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1. Introduction 

Let X = (~2, 5, ~ ,  Xt, Or, Px) be a real valued process with stationary independent 
increments and right continuous paths with left limits. For each real number x, 
let 

Tx= inf{t >O: Xt= x} 

denote the first hitting time of {x}. We will assume that P~ for t>0,  
and that 0 is regular for {0}, i.e. that P~  Under these assumptions 
P~ {Tx< oo} > 0 for all x ([3]). 

In Section 5 of [1] Blumenthal and Getoor investigate the absolute continuity 
of the L6vy measure v of the pathwise inverse to the local time of a general Markov 
process X at zero. 

Their main result is that v is absolutely continuous under the assumption 
that for each t > 0  and each x~R the transition function Pt(x, dy)=P~{Xt~dy} 
is abso/utely continuous with respect to Lebesgue measure. In order to prove 
this they have to show that the hitting time distributions PY{ T O ~dt} are absolutely 
continuous for y4=0. However, the proof they give for this fact is incorrect. 

The functions t -  > ~ h,(t-u) p(u) du are not non-decreasing. 
0 

In this paper it is shown that for a L6vy process the absolute continuity of the 
transition functions P~(x, dy) is indeed both necessary and sufficient for the 
absolute continuity of v. 

Acknowledgement. I thank Professor P. W. Millar for a number  of valuable suggestions. 

2. Preliminaries 

Let X = {X(t), t > 0} be a real valued process with stationary independent incre- 
ments and right continuous paths. Then E ~ {exp(iuX(t))} = exp { -  t ~(u)}, where 
~(u)=iau+(a2/2)u2+~[1-eiuX+iux/(l+x2)] t~(dx). The measure # is called 
the L6vy measure, and the function ~ the exponent of the process X. 
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If a2>0,  X is said to have a Gaussian component. 
For t > 0  let Pt(x, dy)=Px{X(t)~dy}. If a2>O, then P~(x, dy) is absolutely 

continuous and has a continuous positive density on R. 
The following facts can be proved using the ideas of the proof of Proposition 

2.1. of [9]. (See also the proof of Theorem 2. of [7].) 

(2.1) Proposition. If 62=0  and #(R)=oo,  then Pt(x, dy) is non atomic and the 
support of P~(0, dy) is an interval of the form ( -  ~ ,  oe), ( -  0% c t] or [c t, oe). If 
S ]xt/( 1 +x2)#(dx) =~176 then the support of Pt(x, dy) is ( - o %  oo). 

The next proposition generalizes Theorem 1., 2. and 3. of [7]. (We need not 
assume that # is absolutely continuous, # may even be purely atomic. See the 
examples at the end of this paper.) 

(2.2) Proposition. If the measures Pt(x, dy) are absolutely continuous for each 
t > 0, then P~(x, dy) has a density which is lower semi continuous and positive over 
its support. 

Remark. For fixed t > 0, the density of Pt(x, dy) may be unbounded on every interval. 

Proof. If a 2 --0, we must have # (R) = oc. The proposition is therefore a consequence 
of Proposition 2.1. and the following 

t 

L e m m a l .  Let F( t )=  Sf(x)dx  be a strictly increasing probability distribution 
0 

function on (0, oo). Then 
x 

( f , f )  (x) = ~ f (x - y) f (y) dy 
0 

is positive for a.a. x>0 .  I f  in addition f is lower semi continuous, then ( f  * f)(x)>O 
for all x>0 .  

Proof. Put N = { t > 0 :  ( f  * f)(t)=O} and let g ( - t ) = e - t  IN(t). O=~ ( f  , f)(t) g( - t )  
d t = ( f , f ,  g)(0)=~ f ( t ) ( f , g ) ( - t ) d t .  Assume that N has positive Lebesgue 
measure. Then there exists a subset N o of N such that N \ N  o has Lebesgue 
measure zero, and every x e N  o has metric density 1 with respect to N, i.e. 

Zg-b8 

lim(2e) -1 ~ In(t )d t=l .  
~ 0  x - - g  

Let Mo be a subset of { f >  0} such that { f >  0} \ M 0 has Lebesgue measure zero, 
and every x e M  o has metric density 1 w.r.t. M 0. Then N o - M  o is an open set 
meeting (0, oo). For t~N o - M  o we have ( f ,  g ) ( - r ) >  0. Since the support of F is 
[0, oo), this implies ~ ( f , g ) ( - t ) F ( d t ) > 0 .  Contradiction! This proves the first 
assertion. If f is lower semi continuous, then the set C=  {t>0:  f(t)__<0} is closed 
and nowhere dense. If ( f , f ) ( x ) = 0  for some x > 0, then we must have C u ( x -  C) 
[0, x]. This contradicts the Baire category theorem. 

From now on we will assume that pO {T~ < ~ }  > 0  for all x, and that pO {T o =0} 
= 1. Under these assumptions the support of P~(x, dy) is R. 

Let a < b. Consider the following stopping time, 

T = i n f { t > 0 :  X ( t - ) < a < b < X ( t ) } .  

T is the first time the process jumps across the interval [a, b] from below. 
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Lemma2.  Assume that #{(b-a ,  oo)}>0. Then P ~  and for Borel 
sets A c ( -  oo, a) and Bc(b,  ~)  we have 

pO {T<t, X ( T - ) e A ,  X(T )eB} 
T A t  

= E  ~ ~ I {X ( s ) eA}#{B-X( s ) }d s .  
0 

Proof. Let f(u, v) be a bounded Borel function from R 2 to R that vanishes for 
tu -v l  < (~. Then, according to the theory of L6vy systems (see [11], Theorem 4.3.) 

t ,  

f (X(s -  ), X(s))-  ~ ds ~ fiX(s), X(s)+ y) #(dy) 
s < t  0 

is a martingale with mean zero. Put f(u, v)=I A (u)IB(v ) and apply the Optional 
Sampling Theorem to the stopping time TAt. This completes the proof. 

(2.1) Corollary. Assume that #{ (b-a ,  oo)}>0 and assume that the measures 
Pt(x, dy) are absolutely continuous. Then the measure pO { X ( T - ) E  dy} is absolutely 
continuous on R and for a.a. y < a 

pO { r<t ,  X ( T ) ~ B ] X ( T -  )= y} 

= pO {T<t lX(T- - )=y}  pO {X(T)~B]X(T- )=y} .  

Furthermore, the conditional distribution of T given X ( T - ) = y  is absolutely 
continuous on R. 

Proof. Let 2 denote the process X killed at time T, i.e. 2 ( 0  = X(t) if t < T and 
2 ( t )=A if t >  T. Obviously, the measure pO {ff(t)~dy} is absolutely continuous 
on R. Let p(t, y) be a jointly measurable density for po {2(t)~dy}. Then 

-- - i  e ~ {r<t ,  X ( T - ) e A ,  X(T)EB}-  ds~p(s,y)~{B-y} dy. 
0 A 

This allows us to identify the conditional probabilities in question thus completing 
the proof. 

(2.2) Corollary. Under the assumptions of Corollary 2.1. the distribution of the 
stopping time 

T+ TzoOr=inf{t> T: X(t)=z} 

is absolutely continuous on R. 

Proof. Since T and T~oO T are conditionally independent given X ( T - ) = y ,  it 
follows that is absolutely continuous on R. p0 {T+ T~oOredtIX(T-)= y } 

3. Main Results 

Let /5~ denote the local time of X at x chosen as in Section 3. of [1]. For each 
Borel set B and each t > 0 

t 

~ ~ dx= ~ lB(X.) du a.S. 
B 0 
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We define z(t)=inf{s>O:L~ According to [1] we then have for 2 > 0  

E ~ {exp( -  2 z (t)} = exp { - t(C + g (2))} 

~3 

where 0 <  C <  oo and g(2)= S (1 - e x p  ( - 2 u ) )  v(du). 
0 

Here v is a positive Borel measure on (0, oo) such that v{(0, oo)}=m and 
oo 

u/(1 +u) v(du)< oo. We shall call v the L6vy measure of z. 
o 

We are now able to state our main result. We shall indicate that a Borel 
measure F on R is absolutely continuous with respect to Lebesgue measure by 
writing F (dx) ~ dx. 

(3.1) Theorem. The following conditions are equivalent: 

(1) Vt>0 :  Pt(x, dy)~dy, 
(2) Vz#:0: po {Tzedt } ~dt ,  

(3) v (du) ~ du, 
(4) Vt>0:  po {z(t)eds} ~ds.  

(5) There exists a jointly measurable non negative function a (y, x) such that 
t 

0 E x {/2t} = ~ a(y, x) dy for all xeR,  t>0 .  
o 

Proof. (1):*(2). Assume that P,(x, dy) is absolutely continuous. I fX  has a Gaussian 
component and ft {R} < o% then the absolute continuity o fP  ~ {T~sdt} follows from 
the absolute continuity of the hitting time distributions of Brownian motion. 
Assume therefore that # {R} = oo. Let ~ > 0 and let B ~ (e, c~) be a Borel set of 
Lebesgue measure zero. Then 

{Tz~B} ~ U {T+ TzoOT~B } 
T 

where the union is taken over the countable number of stopping times, T-- inf  
{ t>0:  X( t - )Kr l  <r2 <X(t)} and T = i n f { t > 0 :  X(t) Kq <r2 KX( t - ) }  where q <r 2 
are rational numbers. In virtue of Corollary2.2. it follows that pO { T ~ B } = 0 .  
(2):*(3): Blumenthal and Getoor prove this in [1]. In [6] Horowitz gives the 
following elegant proof: 

For s > 0  let as=inf{t>s: L~176 Then pO {as< oo} = 1, po {X(as)=0} = 0 
and for all t > 0 

v{(s+t, oo)} + C 
=pO {Too0~ > t} = E  ~ pX(~s){To> t}. 

v {(s, oo)} + c 

For  any Borel set B c (0, oo) we therefore get 

v {s+B} = Iv {(s, c~)} + C] E ~ px(r To eB}" 

If we assume that PY { T o ~ dr} is absolutely continuous for all y # 0 it follows that v 
is absolutely continuous. And we see that v has an a.e. positive density over (0, oo) 
under the additional assumption that the hitting time distributions have a.e. 
positive densities over (0, oo). 
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(3)~(4). This implication is well known. (See Fisz and Varadarajan [4].) 
(4)~(5). Let g(t,y) be a jointly Borel measurable non negative density for 
pO {~ (t)edy}. Then 

$ 

pO {LO> t} = p o  {z(t) <s} = y g(t, y)dy, 
0 

oo s 

E~ {Es}~ = SpO(LO>t}dt=~p(y)dy, 
0 0 

where the Borel function p(y) is defined by p(y)=~g(t,y)dt. Put ~(y ,x)= 
Y 0 

~ p ( y -  s) PX { To~ds}. 
o 

It follows that a is jointly Borel measurable. Furthermore 

t 

E~' {/~} : I E~ {L~ W {Toads } = i a(y, x) dy. 
0 0 

(5)~(1). Let B c R  be a fixed Borel set. For every t > 0  

t 

dy ~ a(y, - x) dx = E ~ ~ I~ dx= E ~ i IB(X (Y)) dy 
0 B B 0 

0 

Therefore pO {X(y)~B} = ~ e(y, - x )  dx for a.a. y > 0 .  
B 

The exceptional set depends on B, For yr a null set, P~ 
f ~(Y, - x ) d x  simultaneously for all intervals B with rational endpoints. It now 

B 

follows that for yeN  this identity holds for all Borel sets B. So pO {X(y)sdx} has 
a density for a.a. y, and hence for all y. Q.E.D. 

(3.2) Theorem. I f  P,(x, dy)~dy for all t>0 ,  then the measures po {T~edt}, z+O, 
and v (du) have a.e. positive densities on O, ~). 

Proof. Let z4:0. Consider the function 

F(t)= P ~ { T~< t, T~< T2z}. 

According to Theorem 3.1., F is absolutely continuous. Furthermore, F is strictly 
increasing on (0, oo). (See the proof of Proposition 2.1. of [9] and use the fact 
that x--* E~e -xT~ is continuous for ag 2 > 0  according to Bretagnolle [3] , )Let  
f(s) be a density for F. In virtue of Lemma 1., 

t 

( f , f )  (t)= ~ f ( t -  s) f(s) ds 
0 

is positive for a.a. teO,  ao). For any Borel set B e ( 0 ,  oe) of positive Lebesgue 
measure we therefore have 

po {T2z~B} > po { ~ <  T2~6B} >_ S ( f , f )( t)dt>O. 
B 
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This shows that pO {T2zedt} has an a.e. positive density on (0, oe). We have 
already noted in the course of the proof of Theorem 3.1. that if the hitting time 
distributions PY{Toedt } have a.e. positive densities on (0, oe), so will v. 

4. Examples 

If the L6vy measure/~ of X is absolutely continuous, then the transition functions 
Pt(x, dy) are absolutely continuous. The first example in this section shows that 
not all L6vy processes with absolutely continuous transition function s have an 
absolutely continuous L6vy measure. 

If X is symmetric, then x regular for {x} implies that the transition functions 
of X are absolutely continuous. The second example shows that not all L6vy 
processes for which x is regular for {x} have absolutely continuous transition 
functions. 

1 

Let the process X have exponent ~V(u)= S [1-elUX+iux] I~(dx) where the 
1 o 

L6vy measure # satisfies ~ x I~(dx)= oe. 
0 

Then X has only upward jumps and moves downward in a continuous manner. 
Furthermore, E ~ {Xt} =0 and E ~ {X 2} < oe. (See [10]). It follows that pO {Tx< 00} 
---1 for all x, and it is obvious from "Rogozin's Theorem" that pO {To=0} = 1. 

(Rogozin's Theorem states that if X is a L6vy process for which 

Lxl/(1 + x  2) # (dx)  = o% 

and X 0 =0, then inf{t > 0 : X t > 0  } = in f{ t>0 :  Xt<0} =0  a.s.) 
We shall consider two examples of such measures g. 

First let /~= ~ (5(n'1/~); �9 where l < e < 2  and 6(x) denotes the probability 
n = l  

measure with support {x}. Then, writing 7JR for the real part of ~, we have 

liminf u -  ~ 7JR(u) > 0. 

This shows that Pt(x, dy) is absolutely continuous with'.a Continuous density. (See 
Section 4. of [1].) 

Next let/~= ~ 22"~(2-2"). 
n = l  

In this case we have liminf 7~R(u) < oe. 
u ~ o o  

So Pt(x, dy) can not  be absolutely continuous w.i.t. Lebesgue measure. 
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