall consider a separable version of the process defined 
by the initial distribution ~t = Pr  {z0 ---- i} and the transition probabilities 

QIl (t) = e r  {zn = ], X n  <= t] zn-1 = i } ,  

where i, ~ range over a denumerable state space E, and X n  ~-- Tn  - -  T n - 1 ,  n ~ 1. 
The occupation time distribution is given by 

H,( t )  = P r ( X n  <= t I zn-1 = i} = ~. Q~j(t). 

I t  will be assumed throughout that  a transition occurs at t ---- 0. Let  P~I (t) 
be the transition probability from i to ~ in time t, G~j (t) (i ~ ?') the distribution 
of the first entrance time from i to ], and Gu (t) the distribution of the first return 
time to i (after leaving i at the first exit time). Furthermore, let kPti (t) denote 
the transition probability from i to ~" in time t under the taboo/c, and ~Gtj (t) the 
distribution of the first entrance time (or return time, if i = ~) under the taboo k. 
We agree to impose the taboo only after the first exit from i. Note that  JPil (t) 
= ~ii{1 --  H/(t)}. 71 and/~tJ will denote the expectations of H i and Gii respec- 

o o  o O  

tively, i.e. 7: = f t d H j ( t )  and #tJ = f t d G t l ( t ) .  
0 0 

As Laplace transforms will be used extensively, we shall henceforth adopt the 
o O  

abbreviation A* (s) for f e-st d A  (t). 
0 -  

T h e  notation used here is similar to PYK~ and SC~AUFWLW'S (1964), to whose 
paper we refer the reader for the definition of a semi-Markov process and a more 
detailed treatment of the quantities defined above. 

S~ITH (1955) proved that  ff 71 < oo, then as 

t--->oo, P ~ 1 ( t ) - - > ~ l : G t l ( o o ) ~ i / i ~ Z .  (x~j . :O if ~Jl is infinite.) 

In  section 4 of this paper, we shall establish a necessary and sufficient condition 
for this convergence to be exponentially fast in the special case when the state 
space E is finite. I t  turns out tha t  when E is finite, there is geometric convergence 
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if there exists ~ > 0 such that  Q~ ( -  V) converges and 

Q;~(- r q- i~) 
- ~ + i ~  e L l ( - -  o0, oo) 

for all i, ] in E. 
In section 3, a 'solidarity' theorem similar to that  obtained in Markov chain 

theory will be proved. A transition i --> 1" is said to be geometrically ergodic ff 
there exists a positive number 21t such that  P ~ j ( t ) -  zrit-~ o(e -~jt) as t---> oo.  

Kv.)rI)XLL (1959) proved that  in an irreducible discrete Marker chain, if for some 
k the transition k--> k is geometrically ergodic, then all transitions i--> ~ are 
geometrically ergodie. This result was improved upon by V~a~-Jo~r~s (1962) who 
showed that  in an irreducible, discrete, geometrically ergodic Marker chain, a 
common parameter of convergence, 2, can be found for all transitions i--~ ?'. 
The continuous time analogue of V]~]~-JoNws' result was proved by Kr~GMA~r 
(April 1963, October 1963). A simple method of proof using Laplace transforms 
was obtained by CHv, o~o (1966). I t  is this method which will be used here to 
establish a similar type of solidarity property for semi-Marker processes. The 
weakness of this method lies in that  it cannot treat cases where instantaneous 
states exist. We are thus forced here to assume that  there are no instantaneous 
states. 

Section 2 contains preliminary results that  will be made use of later. 

2. Preliminary Results 

As with Markov chains, the following first entrance formulas hold: 

(2.1) Pie(t) = ~Plj(t) q- f P k j ( t  -- u)dG~k(u) i, ], k e E ;  
o 

t 
(2.2) Gij(t) = kGij(t) + f G~1(t -- u) djG~k(u) i, ], k ~ E, ~ # k .  

o 

G~j and PiI may also be represented by Qlj, thus: 
t 

(2.3) Pij(t) -=-- ~i{1 -- Hi(t)} q- ~ f Pkj(t  --  u)dQ,k(u) ,  i, i c E ;  
k~E 0 

t 
(2.4) Giy(t) = Qty(t) q- ~ f Gkj(t -- u)dQ, k(u),  i, j e E .  

k e E  0 
k * i  

Considering special cases of (2.1) and (2.2) and taking Laplace transforms, we 
get the following identities: 

(2.5) 

(2.6) 

(2.7) 

(2.s) 

(2.9) 

I - H'~(s) 
P*(s )  -- 1 -- G~,(s)' 

a *  (s) ~a*  (s) * ~ * -~  "j- aGak ( ) a k a  ( s ) ,  

a~(8)  kaY(8) + * * = ~a~,(8) a ~ ( 8 ) ,  

a ; ,  (s) 

a~k(8) = oa~*k (s) + * * ,a,~ (s) a~, (s), 
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(2.10) P*a (8) ---- G~a (s) P*a (8) , 

I - gi(8) 
(2.1 i) aP~k (8) - -  I - -  ,~G~ (s) ' 

(2.12) aP*ak(8) = * * soak (8) ~P~ (8), 

(2.13) p,k(8) ,Pi~(s) 
1 - G,,(s) ' 

(2.14) P~k(8) = aP~k(s) + G~a(S) P*ak(8), 

(2.1~) G*o (8) = kG* (~) + ~G~ (8) G*o (8), 
(2.16) P ~  a ~" a jk(8) -~- aGjk(8)aPkl~(8), 

(2.17) P~(8)  = aP j~(8) + G~a(8) P~ak(8) , 

1 - H i ( s )  
(2.18) P~(8) -- 1 -- G~(8) ' (~ * a, } ,  a, i * }) .  

Equat ions  (2.5)--(2.18) hold for R s  > O, but  if one side of  an equat ion has an 
analyt ic  cont inuat ion in some half-plane, then so has the other side, and the 
equat ion still holds. 

We quote here wi thout  proof  three theorems tha t  will be of  use later. The 
functions A (t), B(t) and C(t) in theorems A, B, C a n d  C* are assumed to be of  
bounded variat ion in every finite interval. 

Theorem A. (WDDE~, 1946: Corollary 2.1, p. 39): I f  A ( ~ )  exists and if 
A (t) - -  A (~ )  ~ 0 (e~0as t -+ r for some real number  )t, then A* (8) converges 
for R s > ~ .  

Theorem B. ( W D D ~ ,  1946: Theorem 2.2b, p. 40): I f  A*(s)  converges for 
8 ---- - -  ~ + i~ with ~ > 0, then A(r exists and A(t)  - -  A(oo) ---- o(e -~t) as 
t "->" ~ .  

t 

Theorem C. ( W I D D ~ ,  1946 : Theorem 11.6 b, p. 89) : I f  C (t) -~ ~A (t -- u) dB  (u), 
0 

and if A*  (so) and B* (80) converge, one of  them absolutely, then C* (So) converges 
and C* (80) ---- A*  (80) B* (80). 

Wi th  the help of  theorems A and B, the condition of  absolute convergence in 
theorem C may  be removed to obtain the following slightly weaker result:  

t 

Theorem C*. Let A ~ lim A (t) and B --  lira B(t). I /C ( t )  = f A (t -- u) dB(u),  
t -+  r t - + c o  0 

--4 
and i /both  A*  (-- 4) and B* (-- ,~) converge/or some ,~ > O, then/or all R8 > 2 ' 

C* (s) converges and C* (8) -~ A*  (8) B* (8). 

Proo]. I t  is sufficient to prove the theorem for the case when B (0) : 0. By  
theorem B, A - -  A (t) = o (e-~ 0 and B - -  B (t) = o (e-~ 0 as t --> ~ .  Since 

t/2 t 

A B --  C (t) = A {B --  B (t)} + j" {A - - i  ( t - -u ) }  dB ( u ) +  j" + {A - - A  (t - -  ~)} dB (~), 
0 tt2 

A B  -- C(t) = o(e-Ztl~) 

- 2  
as t --> c~ and so by  theorem A, C*(8) converges for all R8 > ~ - - .  We can now 
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(2.19) 

(2.20) 

where 

appeal  to ye t  another  result  of  WID])ER'S (Theorem l l . 7 b ,  p. 91) to assert  t h a t  

C*(s) = A * ( s ) B * ( s )  for R s >  2 

We now show t h a t  the  funct ions Pi j  (t) sat isfy the  condit ion of bounded  
var ia t ion  required in theorems A, ]3, C and  C*. 

L e m m a  2.1. For all i, j, Pij (t) is a/unct ion o/bounded variation in [0, R / / o r  
every R > O. 

Proo/. F r o m  (2.1) the following identi t ies are der ived:  

t 

Pij(t) = 1 -- Hl(t  ) + f{1  - -  Hi(t  -- u ) } d g l ( u ) ,  
0 

t 

Pit(t) = j'{1 - -  Hj(t  --  u)}dK2(u) (i , j ) ,  
0 

and 

t 

Kl( t )  = Gz(t) + fGsi(t -- u )dKl (u )  
0 

t 

K~ (t) ---- Gij (t) + f Gjj (t -- u) dK2 (u). 
0 

Both  Kl( t )  and  K2(t) are the renewal functions of  renewal processes and  are 
therefore non-decreasing. (K1 (t), for example,  is the  expected  n u m b e r  of  renewals 
in (0, t) of  a renewal process with life-time dis t r ibut ion G z (t).) Since H 1 is bounded,  
it  is obvious f rom (2.19) and (2.20) t h a t  Ply(t) is of  bounded  var ia t ion in every 
finite interval .  

The following theorem is due to L~ADBETTmr (1964): 

A* (8) and  Theorem D. Suppose B(t) is a dis t r ibut ion function, C*(s) - - 1 -  B*(8) 
A* (s) e st 

L(t) is the  residue of s(1 -- B*(s)) a t  s = 0. I f  1 - -  B(t) = 0  (e-~.t) as t --> 0% 
A*(--  ~ + i~) 

4 > 0 ,  and  if  - - ~ + i 6  ~ L l ( - - c o ,  co), then  there exists V > 0  such t h a t  

C (t) = L (t) + o ( e - ~ 0  as  t - +  o o .  

Corollary. I f  in addi t ion A (t) is an hones t  dis t r ibut ion funct ion with a finite 
first m o m e n t  ~1, then  C(t) = t/tt 1 + #2/2#~ - -  ~l/~tl + o(e -~t) as t --> 0% where 
~tl and  /~2 are the  first two momen t s  of  B(t)  and 1/~tl is to be in te rpre ted  as 
zero if #1 is infinite. 

I n  LEADBETTER'S theorem (p. 238), A (t) = B(t), but  it  is easily verified t h a t  

his p roof  remains  val id for  a general A (t) satisfying A*(--  2 + i ~) - - ~ + i ~  ~ L I ( - -  co, co). 

Fur thermore ,  an examina t ion  of  the  p roof  reveals t h a t  V does not  depend on A (t). 
To prove  the  corollary, note  t h a t  

lira s A *  (s) est/(1 -- B* (s)) = t/fit +/~2/2 #l  2 - -  ~ 1 / / 2 1  
s-->O 

when #9 < co. 

3. Solidarity Properties 

We shall assume th roughout  this section t h a t  0 < ~I < co. A theorem of 
PYKW'S (1961: Theorem 5.1) assures us t h a t  the  s ta tes  of an irreducible semi- 
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Markov chain are either all transient or all recurrent. The main result of this 
section states that  if the H~'s satisfy certain regularity conditions, then either 
all or none of the states of the chain are geometrically ergodic. In the former 
case, there exists a common parameter of convergence for all transitions. 

Theorem 3.1. Suppose/or each j in E, 1 -- H~(t) ~-- O(e-~) as t --> 0% 2 > O, 
and H* ( - -2  ~ i ~ ) / ( "  2 -q- i~) ~ L I ( - - co ,  co). I /  there exists a state a such that 
P a a  (t) - -  ~aa ~ 0 (e -At) a8 t --> co, then there exists ~ ~ 0 such that/or all ], k in E, 

P~k (t) -- z~1~ = o (e-v~) as t --> co. 

Proo/. Let ], k e E, ?" ~ k, ] + a, k ~: a. We shall show that  there exists y > 0 
such that  in the half-plane Rs  >= -- ~, all the transforms P~a(S), P~(s) ,  P~(s )  
and P ~  (s) converge, whence the desired result follows from theorem B. 

By theorem A, P*(s )  and H* (s) converge for Rs > -- 2. Since P*(s )  is 
analytic in its region of convergence (WIDDE~: Theorem ha, p. 57), there exists 
a positive number y ' <  A such that  Pa*a(s) is analytic in the half-plane ~2'= 
Rs  ~= -- y' and non-vanishing for real values of s in the interval [ - -7 ' ,  0). By 
(2.5) Ga*a(s) has no singularity on the segment [ - - ? ' ,  0) of the real line and, as it 
is the transform of a monotonic function, must therefore be convergent in f2' 
(see WIDDE~: Theorem 5b, p. 58). Replacing s with the real variable x in (2.6), 
we have an identity between positive quantities from which the convergence of 
G*aa(S ) in ~ '  implies the convergence of aGs kGa*a(x) and G~=(x) in [ - -7 ' ,  co), 
and hence of aGa~(S), kGa*~(s) and G*a(s) in Q'. By (2.7), ~Gk*~(s) and aGs are 
also convergent in /2 ' .  

By (2.10) and theorem C, P~a(s) converges in /2 ' .  To use (2.11), we need to 
show first that  1 --aG~k(s) is non-vanishing in /2'. Suppose 1 --aG~(s0) ----0, 
So = 40 ~- i~0, 20 >= -- ?'. Then aG*(20) ~ 1 and so by (2.7), aG*k(2o) ~--- 1 and 
kG*a (2o) ~ 0. But kG*a (2o) cannot be zero since kG~a (t) is non-decreasing and not 
identically zero. We can now rewrite 

1 
(2.11) as aP* (s) --~ {1 -- H*  (S)}aM* (s), where aM*k(s) -- 1 -- aG~(8) 

is the Laplace transform of a non-decreasing function. (aM~k(t) is in fact the 
aMkk(s) expectation of the number of visits from/c to/c under the taboo a.) Since * 

is analytic in 9 ' ,  it converges there, and so by theorem C, aPk*k (s) converges in 
s The convergence of aP*a~(S) now follows from (2.12). 

I f  z (t) is transient, G'ha(o) < 1 and choosing y (o < y ~ 7') such that  1 -- H~* (s) = 0 
has no root in the half-plane/2 = Rs  ~ -- ~, (see LEADBETTE~, Lemma 3), we 
see from (2.5) tha t  1 -- G~(s) = 0 has no root in ~ .  (2.13) then yields the con- 
vergence i n /2  of P~(s) .  I f  z(t) is recurrent, we rewrite (2.13) as 

P *  (s) = aG~ (s)/(1 --  aGkk* (s) P*aa (s) ) " V~ (s), 
where 

U*(s) = 1 -- H*(s)/(1 -- H*a (s)). 
Writing 

U~(s) = 1 + H*a (s)l(1 --  H*a (S)) -- Hk*(s)l(1 -- H*~ (8)), 

and appealing to the corollary to theorem D, we see that  there exists y"  > 0 

such that  v ~ _  U~( t )=  o(e-V"~) as t-->r By the remark following theo- ya 
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rem D, y"  is independent of k, and by  theorem A, Uk* (s) is convergent for all 
R s  > --  y".  As a G s  1 anywhere in /2 ' ,  aag(s) / (1--aGS(s))  converges in S)'. 
Also, P * ( s )  converges in g)'. Hence by  theorem C*, there exists a positive 
number  ~, y ~ min() / ,  y"),  such tha t  P~(s )  converges in s = R s  >= --  y. By 
(2.14) P*( s )  converges in D. The convergence of P ~  (s) now follows easily from 
identities (2.15)--(2.17), thus completing the proof. 

The following weaker result is obtained if the parameter  of convergence of the 
Hk's to unity is dependent on k. 

Theorem 3.2. Suppose/or each k, there exists 2~ > 0 such that 1 - -  Ha(t) =O(e -~~t) 
as t --> ~ ,  and H *  (--2~ + i~ ) / (~2~  4:- i~) ~ L l ( - -  ~ ,  ~ ) .  I] there exists 2a > 0 
such that 

P a a ( t ) - - Z a a = O ( e  -z~ as t - - > ~ ,  

then/or  each k, there exists yk > 0 such that 

P j ~ ( t ) - - ~ j k = o ( e - V ' t )  as t - - > ~  [or each].  

The proof is exactly the same as tha t  of theorem 3.1, except in those places 
where a parameter,  y '  say, which is common to all states, has to be replaced by 
the corresponding parameter  Yk. 

The same method of Laplace transforms may  be used to derive a necessary 
condition for geometric ergodicity. Let us assume tha t  the chain is 'strongly'  
geometrically ergodie i. e. : there exists 2 > 0 (2 independent of i, j) such that  for 
each i, ], P~t (t) - -  x~j -~ o (e-~t) as t --> ~ .  Consider firstly the transient case, and 
a fixed state a. Clearly Paa(t) >>= 1 --  Ha(t), so 1 - -  Ha(t) = o(e -~.t) as t --> c~, 
and H*(s)  converges for R s  > - -  2. By (2.5) G*(s) converges, and 1 - -  G*(s) 
is non-vanishing, in some haft-plane ~2a = ]?s > - -  ya, ya =< 2. Hence kG*(s) 4:1 
anywhere in f)a,  and G~ (s) converges i n / 2  as a consequence of identities (2.6) 
--(2.9). Finally, by  (2.18), H*(s)  converges in f)a- Suppose now tha t  the chain 
is recurrent. Choose 2a such tha t  P*(s)  is analytic in R s  > --  2a for all i, ], 
and Pa*a(s)*O for all real s in the interval [--),a, 0]. Then by  (2.10) G~(s) is 
analytic, hence convergent, in R s  >= --  2a and so, 1 - -  Gka (t) .~- o (e -;~"t) as t --> oo. 
The obvious inequality Gka(t) <= Hk(t) now yields 1 - -  H~(t) = o(e -z"t) as t --> oo. 

In  the case when the chain is geometrically crgodic, but not strongly geomet- 
rically ergodic i.e. when the parameter  of convergence 2, I depends on i and ], 
the corresponding result holds and can be proved similarly. We summarize the 
last two paragraphs in the following 

Theorem 3.3. (i) I / z  (t) is strongly geometrically ergodic, then there exists y ~ 0 
such that /or  each k, 1 - - H ~ ( t )  = o (e-rt) as t ->  r 

(ii) I / z  (t) is geometrically ergodic, then/or each k, there exists ~,~ ~ 0 such that 
1 --  H;~(t) = o(e -r~t) as t--->~. 

4. Geometric Ergodieity in a Finite Chain 

Let m ~ c~ be the number of states in E. I t  will be assumed in this section 
that  0 < ~]j < co for each )'. A transform A* (s) will be said to be 'analytic at  
the origin' if  there exists 2 > 0 such tha t  A* (- -2)  converges. 
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Lemma 4.1. G~ (s) i8 analytic at the origin/or all i, ] in E i /and only i /Q*  (s) 
is analytic at the origin/or all i, ] in E. 

Proo]. The necessity part  follows directly from (2.4). Taking Laplace trans- 
forms and using the real veriable x, we obtain 

m 

(4.1) G~(x) -= Q~(x) -{- ~ O~(x)Q~(x),  i, l e E .  
k = l  

Since (4.1) is an identity between positive quantities, and its right hand side 
consists of a finite sum, the convergence of G~/(x) must imply the convergence of 
each of the transforms on the right hand side. 

The proof of the sufficiency part  of the lemma proceeds by induction. The 
lemma is trivially true for m ~-- 1. Suppose the lemma is true for m = N. We 
now consider a semi-Markov process z (t) of N -~ 1 states with transition prob- 
abilities QIj (t) and first passage distributions Gtt (t). Suppose Q~ (s) is analytic at 
the origin for all i, ]. 

Let k and 1 be two arbitrarily chosen states, k ~= l, k ~= N + 1, l #  N + 1, and 
write Ptj = Q~j(r162 (i,j eE) .  We wish to show firstly that  ~G~(s) is analytic at 
the origin. I t  can be assumed that  at least one of p~,N+I and pN+l,~V+z is less than 
unity for otherwise G~t (r ----- 0 and the result is trivially true. We consider a new 
semi-Markov process 5 (t) with Nstates  and transition probabilities defined as follows. 
For i, j = l , 2  . . . . .  N, 

P;'~ ] qt,~v+l (t) Qtk(t) = (1 + p~,N+I/ 

-=- Q~k (t) 

Ok~ (t) = (1 - -  PN+I, ;V+l)-I QN+I, l (t) 

-~ (1 -- pk, N+l) -1Q~i (t) 

Qij (t) -= Q(l(t) otherwise. 

if Pi,N+I ~:0,  

if pi,N+l -~ 0. 

if PN+I,N+I 4- 1, 

if pN+I,iV+I = 1. 

The notation here is obvious. All quantities related to the new process will be 
marked by a bar, thus G~j is the first passage time distribution of 5 (t). I t  is easily 

N 

checked that  ~ j  ~ 1 for all i ~ 1 . . . . .  iV. Now, kGk*t(s) is determined by the 

Qtj's according to the equation 

N §  

~ ( s )  * * = Qkt(s) + ~ Qkj(s) Q~(s) + 
i 2 1  

(4 .2 )  i * k, t 
N + I  

+ Z (8) y Z * 
i = l  n = 3  a_n~Sn 

imk ,  l 

where 

S ~ , = { ~ = ( ~ 1  . . . . .  ~ - ~ ) ;  ~ l =  1 . . . . .  i V +  1, ~ # k , l }  
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is the set of all paths of (n-- 2) states not containing k and 1. By the definition 
of Qij (t), (4.2) may be rewritten as 

N + I  
Q*(s) + 5 * = Q~j (s) Q$ (s) 

i = 1  
] ~ k , l  

(4.3) + i O~ (s) ~ ~ a g ,  Q~(s) Q~,~(s)'"Q~,_,t(s ) 
~'=I n = 3  ans~n 

] * k , l  

$ 8 " _ 

where a~  =< 1 is a constant, and 

S n  = { i n  = (~1 . . . . . .  :r :r = 1 , . . . , i V ,  0r # l } .  

For each ~ = 1 . . . . .  N, 

- - *  . . .  , (4.4) 

(4.5) O**(s) = O~(s) + ~ - *  Q k ~ ( s )  0=~=~ (s)  �9 �9 �9 O * . _ ~ l ( s ) .  

By the induction hypothesis, ~$(s) and G~(s) are analytic at the origin. A 
comparison of (4.3) with (4.4) and (4.5) now shows that  kG~(s) is also analytic 
at the origin. 

I t  can be similarly shown, by reversing the roles of k and l in the definition 
of 5(t), that  zG~k(s) is also analytic at the origin. 

From (2.2), 

(4.6) G*(s) -- 1 - ,G~(s) ' 

(4.7) e~k(s) * 

By (4.6) and WIDD~R'S Th. 56 (WIDD~, 1946: p. 58), G~(s) is analytic at the 
origin. Similarly G~(s) is analytic at the origin and by (4.7), so is * ask (s). 

The proof for the remaining cases when either or both of k and 1 is N ~- 1 
will be omitted. This proof can be easily obtained by modiiying the definition of 
5 (t) slightly and proceeding in exactly the same way as before. 

We recall that  z (t) is said to be geometrically ergodie if for each i, ?" in E, 
there exists 2j such that  Pij(t) -- 7~lj ~ o(e -;fl) as t--> oo, and strongly ergodic 
if all the 21's may be replaced by a common parameter 2. Obviously for a finite 
chain, geometric ergodicity implies strong geometric crgodicity. The main result 
of this section may be stated as follows : 

Theorem 4.1. (i) I / z  (t) is geometrically ergodic, then/or all i, ~, Q~ (s) is analytic 
at the origin. 

(ii) I / /or  all i, ], there exists ,~ > 0 such that Q* ( -  ~,) converges and 

Q*.(-~ + i~)/(-;~ + i~) eL~(-- ~,  o~), 

then z (t) is geometrically ergodic. 
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Proo]. (i) follows easi ly f rom l e m m a  4.1 and  the  i d e n t i t y  

P *  (s) =- G* (s) P *  (s) .  

(ii) Firstly, Hi* (-- 2) = ~ Q~k (-- ~) converges and H* (-- 2 + i~) / (--  2 + i t )  e 

e L l ( - - ~ ,  r Next ,  b y  l emma 4.1, for all i ,],  there  exists  a >  0 such t h a t  
G~ ( - -  a) converges and  

m~x a ; j ( -  ~) 
[G*~(-a~-i6)i  < ] Q , ~ ( - a + i ~ ) l  l < k < n  

m 
~ I Q * (  - a  §  

whence 
G,'~(-- a + i~) 

U Z ~  e L l ( - -  c~, c~) �9 

B y  theorem D and  the  i d e n t i t y  

G:,(8) H,(s) 
P *  (s) : 1 § 1 - G,'~(s) 1 --  G~(s) ' 

P~  (s) is ana ly t ic  a t  the  origin. An  appea l  to  theorem 3.1 now completes  the  proof.  

I would like to thank Dr. D. VERE-JomEs for the help he has given me in the preparation 
of this paper. 
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