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Endomorphisms of Substitution Minimal Sets 

ETHAN M. COVEN* 

w 1. Introduction 

Let ~ = ( X ,  h) be a (discrete)flow, that is, X is a non-empty compact Haus- 
dorff space and h is a homeomorphism of X onto itself. A flow 4f '=  (X', h') is a 
subflow of ~r if X' is a closed, h-invariant subset of X and h'=hlX'. A flow is 
minimal if it has no proper subflows; a minimal flow is also called a minimal set. 
Let o~=(y,, g) be another flow. A homomorphism ~o of X to ~ a continuous 
map of X onto Y such that the following diagram commutes. 

X h ,X  

Y ~  Y 

In this case ~ is called a factor of X. A homomorphism of X to itself is called an 
endomorphism and a one-to-one endomorphism is called an automorphism. 

A standard problem in topological dynamics is to determine the set of endo- 
morphisms of a given minimal set or class of minimal sets. In this paper we solve 
this problem for the class of minimal sets known as substitution minimal sets. 
The solution is given by the following theorem. 

Theorem. Let 0 be a substitution of equal length on two symbols such that the 
substitution minimal set Jg(0)=(M,  a) coming from 0 is non-periodic. I f  0 is non- 
dual, then every endomorphism of Jg (O) is a power of the shift a. I f  O is dual, then 
every endomorphism of ~ (O) is of the form a k or Gk (~ where k is an integer and 
is the dualizing map. 

w 2. Substitution Minimal Sets 

Let f2 denote the set of bisequences of zeros and ones, i.e., 

~ =  {... co_l COo %. . . Ico i=0  or 1}. 
oo 

Set-theoretically, f2= I-I{0, 1}. Given the product topology, f2 is a compact, 
- - o 0  

metrizable space homeomorphic to the Cantor discontinuum. The shift homeo- 
morphism a: f2 - , f~  is defined by a(co)i=o~i+ 1. The resulting flow ~=( t ? , t r )  
is called the symbolic flow or shift dynamical system. It has been the object of 
extensive study for the past thirty years. 

The dual of a point coef2 is defined to be the bisequence & obtained from oJ 
by interchanging zeros and ones. The dualizing map 3, defined by 3(o~)=&, is 
an automorphism of 5(. The dual of a block (i. e., a finite sequence) is analogously 
defined. 

* Partially supported by NSF grant GP-23105. 



130 E.M. Coven: 

Let 0 be a substitution of equal length n on two symbols. Thus 0 is given by 
two n-blocks, O(O)=aoal...a,_ 1 and O(1)=bobl...bn_l, where a/, bi=0 or 1. In 
a manner described in [2] or [3], 0 gives rise to a minimal subflow ~//g(0) of 5 ~ 
called a substitution minimal set. In order to insure that ~g/(0) will be non-periodic, 
we will assume that 0 satisfies none of the following triviality conditions. 

(i) 0(0)--00...0 or 0(1)= 11 ... 1. 

(ii) 0(0)= 11 ... 1 and 0(1)=00.. .0.  

(iii) 0(0)-- 0(1). 

(iv) 0(0)--0101 ... 010 or 1010... 101 and 0(1)=0(0). 

The remaining substitutions will be classified according to the size of the 
disagreement set J(O)={ilai#bi}. We say that 0 is dual (in the language of [2], 
continuous) if J={0 ,  1, ..., n - l }  and non-dual (discrete) if J:#{0, 1, ..., n - l } .  
This terminology agrees with that of Keynes [5]. 

Let 0 be a non-dual substitution of length n and let Jg(0)= (M, a) be the 
substitution minimal set coming from 0. It is shown in [3] that the maximal 
equicontinuous factor of Jg(0) is the n-adie flow ~r (n) = (Z (n), ~) where Z(n) is 

} the group of n-adic integers zinilzi=O, 1, ..., n - 1  and z ( z )=z+  1. Suppose 
i 

z=~,  z i n ~ is an element of Z(n). We say that z is an integer in Z(n) if z~=0 for 
large i or if z~ = n - 1  for large i, that is, if z is in the 7-orbit of 0. 

Let X be a flow and ~ its maximal equicontinuous factor. A homomorphism 
p: X - ~ J  is called a structure homomorphism of X. In [2], a structure homomor- 
phism ~z: J/g(O)-~(n) is analyzed in some detail. It is shown that Z(n) may be 
written as the disjoint union of two non-empty subsets Z* and E, where Z * =  

{zl~z-l(z) is a singleton} and E= ~ "~kJoo , where Joo={~zini]ziGJ for all i}. 
- - o o  

In the next section, we reduce the problem of finding the endomorphisms of 
d//(0) to that of finding which t~Z(n) satisfy E + t__ E, and we solve this combina- 
toric problem in w 4. 

w 3. Reduction of the Problem 

Suppose that X is a minimal set, ~ a factor of X and p: X--,~J a homomor- 
phism. Suppose further that p is somewhere one-to-one, that is, there is a point 
yE Y for which p-~(y) is a singleton. It is easy to see that every p-fibre is pair- 
wise proximal. Thus, if a structure homomorphism of X is somewhere one-to- 
one, then X is proximally equicontinuous [1] and point-distal (i.e., there is a 
point in X proximal only to itself). 

Suppose now that X is proximally equicontinuous and minimal, Y/its maximal 
equicontinuous factor and p: X-- -~  a structure homomorphism. Then for each 
endomorphism cp of X, there is an endomorphism ~ of ~J such that the following 
diagram commutes. 

X ~ ,X 

Y ~  Y 
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If, in addition, X is point-distal, then this correspondence is one-to-one. For  
suppose q0 and q0' are endomorphisms of f such that pq~=p~o'=~,p. Then 
r (x)= ~o' (x) for any x ~ q~-1 (x0) ' where x o is any distal point in X. By the minimal- 
ity of X, ~0 = q/. 

Since ~r is equicontinuous and minimal, every endomorphism of ~ one-to- 
one. Thus, if the diagram above commutes, then ~ must map the set {y~ YlP-l(y) 
is a singleton} to itself. 

Let rig(0) be a substitution minimal set coming from a non-dual substitution 
0 of length n. Without loss of generality, we may assume that 0 is in normal form 
[2, w 7], in particular that O~J(O). The results of [2] quoted in w 2 together with 
the results above show that for each endomorphism q9 of ~/~(0), there is an auto- 
morphism ~ of ~ (n )  such that O(Z*)~_Z*. Since for each integer k, the follow- 
ing diagram commutes, 

M ~k --,M 

"4" 

z (n) ~ z (n) 

to prove the first part of the theorem, we need only show that if O(Z*)~_Z*, 
then 0 = ~k for some integer k. 

Since each automorphism of ~e(n) is of the form ~,(z)= z + t for some t eZ(n), 
we must show that if Z* + t _  Z*, then t is an integer in Z (n). However Z* + t _c Z* 
implies E + ( - t ) c _ E ,  furthermore t is an integer in Z(n) if and only if ( - t )  is an 
integer in Z(n). Therefore it suffices to show that if E+tc_E, then t is an integer 
in Z(n). We state this result as a lemma to be proved in the next section. 

Lemma. Let n>=2 and let J be a proper subset of{O, 1 . . . .  , n - l }  which contains 
O. Let E be as in w I f  t~Z(n) and E+t~_E, then t is an integer in Z(n). 

w 4. Proof of the Lemma 

We will use the following notation and terminology. 

(i) For  any integer q, [q] will denote the residue rood n of q. 

(ii) The phrase "q appears in z" will mean z k = q for some k where z = ~ z i n i. 

The following remarks are easily verified and will be used in the proof of the 
lemma. 

(i) If q appears infinitely often in some member of E which is not an integer 
in Z(n), then q~J. 

(ii) If q~ ~ q2 both appear infinitely often in some member of E, then both 
belong to J. 

Assume the hypotheses of the lemma hold but that t is not an integer in Z(n). 
Let t=~t~ni ;  then {kirk+n--1 } is infinite. Notice that the Iemma is trivial for 
n = 2, so we assume that n = 3. 

Proposition. Let j~Y  and let q appear infinitely often in t. Then for each re>O, 
[mq+j]~J .  
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Proof We prove the proposition for m = 1, the proof is then completed by 
induction. Since OeE, teE. Therefore the result is true for j=O. We assume that 
j4:0. 

Let K = {kl < k2 < ' - ' }  be an infinite subset of {k] tk = q} satisfying: for each i, 
there is an integer m, ki < m < k i+ 1, such that t,, 4= n -  1. Let K' = {k a ~1 i > 1 }, K" = 
{k3i_t}, and K'"={kai_2}. Define zeZ(n) by zk=j if keK'  and Zk=O otherwise. 
Then z e E and so z + t E E. Now 

(Z+t)k= [ q + j ]  if k~K' 

= q  if k~K" 

= q  or [ q + l ]  if keK'". 

Since [q+j]:l=q, [q+j]eJ.  

The proposition has the immediate corollary that n - 1  does not appear 
infinitely often in t. If not, then takingj =0  in the proposition, we have Ira(n- 1)] e J  
for all m>=0. Then J-={0, 1, . . . , n - l }  which is impossible. We may therefore 
assume that n - 1  does not appear in t at all. 

There are now two possibilities to consider. 

(A) For  some q:t:0, the set K(q)={kltk=q, t~_1=~0} is infinite. 

(B) For each q 4:0, K(q) is finite. 

We show that each leads to the contradiction that J =  {0, 1 . . . .  , n -1} .  

Suppose (A) holds. Let K* be an infinite subset of K (q) such that 

(i) Any two members of K* differ by at least 5. 

(ii) K* does not contain two consecutive members of K(q). 

Let Jo denote the largest member of d and let j be any member of d. Define 
zeZ(n) by Zk=j, Zk_l=jo for k~K* and zk=O otherwise. Then z~E. 

Let keK*. Since zk_ l+ tk_ l> jo ,  there is a "car ry"  to place k. Thus (z+ t)k= 
[ q + j +  1]. If k ~ K - K * ,  then (z+ t)k:_2=tk_2 or tk_2+ 1, so there is no "car ry"  
to place k - 1 .  Therefore (z + t)k_ 1 = tk_ ~ 4:0 or n - 1 .  Hence z + t is not an integer 
in Z(n) and so [q+j+l]~Y.  

Using this and the proposition, it is easy to see that [mlq+m2]Ed for all 
ml, m2>=_l. But then d={0,  1 . . . . .  n - l } .  

Suppose that (B) holds. Then there is an integer k 0 such that for all k ~  ko, 
tk 4: 0 implies tk_ l = tk + t = O. Let K o =  {k>kol tk 4: 0 } and let jed,  j 4: n - 1 .  Define 
zeZ(n) by Zk=Jo, Zk+t=j for k e K  o and Zk=O otherwise. Then zeE. Let kEK o. 
Since z k + t k >Jo, there is a "car ry"  to place k + 1. Therefore (z + t)k+ 1 =J-~-1. But 
(z + t)k_ 1 = 0 or 1, neither of which is n - 1 because n > 3. Hence j + 1 E J. There- 
fore J = {0, 1, ..., n -  1}. This proves the lemma. 

w 5. The Dual Case 

Let 0 be a dual substitution of length n, given by 0(0)=a  o a l . . . a , _ l  and 

0(1) = 0(0"-~). Let Jg (0)=  (M(O), a) be the substitution minimal set coming from 0 
and let re: Jr  ~ (n) be the structure homomorphism described in [21. As in 
[21, the four members of rr-l(0) are moo, cool, e)lo, and co n. It is easy to see that 
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only asymptotic pairs of orbits in Jg(0) are those of co ~176 and co ~ co ~176 and co 1~ 
0) 11 and co ~ and (I) 11 and co 1~ 

Any automorphism (p of Jg(0) must map co ~176 into the orbit of some point 
of To-l(0). If (o(co~176176176 then ~o=o -k for some integer k. If ~o(co~176 
then (p =o-k~. If rp(co~176176 then for some integer k, (p'= ak (p is an automor- 
phism such that (o ~176 and (p,(cooo) are asymptotic. Then (0' is the identity which 
is impossible. Similarly (p(co~176176 Therefore to complete the proof of the 
theorem, it suffices to show that every endomorphism of Jg(0) is one-to-one. 

Suppose (p is an endomorphism of J//(0) which is not one-to-one. It is easy 
to see that (p must map the four points of To- 1 (0) to the same point, in particular, 
that q) (cooo) = (o (o11). Using the theorem of Curtis-Hedlund-Lyndon [4] on endo- 
morphisms of ~ we may assume that q~ =f~o Im(0) whe~ref~ is an endomorphism 
of 5 p coming from some block map f Since coll = o~OO, it follows that for each 
block B appearing in J/(0), f(B)=f([~). Therefore ~o (co)= (p (&) for all co eM(O). 

As in [2, w 8], let 0 be the non-dual substitution associated with 0; 0(0)= 
Co cl ... c,_1, (~(1)= do dl ... d,_l where ci=di=ai+ai+l(mod 2)for i=0,  1, ..., n - 2  
and c,_ 1 = c/,_ 1 = an _ 1 + al + 1 (mod 2). Let g be the block map given by g (x 1, x2) = 
Xl+X2. Then g~o is a homomorphism of d/l(0) to ~g(0) such that every goo-fibre 
consists of a pair {co, (5}. Hence there is an endomorphism ~ of rig(0) such that 
the following diagram commutes. 

M(O) ~ , M(O) 

M(O) ~ M(O) 

Let coeM(O) and let ~--q~(c~)=q~(c5). Then g~l(goo(~))={~, Z}. If co'eq~-l(~), 
then ~ goo (co) = ~ g~ (co') but goo (co) 4 g~ (co'). However this is impossible because 
every endomorphism of ~'(0) is one-to-one. 

The author wishes to thank Michael Keane for many helpful discussions. 
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