
Z. Wahrscheinlichkeitstheorie verw. Gebiete 29, 193- 227 (1974) 
�9 by Springer-Verlag 1974 

Uniform Rates of Convergence 
for Markov Chain Transition Probabilities 

J. W. Pitman 

1. Introduction and Statement of Results 

Let P be a Markov matrix indexed by a countable set of states J, and denote 
the n-th iterate of P by 

(1.1) P"- t , ( 'h  i,j~J, n=0,  1, 2, - -  - - ' , Y i j  :, . . . .  

If P is irreducible and aperiodic then according to a well known theorem of 
Kolmogorov [14] 
(1.2) lira n!~.)= 1/m.. 

n ~  oo  l ~ l J  / J J  ' 

where mjj denotes the expected recurrence time of state j, and l/m# is taken to be 
zero in the transient and null recurrent cases when rnjj-=o~. In his book [lJ 
Breiman gives an elegant proof of this theorem in the positive recurrent case which 
is based on the simple probabilistic device of comparing the progress of two inde- 
pendent Markov chains with the same transition probabilities P but different 
initial distributions. It is shown here that this device can in fact be used to cover 
the null recurrent case too, and more importantly that in the positive recurrent 
case it is possible to further exploit the idea to obtain a number of new and powerful 
refinements of the main limit theorem. The central results will shortly be stated in 
Theorems 1 and 2 below. These theorems provide new results on the rate of con- 
vergence in (1.2) for Markov chains with infinite state space. The results generalise 
the work of Feller [5] and Karlin [9] on the rate of convergence of renewal 
sequences, as well as extending results from the potential theory of positive re- 
current chains due to Kemeny, Snell and Knapp [10]. 

To state the results we first require some notation. Let 2 = (2j) be a probability 
distribution on J, to be thought of as an initial distribution, and set 

p~; = (2 P')j = Z 21 ply ) �9 
i e J  

Here, as everywhere in the sequel, it is tacitly assumed that j ranges over the state 
space J and n ranges over the set N of non-negative integers. For  the initial distri- 
bution 5 i on J which attributes probability one to the single state i in J we shall 
always write simply i instead of 6i in subscripts. Let us suppose that on a suitable 
probability space (~2, ~,  lPz) a Markov chain (X,) has been constructed with state 
space J, initial distribution 2 and stationary transition probabilities P. We then 
have that 

p~)= IPz (X,=j), 

so that 2 P" is the distribution of X,. 

14 Z.Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 29 
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A bounded signed measure v on the power set of J will be referred to simply as 
a signed measure on J, such a signed measure being determined by its values 
b =  v {j} on single point sets {j} c J. The total variation norm of v is denoted 
by l[v![ : 

!lv!l = Z Ivjl. 
jeJ 

We shall only consider the norms of signed measures v on J with total mass v (J) 
equal to zero (e.g. differences between probabilities), and then also 

(1.3) !lull =2  sup Iv(n)l. 
H c J  

For the rest of the introduction let us suppose that our given Markov matrix P 
is irreducible, aperiodic and positive recurrent. By virtue of dominated convergence 
and Scheff6's theorem I-18-1 the limit theorem (1.2) can be restated for this case in the 
following way: for all initial probability distributions 2 on J, 

(1.4) lim !12P"-~!l =0 ,  
t l~oO 

where n = (zg) is the (unique) invariant probability measure for P given by ~zj = 1/mjj. 
From (1.4) and the triangle inequality for !1 ![ we have also that for any pair of 
initial probabilities 2 and #, 

(1.5) lim !IAP"-#P"ll =0 ,  
n ~ o o  

(1.4) being the special case of (1.5) when/~ = re. It may be noted that the sequences 
of norms appearing in (1.4) and (1.5) in fact decrease monotonically to zero, since 

2 P " - i t P " = ( 2 - 1 ~ )  P" 

and P is norm decreasing on the space of signed measures with total variation norm. 
It is the rate at which these norms decrease to zero which is the main concern of the 
two theorems stated below. Also considered in these theorems are the measures 

2 ~ pk associated with initial distributions 2 on d. Recalling our Markov chain 
k = l  

(X,) defined on (f2, ~ IP~) with initial distribution 2 and transition probabilities 

P, we have that just as )~P" is the distribution of X., so 2 ~ P* is the "expected 
k = l  

occupation time measure" which attributes to a subset H of J the expected number 
of times k with 1 < k < n that Xk ~ H, that is to say 

1E~ ~ I~(X.), 
k = l  

where IE, denotes expectation with respect to IP~ and In is the indicator function 
of the subset H of J. 

Let T~ denote the first passage time of (X,) to the state j in J:  

Tj=inf{n: n>0 ,  X , = j } ,  

and set 

(1.6) m)q-~ IE)~ Zj= E 2i mij" 
izJ 



Uniform Rates of Convergence for Markov Chain Transition Probabilities 195 

We are supposing that P is irreducible and positive recurrent, and thus for all i 
and j in J we have 

(1.7) mij < oo 

(see Freedman [8], 1.8). In Theorem 1 we shall be imposing the condition on an 
initial distribution 2 that mz~ be finite for all j  in J. It is an easy consequence of (1.7) 
that this is in fact the case as soon as mzj is finite for some j in J, and in particular 
the condition is satisfied whenever 2 has finite support. 

Theorem 1. Suppose that P is an irreducible, aperiodic and positive recurrent 
Markov matrix with countable state space J, and let 2 and kt be two initial distri- 
butions on J such that for all j in J both mar and muj are finite. Then both 

lim n 112 P " - #  P"II =0,  
n ~ o o  

(1.8) 
and 

(1.9) U~P"-/~P"!I < oo; 
n = l  

furthermore there is a signed measure v on J with total mass zero such that 

2 ~ pk # --V =0,  
~- k ~ l  

(1.1o) 

and v is given by 

(1.11) vj = (rn~j- mzj)/mjj, j e J. 

Proof of this theorem is the subject of Section 3. To illustrate the strength of 
the assertions of convergence in norm it is perhaps worth spelling out in detail 
some of the statements of Theorem 1. Thus according to (1.8) we have 

(1.12) lira n ~ ]p~)-p(~][ =0,  
n~o~ j ~ y  

or, using (1.3), for every subset H of J 

lim n [2P" (H)-/~P"(H)I =0 ,  
n ~ o o  

the convergence being uniform over all subsets. Naturally similar amplifications 
can be made corresponding to (1.9) and (1.10), and for that matter any of the other 
assertions of convergence in norm which follow later. Elaborating on the state- 
ments (1.9) and (1.10) we see that ifm~j and m,j are both finite, j e  J, then 

(1.13) ~ (p~)-p~))=(muj-m~)/mij  ' j~J ,  
n = l  

and the series are uniformly absolutely convergent over j in J, indeed 

(1.14) 2 2 " ' " '  / ~ 2 j  - -  F # j  ~ "  OO . 

je f f  n = l  

Apart from the assertions of uniform and absolute convergence the result (1.13) 
can be found in Kemeny, Snell and Knapp [10] where it is also shown that 
14" 
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(1.16) 

(1.17) 

and 

Ivjl is finite, a fact implicit here in the statement that v is a bounded signed 
j e J  

measure. However as far as I am aware both (1.12) and the assertion that the series 
in (1.13) are absolutely convergent are new even in the simplest case with 2=~i 
and # = 6k for particular states i and k in J, when the results invariably hold and 
reduce to statements purely concerning the limit behaviour of the n-step transition 
probabilities pl~ ) and p~), j ~J  (cf. (5.14)below). 

Obviously a most important special case of Theorem 1 will arise on making 
the simplifying substitution of the invariant probability rc for the second initial 
distribution #, but the statement of both this and another important corollary of 
Theorem 1 are being left until after the statement of the more general Theorem 2 
below (see the special cases r = 2 of Corollary 1 and r = 1 of Corollary 2). 

For r = 1, 2, let ~(r) denote the r-th moment of the first passage time to j for . . .  ~,~,~j 

initial distribution 2: 
m~) = lE~(Ty = V 2-m!0 

, ' ,  z U " 

If m)~ ) is finite for some j in J then m}~ ) must be finite for all j in J and we say that 
P has recurrence times with finite r-th moment (see Freedman [8], 2.9). In this case 

(1.15) ml]~< oo 

for all i and j  in J, and for a general initial distribution 2 on J either m~) is finite for 
all j in J or -,t~) is finite for no j in J. In particular the former case obtains if 2 
has finite support. Theorem 1 is the special case r = 1 of the following more general 
theorem: 

Theorem 2. Let r be a positive integer and suppose that P is an irreducible and 
aperiodic Markov matrix with countable state space J and recurrence times with 
finite r-th moment. Let 2 and # be two initial distributions on J such that both m~) and 
mCr! are finite for j in J. Then ~3 

lim n ~ I]2 P " - p  P"LI =0,  
n ~ o o  

~ n ~-I ! I , tP ' -~P"  !1 <oo , 
n = l  

" " - - v  = 0 ,  (1.18) lim n r - '  [2 Z Pk--I~ • pk] 
n ~ o o  k k = l  k = l  J 

where v is the signed measure on J given by (1.11). 

This theorem is proved in Section 4. There is a useful alternative way of ex- 
pressing the condition that m~] be finite. Fixj  in J, let JP denote the sub-stochastic 
matrix obtained from P by replacing the j-thcolumn by zeros, and define a matrix 
JU by 

c o  

(1.19) JU= ~ (JP)", 
n = O  

so that JU is the matrix with (i, k)-th entry equal to 

lEg [Number of times in state k before first passage to j ] ,  
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(1.22) 

(1.23) 

and 

which is of course finite under our assumption that P is irreducible. It is a conse- 
quence of Proposition (4.6) in this paper that for any positive integer r and any 
initial distribution 2 an J 

(1.20) IE;. Tj (Tj + 1)... (Tj + r -  l ) = r  ! 2(JU)" 1, 

where on the right hand side 1 denotes the function on J which takes the constant 
value one. Thus ~-(') is finite if and only if 2(U)*l is finite, and this reduces the H~Xj 

condition to one which involves only the first moments of first passage times, 
since with our implicit assumption that P is positive recurrent we have 

Uik--(mij+mik mik)/mkk +C~ik 6jk, 

where 6,h= 1 if g=h,  0 otherwise (cf. Chung [3], 1.11). Considering now the in- 
variant probability Tc for P, it is well known and easy to prove that 

(1.21) 6 i (JU) = m j j  7~ ~- 7~/7~ j ,  

and putting this in the moment identity (1.20) above for )~=bj, r=2 ,  we obtain 
after rearrangement the identity 

m~j = (mJ 2~ + mjj)/2 mjj 

(cf. Chung [3], 1.11); furthermore for r=2,  3, . . . . . .  we see that m(~- a)~J is finite if and 
only if m}~ ) is finite, i.e. P has recurrence times with finite r-th moment (Kemeny, 
Snell and Knapp [10], 9.65). Thus taking # = n in Theorem 2 gives us the following 
corollary: 

Corollary 1. Suppose that P is irreducible, aperiodic, and positive recurrent with 
invariant probability re, and that P has recurrence times with finite r-th moment for 
some integer r >=2. Let 2 be an initial distribution such that m~j -~) is finite for j in J 
(in particular this will be the case if2 is bounded by a multiple of re). Then 

lim n ~-1 !]2P"-7c! I =0 ,  

~ n~-Z]12P"-TrJI <o9,  
n = l  

n 

(1.24) ,~lim n ' -2  2k~pk--nwl n--V' =0,  

where v' is the signed measure on J with total mass zero which is given by 

i (2) (1.25) vj = [(m)j + m j j)~2 mjj - -  m~j]/mjj, j~ J. 

In particular, we deduce from the corollary with r = 2  (i.e. from (1.13) really) 
that if P has recurrence times with finite second moment and m~j is finite, j~ J, then 
for j ~ J  

(1.26) (p~") - ~ ) = lim p - n ~j = v), 
n = l  J J n ~ o o  L k = l  
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and the series on the left is uniformly absolutely convergent overj in J, indeed 

(1.27) ~, ~ [p~)-rti[<c~. 
j ~ J  n = l  

The case of(1.26) with 2 = 6j was proved by Feller in [5] using power series methods. 
Also implicit in Feller's work is the result 

lim n [pJ~)-nj[ =0 ,  
n ~ c ~  

which is of course implied by (1.19) with r = 2. The corresponding special cases with 
r greater than 2 can be found in a renewal theoretic context in Karlin's paper [9], 
but the uniformity assertions are new. 

If P has recurrence times with finite r-th moment and 2 is such that m~ is 
finite then it is easy to see that m{f~,j is also finite; thus taking # = 2 P  in Theorem 2 
gives us rates for the convergence of 2 P" ( I - P )  to the zero signed measure n ( I - P ) .  

Corollary 2. Let r be a positive integer and suppose that P is irreducible and 
aperiodic with recurrence times having finite r-th moment. Then for all initial distri- 
butions 2 on J such that m~ is finite for j in J, both 

(1.28) lim n r ![2 P " ( I -  P)I[ =0,  
n~c t )  

and 
oo 

(1.29) ~. n '-1 I[2P"(I-P)!I <oo.  
n = O  

In particular, from the case r = 1 of Corollary 2 we see if P is irreducible, aperi- 
odic and positive recurrent then for any initial distribution 2 on J such that mzj is 
finite for j in J, the sequences 

(-(")~ j e J F),j lneN, 

have uniformly bounded variations 

and indeed 

Vzj= ~ .(n) n(n+ ll~.j - - F L j  1),[ , 

n = O  

Y~lvJ<m. 
jEJ 

The only result in this direction which seems to have been obtained previously 
is that V~j is finite for each j i n J  (see Kingman [13], 1.6(iv), where this result is 
seen to follow from the original Erd~s-Fdler-Pollard proof of the renewal theorem 
using Wiener's theorem on the reciprocal of an absolutely convergent Fourier 
series). 

These then are the main results of the paper. For each of the above results 
concerning the convergence of 2 P" for measures 2 on J there is a corresponding 
dual result on the convergence of P"f  for functions f on J, and putting the results 
for measures and functions together it is possible to obtain a very complete de- 
scription of the way in which 2P"fconverges to n f for varying probabilities 2 and 
functions f on the state space. These matters are discussed in Section 5 after a 
reformulation of the main theorems in terms of the way the transition matrix P 
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acts on signed measures of total mass zero, a reformulation which shows up the 
connection between the present results and the potential theory of recurrent 
Markov chains due to Kemeny, Snell and Knapp. At the end of Section 5 there 
is a discussion of the lack of converses to the main theorems. Finally, in Section 6 
we consider the implications of our results for renewal theory. The uniformity 
assertions of the Markov chain theorems are not of any interest in this context, 
but it is still found that the present results extend the theorems of Feller and 
Karlin on the rates of convergence of delayed renewal sequences (i.e. sequences 
of transition probabilities (P~)),~N)- However the results for zero delay renewal 
sequences (i.e. sequences of diagonal transition probabilities (P~)),E~) are not as 
sharp as those obtained by Stone in [19] using Fourier analytic techniques. 

2. The Bivariate Chain 

In this section the central theme of the paper is developed. This is the analysis 
of the limit behaviour of the n-step transition probabilities of a Markov chain by 
comparison of the progress of two independent Markov chains with the same 
transition probabilities but different initial distributions. We take as given a 
Markov matrix P with countable state space J and use the notation developed 
in the introduction. 

The Markov matrix P is irreducible if for all states i and j in J there is an n > 0 
such that pl~)>0. A state j is said to be transient if IPj ( T ~ < ~ ) <  1, recurrent if 
I P j ( T j < ~ ) = I ,  null recurrent if mjj=IEjTj  is infinite, and positive recurrent if 
mjj is finite. A measure rc on J is said to be invariant for P if ~ P = re. The following 
proposition summarises most of what will be required from the elementary theory 
of Markov chains. These facts will be used in the proof of the main limit theorem 
(2.8) below, so proofs are indicated which do not rely on this theorem. 

(2.1) Proposition. Suppose that P is irreducible. 

(i) Either all states are transient, all states are null recurrent or all states are 
positive recurrent. 

(ii) Let  2 be a probability on J , j  a state in J. The states are recurrent if and only 
if the series 

n = O  

is divergent, and in this case 

IP~(Tj < c~) = 1. 

(iii) The states are positive recurrent if and only if there exists an invariant 
probability measure ~ for P; if it exists this ~z is unique and given by ~ j= 1/mjj, j~  J.  

Proof. For  part (ii) and the fact that the states are either all transient or all 
recurrent see Freedman [8], Section 1.5. For  (i) it remains to show that if the states 
are recurrent then they are either all null recurrent or else all positive recurrent. 
This will now be proved together with (iii). Suppose that there is a state i in J 
which is positive recurrent. Then an invariant measure $ for P may be defined by 
setting $ (H) to be the expected number of times that a Markov chain with initial 
distribution 6 i and transitions P visits the set H ~ J before the time T~ of its first 
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return to i (see [8-1, 2.19). Evidently ~k (J)= mu and thus O/mii is an invariant prob- 
ability for P. On the other hand, if there exists an invariant probability = for P 
then all states must be recurrent by the criterion of (ii) with 2 = =, and since irre- 
ducibility implies re j >  0, j e J, it follows by applying an elementary identity due 
to Kac ([8], 2.46) to the stationary process of occurrences of a given statej derived 
from a stationary Markov chain with initial distribution = and transitions P that 

(2.2) mjj = 1/gj, j e J ,  

so that all states are positive recurrent and r~ is unique as specified. 

By virtue of part (i) of the above proposition an irreducible Markov matrix P 
is itself described as transient, null recurrent or positive recurrent according 
to the behaviour of its states. 

A state j is said to be aperiodic if the greatest common divisor of the set 

{n: n>0, p}~> 0} 

is one. If P is irreducible then either all or no states are aperiodic, and sothis prop- 
erty too is attributed to P. If P is irreducible and aperiodic then for each pair of 
states i and j in J there exists an n*~ N such that 

(2.3) pl~ ) > 0 for all n > n* 

(see [8], Section 1.4). 

We now turn to the consideration of two independent Markov chains (3;,) 
and (X',) defined on the same probability space, both with stationary transition 
probabilities P, but with different initial distributions 2 and #. Setting Z,  = (X,, X'.), 
it is clear that the bivariate process (Z,) is a Markov chain with countable state 
space J x J, initial distribution 2 x # and stationary transition probabilities 15 
given by 

(2,4) ~,~,) _ .c,) ,,(,) i,j, k, l~J.  U(i,j),(k,l)--Uik Ujl 

It is of vital importance to the analysis which follows that many properties of P 
are inherited by P. Typically we have the simple Proposition (2.5) below; some 
more subtle relationships between P and 15 will be brought out later. 

(2.5) Proposition. Suppose that P is irreducible and aperiodic. Then P is also irre- 
ducible and aperiodic; if furthermore P is positive recurrent then so is/5, and if P is 
transient then so is /5. 

Proof Suppose P to be irreducible and aperiodic. That /5 is irreducible and 
aperiodic follows immediately from (2.4) and (2.3). If P is also positive recurrent 
then (2.1)(iii) shows that t5 must be positive recurrent too, for if ~ is the invariant 
probability for P then ~ x ~z is evidently invariant for/5. Finally, 15 is obviously 
transient if P is transient. 

There is a remarkable gap in Proposition (2.5): /5 need not inherit from P 
the property of null recurrence. Indeed if P is null recurrent then/5 may be either 
null recurrent or transient, though it obviously could not be positive recurrent. 
Examples of both possibilities are readily constructed from the P's corresponding 
to suitable null recurrent one (respectively, two) dimensional random walks, for 
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which t5 can be made to correspond to a null recurrent two dimensional random 
walk (respectively, transient four dimensional random walk). 

From now on it will be assumed that the bivariate process (Z,) has in fact been 
constructed in the usual way as a sequence of J x J valued random variables 
Z.  = (X., X~) defined on a measurable space (fl, ~ )  such that for each probability 
measure ~/on J x J there is a probability measure IP~ on ~ under which (Z,) is a 
Markov chain with initial distribution r/ and stationary transition probability 
matrix 15 given by (2.4). Let 2 and # be two probabilities on J. Then under IP~ x u 
the processes (X,) and (X~) are two independent Markov chains, both with state 
space J and transition matrix P, but with initial distributions 2 and # respectively. 

Let us now take an arbitrary state i in J, to be considered fixed throughout the 
discussion, and let T~, ~) (or simply T) denote the first passage time of (Z,) to (i, i): 

T(i,i)= T = i n f  {n' n>0,  X.=X~,=i}, 

where T takes the value oc if (Z.) never hits (i, i). The point of the construction of 
the bivariate process is this: under IP a • the distribution of X. is 2 P" and the 
distribution of X'. is #P"; but once Thas occurred the evolution of the two processes 
is distributionally the same since both processes start afresh at time T in state i, 
and thus any difference between the distribution 2 P" of X. and the distribution 
#P" of X'. can only arise from the set {T> n} in the underlying probability space 

on which T happens after time n. To be precise, we recall that rlvrl denotes the 
total variation of a signed measure v on J;  then with no extra assumptions what- 
soever on the nature of the transition matrix P indexed by J we have the following 
inequality: 

(2.6) Lemma. Let 2 and # be two probabilities on J, i a state in J. Then 

! I2P ' -#P ' ! I  < 2~axu(T(~,i)>n). 

Proof F o r j  in J we have 

1J--"Ax. (Xn=j)= i IPx• X . = j ) +  fPx• X.=j) 
m = i  

= i l P x •  (T=rn)pie-m)+ ~xxu(T>n,  X,,=j), 
m = l  

by the Markov property of (Z,). But equally 

~ X t �9 lPxxu(r=m)Pij + IP~• 
m = l  

and thus 

(2.7) p~)-p~.) = fPz• X. = j ) -  fPa• X'=j) .  

Certainly then 

p ( " )  _ n ( , )  < - , . ~J ~uJ = IPa• X, = j ) +  IPz• u (T>n, X;=j), 

and adding this inequality over allj in J yields the inequality of the lemma. 
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As we shall soon see the simple inequality of Lemma (2.6) permits the decisive 
resolution of a great many questions concerning the convergence of the n-step 
transition probabilities of the original Markov chain with transitions P. All that 
is left to do to obtain limit theorems for P" is to ascertain how the transition matrix 
P and the initial distributions 2 and # influence the decay of the tail probabilities 
lPz • ~(T> n) of the first passage time T of the bivariate process. Already from Pro- 
position (2.5) we have enough to establish the main limit theorem: 

(2.8) Theorem (Kolmogorov). Let P be an irreducible and aperiodic Markov 
matrix with countable state space J. Then for all initial distributions ), on J 

(2.9) l im p~) = l /m j j, 

where mjj is the expected recurrence time of statej and 1/mjj is taken to be zero in the 
transient and null recurrent cases when mjj = oo. I f  P is positive recurrent then further- 
m o r e  

(2.10) !im ![2P"-zclf =0 ,  

where z~ = (re j) = (1/mjj) is the unique invariant probability for P. 

Proof If P is transient then (2.9) is an obvious consequence of (2.1)(ii). If P 
is positive recurrent then/~ is recurrent by Proposition (2.5) so that given two 
initial distributions 2 and # on J and a state i in J we have from (2.1)(ii) applied to 
t3 that 

(2.11) lPa • < oo) = 1. 

Thus ~irn IP~• (T., o > n) = 0 and the inequality of Lemma (2.6) gives us 

(2.12) lim [L2 P"-#P"[ [  =0 .  

The results (2.9) and (2.10) now follow on taking # to be the unique invariant prob- 
ability rc for P (see (2.1) (iii)). 

Lastly, if P is null recurrent then either t3 is transient, in which case by (2.1)(ii) 
and (2.4) we have 

F 2  x ~,, ( j ,  j )  ~ 
n = O  n = 0  

so that quite obviously ! im p~] = 0, or else 13 is null recurrent, in which case (2.11) 

and (2.12) still hold and we can deduce (2.9) by the following argument due to 
Orey [15]: Suppose that there is an initial distribution 2 such that p~) does not 
converge to zero for all j in J. Then by the usual diagonal argument there exists 
an increasing sequence of positive integers (k,) and a sub-probability measure 
~k = (~j) on J such that 

(2.13) lim '4k") -'- j~J,  n ~  F2 j  ~ l [ I j ,  

with 0 <  ~k(J)< 1, this last inequality being a consequence of Fatou's Lemma. 
Now using (2.13) and (2.12) with t t = 2 P  it is easy to see that ff must be invariant 
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for P so that O/O(J) is an invariant probability for P. But according to (2.1)(iii) 
there exists no such invariant probability for null recurrent P, and we have a 
contradiction. This completes the proof of the theorem. 

Orey showed in [15] that (2.12) in fact holds for all irreducible, aperiodic and 
recurrent transition matrices P (see also Freedman [8], 1.13), but the argument 
here only works when 15 is recurrent. It might be thought that the present argument 
could be repaired by replacing T by the earlier time T* when (X,) and (X',) first 
meet anywhere in J, but unfortunately there even exist null recurrent P for which 
T* can be infinite with positive probability (cf. Freedman [8], 1.13). 

In the proof of the theorem for positive recurrent P we used only the recurrence 
of/3, disregarding the actual positive recurrence of 15 which is assured by (2.5). 
In the next section this positive recurrence of t3 is exploited in conjunction with 
the inequality (2.6) to obtain the sharper statements of Theorem 1, while in Sec- 
tion 4 we obtain the further refinements of Theorem 2 by using the fact that 13 in- 
herits from P the property of having recurrence times with finite r-th moments, 
r = 1, 2 . . . . .  These results are only of interest for positive recurrent Markov chains 
with infinite state space J, since if J is finite they are eclipsed by the fact that 
convergence of the transition probabilities occurs geometrically fast (see Kendall 
[11]). This fact too can be deduced from the key inequality (2.6), for if the state 
space J is finite then so is the state space J x J of the bivariate chain, and it then 
follows from the irreducibility and recurrence of 13 that there exist constants c 
and p with 0 < c < oe and 0 < p < 1 such that for any initial distribution q on J x J 

fP~(T>n)<=cp", n~N 

(see Freedman [8], 1.9, (79)). Thus immediately from (2.6) with # =~z we have that 
for any initial distribution 2 on J 

ll2P"-rcll<2cp", n~N.  

It might also be possible to study geometric ergodicity of recurrent Markov 
chains with infinite state space in this way, but the method does not seem to be 
immediately rewarding (cf. [11], [12], [20]). 

We conclude this section with a derivation of the Erd6s-Feller-Pollard 
renewal theorem [4] from Kolmogorov's theorem. That this can be done is well 
known, but the argument here is not the usual one and we shall wish to refer back 
to it later. 

(2.14) Theorem (ErdOs-Feller-Pollard). Let (f,) be a probability distribution on 
the positive integers with g.c.d. {n: f ,  > 0} = 1, and let (u,) be the associated aperiodic 
renewal sequence: 

uo= l ;  u.= ~ f m u  . . . .  n = 1 , 2  . . . . .  
m = l  oo 

Let 12 = ~ n f~. Then 
. =1  l i r a  u .  = 1/12, 

n ~  o~ 

where 1/12 is taken to be zero i f# = oo. 

Proof Let M be the supremum of the set of integers n for whichf, > 0, and con- 
sider the state space J comprising all integers j with 0_<j < M. Define a transition 
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matrix P indexed by J as follows: 

POj = f j+  1, 

and for O < i < M  

O<j<M, 

pgj = 1 if j = i -  1, 

= 0 otherwise. 

Obviously P is irreducible, and P is recurrent and aperiodic since for initial distri- 
bution 60 the distribution of the first passage time to 0 is just (f,). Furthermore it is 
easy to see that "(") - c o o -  u, and thus the proof is completed by applying (2.9) to this 
transition matrix P with 2 = 60 and j = 0. 

The P used in the above proof is actually the transition matrix of the forward 
recurrence time Markov chain associated with a discrete time regenerative phenom- 
enon with renewal sequence (u,) (see Kingman [13], 1.6, (xiv)). Most frequently 
it is observed that the renewal theorem can be derived by applying Kolmogorov's 
theorem to another Markov chain associated with a regenerative phenomenon, 
the backward recurrence time process, which also has a state with recurrence time 
distribution (f,). However we shall see later that the forward recurrence time chain 
considered here is neatly tailored to suit the applications to renewal sequences 
of the various refinements of Kolmogorov's Theorem which we will shortly be 
proving. 

3. Proof of Theorem 1 

Suppose throughout this section that P is an irreducible, aperiodic and positive 
recurrent Markov matrix with countable state space J, and that 2 and # are two 
initial distributions on J. We shall always be working within the framework 
developed in the previous section, but for the sake of brevity the tildes have been 
dropped from the previous notation (f2, ~,  IPn): on an underlying measure space 
(O, ~ )  it is assumed that for each probability distribution q on J • J we have a 
measure lPn on ~ such that a J x J valued process (Z,)= ((X,0 X~)) defined on 
(f2, ~ )  is a Markov chain with initial distribution ~ and stationary transition 
probabilities P given by (2.4). In particular we have that under IP~ • ~ the processes 
(Xn) and (X~) are independent Markov chains with state space J, transition prob- 
abilities P and initial distributions 2 and # respectively. An arbitrary state i in J 
is taken as fixed from now on, and as in the last section T is the random variable 
defined on (f2, ~ )  to be the first passage time of the bivariate process (Z,) to (i, i), 
that is to say the first time that both (X~) and (X') are simultaneously in state i. 

The hypothesis of Theorem 1 is that 2 and/~ are probabilities on J such both 
mxf and mug are finite, but for the moment let us further suppose that 

(3.1) IE~• T <  oo. 

(It may be observed that the quantity IE~ • T is simply a first passage moment for 
the bivariate chain bearing the same relation to P as mzg does to P, and were it 
not for the clumsiness of the notation we might well write something like ~ • u, (g, g) 
instead of IEz • T.) Most of this section will in fact be spent showing that (3.1) is 
actually implied by finiteness of m~g and mug, but once granted (3.1) the proof of 
Theorem 1 is easy. 
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Indeed, according to Lemma (2.6) we have 

(3.2) IJ2 P ' - #  P"IJ < 2  IP;. • u(T > n), 

but with IE~ • T finite we have 

lira n 1P , •  
n~c,o  

hence also 
lim n H2P' -#P']  I =0,  
r l~oo  

which is the first assertion (1.8) of Theorem 1. Again, adding the inequality (3.2) 
over n gives us 

t t ~ O  t l = O  

and thus with (3.1) we have 

(3.3) ~ U~P"-#P"!I < o~, 
n ~ l  

which is just the second assertion (1.9) of Theorem 1. Finally, letting v, denote the 

signed measure ~ ( 2 - # ) U  of total mass zero, it is an immediate consequence 
k = l  

of (3.3) that (v,) is in fact a Cauchy sequence in the Banach space of signed measures 
on J with total variation norm I[ fl, and thus (v,) must indeed converge to some 
signed measure v on , /with total mass zero. It only remains to evaluate this limit 
v, and this is effected by Proposition (3.5) below. 

In the proof of Proposition (3.5) and again later we will make essential use of 
the version of Wald's identity now stated as a lemma: 

(3.4) Lemma. Let IP be a probability on (s ~ ) ,  and suppose that on the probability 
space ((2, ~, lP) there is defined a sequence ( Y,) of independent and identically distrib- 
uted non-negative random variables with IP(Y 1>0)>0, as well as a non-negative 
integer valued random variable N such that for each n = 1, 2 . . . .  the event {N<n} is 
independent of Y,,,. Then 

N 

Y~ Y.=(nr Y1) (EN), 
n = l  

where IF, denotes expectation with respect to IP, and a vacuous sum is taken to be zero. 

Proof See [8], 1.8, (71). 

(3.5) Proposition. I f  IEa• u T is finite then 

(P(a"~ - P(~]) = (mui - ma i)/mu, 

and the series is absolutely convergent. 

Proof We already know from (3.3) that the series is absolutely convergent; 
that it converges to the stated limit is a well known fact which can be deduced 
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from the main limit Theorem (2.8) by dominated convergence arguments (see 
Kemeny, Snell and Knapp [10], 9.48 and 9.50), but it is nonetheless interesting to 
consider the following alternative evaluation of the sum which is more in the spirit 
of the present approach through the bivariate chain. From adding the identity (2.7) 
over all n > 1 we have 

(3.6) 
c~ 

(p~2-p~])= ~ IPz•  21Px• 
n = l  n = l  n = l  

since both series on the right hand side are bounded above by 

oo 

E IPz• (T>n)=IEzx~ T. 
n = O  

But let N be the random variable defined on (E2, ~-) as the number of times that 
X, = i, 0 < n < T, and define N' similarly in terms of (X',). Then (3.6)just states that 

(3.7) ~ t,,(,) ,,(.)~_ n~ • N -  lE~ • ~ F 2 i  - -  F # i  } - -  **") .  # N'. 
n = l  

To evaluate the right hand side of (3.7) let us set To = 0 and define random variables 
0 < T 1 < T2... on (~2, i f )  as the successive positive times that X, = i: 

T,, = inf {n: n>Tm_l ,X,=i} ,  m = l ,  2 . . . .  ; 

we set R., = T~ + 1 - Tin, and make similar definitions for T" and R" in terms of (X',). 
Now evidently 

N N '  

T = T I +  ~ Rm=TI'+ 2 R ' ,  
whence m = 1 m = 1 

(3.8) IEz• T=mzi+mulE;~• 

where we have used the fact that IE z • TliS simply mzi , and applied Wald's identity 
(3.4) to the sequence of random variables R 1, R2 . . . .  which are independent and 
identically distributed under lPa• ~ with mean m u (cf. [8], 1.3, (31) and (32)), with 
the random time N which is such that under IP~ • the event {N < m} is independent 
of R m by the strong Markov property of the bivariate chain at its stopping 
time T,,, together of course with similar considerations for the primed quantities. 
But this identity (3.8) gives us exactly what is needed for (3.5) in (3.6): 

]E;~• N -  lE;~• N'=(m~,i-m;a)/mu. 

This now completes the proof of Theorem 1 under the additional assumption 
(3.1) that IEa • Tis finite. It only remains to show that this assumption is in fact 
implied by the hypothesis of the theorem that both mxi and m,i are finite. This is 
the substance of the following proposition, whose proof takes up the remainder 
of the section. 

(3.9) Proposition. Let tl be a probability on J x J with marginal distributions 2 and 
I 1 on J. Then lEn T isfinite if and only if both m,li and mui arefinite. 
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Proof  One way is quite trivial: if IE, T is finite then certainly both m~ and m,~ 
are finite, indeed less than or equal to IE, T, since for the first passage time T~ of the 
marginal chain (X,) to the state i we have certainly T~ < T, thus 

mzi= IEn T1 ~Ign  r ,  

with similar considerations for mui. It is however the converse implication which 
is required to establish (3.1), and for this part it seems to be necessary to build up 
the proof gradually. Completion of the proof is therefore deferred until after the 
development of some preliminary results. 

Let us first observe that since P is irreducible and positive recurrent we do at 
least know that IE,T is finite whenever t/has finite support (see (1.7)), so in particular 
if2 is a probability on J with finite support then lE0, • z T is finite. We thus deduce 
from (3.5) that if2 has finite support then 

(3.10) ~ tviir"(") _ ezi"t")~J -- (rex i - mi i)/mu, 
n=l 

and the series is absolutely convergent. This is enough to establish the following 
two lemmas: 

(3.11) Lemma. The identity (3.10) holds for an arbitrary initial distribution 2 on J 
provided the series is interpreted as diverging to + oo if m~  = 0o. 

Remark. It may be noted that we are not yet asserting the actual absolute 
convergence of the series in (3.10) when mx~ is finite. This has to wait until Lemma 
(3.15) below when it may be deduced from (3.5). The trouble is that for the partial 
sums of the absolute series there is no obvious bound analogous to (3.12) below 
which would make a dominated convergence argument work directly from the 
absolute convergence of (3.113) for 2 with finite support. 

k 
Proof  For a probability 7 on J let S~ denote the k-th partial sum ~ (p,(")-p~,).(") 

n=l 
A simple first entrance to i argument shows that for any probability 7 on J and 
for all k we have 

(3.12) 

(see [8], Lemma 9.48). Now 

and we know from (3.10) that 

--15Sk~<_<_m~i 

jEJ 

lim s ~  = ( m  j ,  - m,,)/m.. 
k~oo 

with IS~l~mji by (3.12) and ~ 2 j m j i = r n z i .  Thus if mzi is finite we deduce by 
j s J  

dominated convergence that 

lim S k = ~ 2 j ( m i l -  mu)/mli = (ma l -  mii)/m u. 
k~oo jeJ 
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If on the other hand taxi is infinite, we have from Fatou's lemma that 

l im inf S~ _-> 2 2j lim S~ = 2 2j (mji - m ii)/mu = oo, 
k--+m j e J  k ~ c ~  j ~ j  

which is to say that the series (3.10) diverges to + ~ .  

We shall also employ the following interesting consequence of (3.10): 

(3.13) Lemma. Let (u,) be an aperiodic renewal sequence associated with a distri- 
bution (fn) on the positive integers which has finite mean. Then for any sequence (a,) 
of real numbers the series 

s  and s  
n = 0  n = 0  

converge and diverge together. 

Proof Consider (3.10) for the particular Markov matrix P that was used in the 
proof of the renewal theorem (2.14), with i=  0, 2 = 61. In this case we have 

p~)o=U,, p~")o=U,_l, n> l,  

and thus the absolute convergence of the series in (3.10) gives us 

(3.14) ~ ] u , - u , _ t [ <  oo 
n = l  

(see also Kingman [13], 1.6, (iv)). The assertion of the lemma is now a well known 
property of any sequence (u,) which satisfies (3.14)and has a non zero limit (see 
Ferrar [7], Theorem 25 A). 

We are now in a position to establish the special case of Proposition (3.9) 
when r/is of the form 2 x 6~ for some probability 2 on J. This is Lemma (3.15). 

(3.15) Lemma. Let )~ be a probability on J. 

I f  m~i < oo then IEx• 

Proof Suppose that rex;< oo. Now Lemma (3.1i) above is expressed in terms 
of the original irreducible, aperiodic and positive recurrent Markov matrix P, 
but it applies equally well to the derived matrix t5 which has these same properties 
(Proposition (2.5)). Thus to establish that IEx • ~ Tis finite it suffices to demonstrate 
the convergence of the series 

(3.16) ~ r~,t,) ~,(.) ~ ,,t,) ,t ,), ,t ,) L V ( i , i ) , ( i , i ) ~ P ' 2 x 6 i , ( i , i ) ]  ~ tk ' i i  - - F ) , i J P i i  
n = l  n = l  

(see (2.4)). But since mai < ~ we have from Lemma (3.11) (applied straightforwardly 
now to P), that the series oo 

i , , ( " )  _ , , ( " )~  
/ ~  t F i i  I J 2 i )  

n = l  

is convergent, and furthermore (p17)) is the aperiodic renewal sequence associated 
with the first return distribution of the state i which has mean mu. Thus taking 
a _,c,) ,t,) and u.=pl~ ) in (3.13) we deduce that the series (3.16) is convergent n - -  Ui i  - -  l~),i 

and (3.15) follows. 
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At last we can prove Proposition (3.9) in its full generality: 

Proof of Proposition (3.9). Suppose t/is a probability on J x J with marginals 2 
and # on J such that both rnai and rnui are finite. We wish to show that IE, T is 
finite. Now as in the proof of (3.5) let T 1' be the first positive time that Xs = i, and 
let c~ denote the IP, distribution of Xr~. We have that IE, T{=mui < oe and from 
the strong Markov property of the bivariate chain at the stopping time T{ we get 

IE, T=mui+ IE~• T. 

But now by (3.15) it suffices to show that rn~i< o% and to this end we consider the 
random time W when (Xn) first hits i after T(, the first positive time that (X'n) hits i. 
By using the strong Markov property at T~' again we have 

IEn W=mui + m~i , 

so all we have to do now is show that IE, I41< 09. But letting M denote the number 
of times n that X, = i, 0 < n < T{, we find by applying Wald's identity (3.4) as in the 
proof of (3.5) that 

]En W=m,~i.-b mii IEnM <=m,~i-k mii mui < oo , 

where we have used the fact that M <  T{ so that IE, M < I E ,  T~'=m,~. This con- 
cludes the proof. 

4. Proof of Theorem 2 

We shall be proceeding very much as in the proof of Theorem 1 in Section 3, 
and we retain the general framework and notation of that section. Let r be a 
positive integer. For  Theorem 2 we suppose that P is an irreducible and aperiodic 
Markov matrix which has recurrence times with finite r-th moments, and that 2 
and # are two initial distributions on the state space J such that both ~(r) and ~tt2i 

m~r] are finite. We shall devote ourselves to the task of establishing that these 
assumptions in fact imply 

(4.1) lEx• T~< oe, 

where T is still the first passage time of the bivariate process to (i, i). Once granted 
(4.1) the reader will easily deduce Theorem 2 from the fundamental inequality 
(2.6) by making the obvious extension of the arguments used at the beginning of the 
last section for the case r = 1. 

We begin with a general result concerning moments of first passage times 
which we will later apply to both the bivariate chain and its marginal chains. To 
formulate this result we suppose that we are given an arbitrary Markov matrix P* 
indexed by a countable set of states K, and that on our underlying measurable 
space ((2, ~ )  we have defined for each initial distribution tr on K a probability IP~* 
on ~ under which a sequence of K valued random variables (Y,) defined on (~, ~ )  
is a Markov chain with initial distribution ~c and stationary transition probabilities 
p*. 

In addition to defining the probabilities IP* on ((2, o~) for probabilities sc on K 
it is convenient also to define a measure IP* on (f2, o~) corresponding to a measure 

15 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 29 
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x = (xk) on K even when ~ is not a probability. We define this measure IP~* by 

Ip ,=  klP *. 
k~K 

Let W be an extended positive integer valued random variable defined on (~, ~ ) ,  
to be thought of as a random time. The pre-W occupation measure for (Y,) under IP* 
is the measure v on K defined by 

W - 1  

(4.2) v(H)=IE* ~ lu(Y,) , H c K ,  
n=0  

where 1R is the indicator function of the set H c K and IE* denotes integration with 
respect to IP*. Thus for a probability ~: on K, 0 (H) is the expected number of visits 
of (Y,) to be the set H before time W for initial distribution x. That v is indeed a 
measure is apparent from the alternative expression 

(4.3) o(H)= ~ IP*(Y, eH, W>n),  H = K  
n=0  

which is easily derived from the definition. We note in particular that o (K) = IE* W. 

We need finally some notation to describe the higher moments of a random 
time W. For extended non-negative integers n let [n]o = 1 and for r = 1, 2,... let 

[n] ,=n(n+l)  ... ( n + r -  1). 

If IP is a measure on (Q, ~ )  and IE denotes integration with respect to IP, then of 
c o u r s e  

(4.4) IE[W]~= ~ [n]~IP(W=n), 
n = l  

and for r > 1 we also have the useful identity 

(4.5) IE [ W ] r = r  ~ [n]r_l IP(W>n). 
n = l  

(4.6) Proposition. Suppose that W is the first passage time of the Markov chain 
(Y,) to some set of states G contained in K. Let x be a measure on K and let o be the 
pre-W occupation measure for (Y,) under IP* defined by (4.2). Then for r= 1, 2, ... 
we have 

IE* [W],=rIE* [W-l,_1. 

Proof If IP* (W= oe)>0 then the identity holds trivially since both sides are 
infinite. If on the other hand IP* (W= oo)= 0 then we will show that in fact 

(4.7) IP*(W>n)=IP*(W=n), n = l ,  2, .... 

Multiplying this identity by r[n]r_l and adding over n now yields the desired 
result by virtue of (4.4) and (4.5). To prove (4.7) we define a matrix Q to be the 
transition matrix P* with all columns corresponding to states in G replaced by 
zeros, and set R = P * - Q .  Now it is easy to see that for any measure v on K we 
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have for A c K, 

(4.8) IP*(W=n, X,  EA)=vQ "-I R1A, 

(4.9) IP* (W> n, X,  eA)= vQ" 1A, 

But now we have 

m = n  m = n  

= tcQm Q, -1R1  
\ m = O  / 

=vQ"-I  R I 

=wo*(W=n) 

n = l ,  2 . . . . .  

n=O, 1, 2, .... 

by (4.8) 

by (4.3) and (4.9) 

by (4.8). 

In particular we deduce at once from Proposition (4.6) the identity (1.20) 
which was stated in the introduction, and we also have Corollary (4.10) below 
which plays a vital role in our proof of Theorem 2. A number of other results 
related to the identity (4.6) can be found in [16] and [17]. 

(4.10) Corollary. Suppose as for (4.6) that W is the first passage time of the Markov 
chain (Y,) to some subset of its state space and that v is the pre-W occupation measure 
for (Y,) under IP~*. Then for each r = 0, 1 . . . .  we have 

IE*Wr+I<oQ if and only if IE* Wr < ~ .  

Proof This is immediate from (4.6) and the trivial inequalities 

n~<=[n]~r!n ~, n , r~N.  

Let us return now to the consideration of our irreducible, aperiodic and 
positive recurrent Markov matrix P with invariant probability n. As observed 
in the introduction we have immediately from (4.10) and (1.21) that for each 
r = l ,  2, ..., 
(4.11) ml~.+l)< ~ if and only if ...~r)/ 

Considering again the bivariate chain ((X., X',)) defined on (f2, o~, IP,) with initial 
distribution r/and transitions/5 derived from P, we recall that T is the first passage 
time of the bivariate chain to (i, i). We have the following lemma: 

(4.12) Lemma. Let t 1 be a measure on J x J with marginals t h and q2 on J such 
that both m,,i and m,2 ~ are finite, and let q~ denote the pre-T occupation measure for 
((X,, X',)) under IP,. Then the measure q~ on J x J has marginals qh and ~o 2 on J such 
that there exist finite non-negative constants ci and c2 for which 

(4.13) (~01 = ~1 ~- Cl ~; q ) 2 = ~ 2 - ~ - r  7~ , 

where n is the invariant probability for P, ~1 =th (U) is the occupation measure for 
the first marginal chain (X,) prior to its first passage to i, and ~2 =t/2 (iU) is defined 
similarly in terms of (X'). 

Proof We prove the lemma just for r /a  probability on J x J since the result 
for an arbitrary measure q follows at once. Now it is clear that the first marginal 
15" 
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~p~ of ~o is simply the pre-T occupation measure for the first marginal chain (X,) 
under IP,. That is to say, if for H c  J we let V n be the number of times n that 
X,  EH, 0 < n <  T, then 

~Pl (H) =IE, Vn. 

Now as in the proof of (3.5)let T0=0 and let 0 <  T 1 < T2< ... be the successive 
positive times n that X, = i, and for k = 0, 1, ... let V k be the number of times n that 
X, e H for Tk < n < Tk, with N being the number of times n that X, = i for 0 < n < T. 
Now clearly N 

v.= v~ + Z vL 
k = l  

so that we have 

whence 

(4.14) 

N 

~Ol ( H) = IE, Vn = IE . V~ + IE, ~. V~. 
k = l  

q)I(H)=~I(H)+(IE.N)~(H)/T~{i}. H c J  

by the definition of al and the now familiar application of Wald's identity (3.4), 
this time to the sequence V~, V g . . . .  of independent and identically distributed 
random variables with mean ~(H)/~{i} (see [8J, 1.3, (31), and (1.21)), with the 
random time N which is such that for k = 1, 2, ... the event N < k is independent 
of V k by the strong Markov property of the bivariate chain across its stopping 
time Tk. We note that IE, N is finite since N < T and IE, T is finite by (3.9) and our 
assumption that both m,,~ and m~2 ~ are finite, and thus with (4.14) we have proved 
the first relation of (4.13) with the constant e 1 equalling (IE, N)/g~, and the result 
for the second marginal follows symmetrically. 

We come now to the result which completes our proof of Theorem 2. For  a 
different formulation see (6.10)(ii) below. 

(4.15) Proposition. Let r be a positive integer and suppose that P is an irreducible 
and aperiodic Markov matrix which has recurrence times with finite r-th moments. 
Let ~l be a measure on J • J with marginals ~11 and ~]2 on J. Then IE, T r is finite if 
and only if both m~)i and m~)2i are finite. 

Proof Just as was the case with Proposition (3.9), it is obvious that if IE, T r 
is finite then both m~,)i and m (~). must be finite, without any assumptions whatsoever 

"" "r12 ~ 

on P. For  the converse part we have to prove that given an irreducible and aperi- 
odic Markov matrix P the following statement is true for each r = 1, 2, ... : 

(4.16) I f P  has recurrence times with finite r-th moments then IE, T" is finite for 
all measures ~/on J x J such that both rn (r)- and m ~  are finite. 

- - rh  

We proceed by induction. We know that (4.16) holds for r =  i, since this is just the 
content of Proposition (3.9), so let us make the inductive hypothesis: 

(4.17) The statement (4.16) holds for a particular r. 

We wish to show that (4.17) implies that (4.16) also holds with r replaced by r +  1, 
so we suppose that 

(4.18) P has recurrence times with finite moment of order r + 1, 
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and 

(4.19) t/ is a measure on J x J with marginals t/1 and t/2 on J such that both 
m(r .+1) and m(,+. 1) are finite. t/1 I "'~ff2 

We will establish that 

(4.20) IE, T~r+l)< oo. 

Now since T is the first passage time to (i, i) of the bivariate chain it follows from 
(4.10) that to prove (4.20) it is sufficient to show that 

(4.21) lE~o T~< oe, 

where q~ is the pre-T occupation measure for the bivariate chain under IP,. But 
by (4.18) the recurrence times of P certainly have finite moment of order r, and 
thus by our inductive hypothesis (4.17) we see that it is sufficient for (4.21) to 
establish that the measure (p on J x J has marginals ~ol and q~2 on J such that both 

=m ~)- is finite we have "-~lm(", and .--~2m~)', are finite. But since (4.19) implies that m,~i -.-,1, 
according to Lemma (4.12) that 

(431 = (X 1 -1-C 1 /'~ 

where ~1 is the occupation measure prior to the first passage time to i for the 
marginal chain (X,) with initial distribution qa, c1 is a finite constant, and 7z is the 
invariant probability for P. Thus by linearity we have 

m ( r )  - -  r ~ ( r )  .2_,~ m ( r !  
(01 i - -  t l ~  1 i ! t~ l  " ' * ~ t  " 

But m(~)~ is finite by (4.10) and the assumption (4.19) that m ~  1) is finite, and m~] is 
finite by (4.11) and (4.18). We thus deduce that m(*~-is finite, and by symmetry so 
too is m ~ ,  so that (4.21) and thence (4.20) follow by the inductive hypothesis 
(4.17) and the argument by induction is complete. 

Taking q =2  x/~ in Proposition (4.16) we see at last that our assumption (4.1) 
that IEx • T" is finite is indeed implied by the hypotheses of Theorem 2 that P 
has recurrence times with r-th moments and that both ~ )  and m~r! are finite for j H ~ j  -'-/Lj 

in J. Our proof of Theorem 2 is thus complete. 

Finally, there is an obvious corollary Of Proposition (4.16) which is worth 
stating: 

(4.22) Corollary. Suppose that P is irreducible and aperiodic. Then so too is P, 
and for each r = 1, 2, ... P inherits from P the property of having recurrence times 
with finite r-th moments. 

Proof. Take t/=3i x 3i in (4.16). 

5. Results for Signed Measures and Duals for Functions 

Theorems 1 and 2 in the Introduction are concerned with the difference in 
behaviour between two recurrent Markov chains with the same transition matrix P 
but different initial distributions 2 and #. However, these initial distributions 2 
and # really only enter the picture through their difference 2 -/~, and thus inasmuch 
as any signed measure of total mass zero is a constant multiple of the difference 
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between two probabilities, these theorems are really concerned with the way P 
acts on signed measures of total mass zero. In Theorem (5.2) below we reformulate 
Theorems 1 and 2 from this point of view to obtain what is actually a slight 
strengthening of the original theorems. Even though casting our results in terms 
of signed measures seems at first to be losing much of the probabilistic content of 
the original theorems, when we go on to consider the duals of these results for 
signed measures it turns out that we again have results of probabilistic significance, 
and putting things together at the end in Corollary (5.13) we find that for a positive 
recurrent P with invariant probability n we can give a very complete description 
of the way in which 2 P " f  converges to ~ f  for varying initial distributions 2 and 
functions f on the state space. The section is ooncluded with a discussion of the 
lack of converses to the main theorems. 

Suppose throughout that P is an irreducible, aperiodic and recurrent Markov 
matrix indexed by the countable state space J. The reformulation of Theorems 1 
and 2 which is stated below as Theorem (5.2) is perhaps best regarded as a refine- 
ment for chains having recurrence times with finite r-th moments of the following 
result due to Orey which is valid even for null-recurrent chains: for all signed 
measures ~0 on J with total mass ~o 1 equal to zero, 

(5.1) lira llq0W![ =0.  
n ~ a o  

This is just a restatement of the result remarked upon at the end of the proof of 
(2.8). Let us agree to say that a random variable which is finite with probability 
one has finite moment of order zero (arbitrarily setting oo~ oo), and then Orey's 
result becomes the case r =0  of the theorem stated below. The reader should 
refer back to (1.19) for the definition of the matrix JU associated with a state j in J. 

(5.2) Theorem. Let  r be a non-negative integer and suppose that P has recurrence 
times with f ini te  moment of  order r. Then for all signed measures q~ on J with total 
mass ~o 1 equal to zero and J~01 (JU)' 1 f ini te  for  some (and hence every)  state j in J, 
we have 

(5.3) l imn' !lq~e"!l =0 ;  
t l ~ o 0  

i f  P is positive recurrent (r >__ 1) then also 

(5.4) ~ n r-1 !lq~p"j[ < ~ ,  
n = O  

n-1  

and as n tends to infinity the signed measure ~ ~o pk converges in total variation 
k=O 

norm to the signed measure • = - ~o C on J, where C is the matrix with entries 

indeed 

(5.5) 

cij = mlj/mjj, i * j 

=0, i = j ,  

l i m n  r-1 "~ltppk--~l = 0 ,  
n~oo k=O 



Uniform Rates of Convergence for Markov Chain Transition Probabilities 215 

the limit signed measure t~ has total mass t~ 1 equal to zero, and go may be recovered 
from ~ through the identity 

(5.6) g o = 0 ( I - P ) .  

Remarks. (i) We note that by the assumption that P has recurrence times with 
finite moment of order r, the hypothesis that IgoR (Ju) r 1 is finite holds if and only if 
ml~lj = ~ ]goi[ ml~ ) is finite, and that this condition is satisfied if either go has finite 

i ~ j  

support or if P also has recurrence times with finite moment of order r + 1 and Lgol 
is bounded by a multiple of the invariant probability 7: (see (1.20) and (1.21)). 

(ii) To fit in with the notation of recurrent potential theory the sums con- 
verging to qJ are from 0 to n - 1  here, not from 1 to n as they were in Theorem t. 
This creates the identity (5.6) and the zeros along the diagonal of the C matrix. 

Proof For r = 0  the theorem states nothing more than (5.1). For r_>_l define 
probabilities 2 and # on J by 2=go+/(go + 1), #=go-/(go-1). The results of the 
theorem can now be simply read off from Theorems 1 and 2 by the linearity of the 
operators P', the final observation (5.6) coming from the fact that P is a con- 
traction on the space of signed measures so that 

n--1 

(I - P) = lim go Z pk (I -- P) 
n~oo k = O  

=go-  lim goP'=go, 

where the limits refer to convergence in ]I H, and the last step follows from (5.1). 

Theorems 1 and 2 as stated originally are essentially just the above result for 
r => 1 expressed for the difference 2 - # of two probabilities 2 and # on J. However, 
we see now that rather than requiring as we did in Theorem 1 that both 

mzj= y' ~,i mij and muj= 2 #i mij 
i e J  i e J  

be finite, it is really only necessary to assume that 

S 12i- #i[ mi~ 
i~J 

is finite, provided that we replace m. j -m~j  by 

Z (#i-~i) mij, 

with similar remarks applying to Theorem 2. 

As far as I know the results of Theorem (5.2) are new apart from the case r = 0  

and the assertion of convergence of ~ go P" for positive recurrent P. This latter is 
n = O  

essentially just Theorem (9.50) of Kemeny, Snell and Knapp [10], with pointwise 
convergence of the signed measures strengthened to convergence in norm. In the 

potential theoretic terminology of [10], the signed measure g,= ~ goP" is the 
n = 0  
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potential of the charge cp. Such limits also exist under certain circumstances for 
null-recurrent P (see [10]), but consideration of such matters seems to be beyond 
the scope of the present methods. 

We come now to  the fact that each of our results concerning the convergence 
n - 1  

of the signed measures ~0 P" and ~ ~0/~' has a dual concerning the convergence 
k = 0  

n - 1  

of the functions W f  and ~ p k f  for real valued functions f on the state space J. 
k=O 

For background on this duality theory of recurrent Markov chains the reader is 
referred to Section 6.2 of [10], but for present purposes it suffices to take from 
this source the following facts: corresponding to our irreducible, aperiodic and 
recurrent Markov matrix P =(P0i,s~s with invariant measure n = (n j) there is a 
dual Markov matrix P = (/3is)i,j~sdefined by 

~is =(nHn3 Psi; 

this Markov matrix P is also irreducible, aperiodic and recurrent with the same 
invariant measure n, and each state j in J has the same recurrence time distri- 
bution under P as it does under P, so that in particular P has recurrence times 
with r-th moment finite if and only if P does too. In our notation a quantity with a 
hat relates to P in the same way as the quantity without a hat would relate to P: 
thus ~h0^is the mean first passage time from i to j for a Markov chain with tran- 
sitions P, and so on. 

Let us now consider the dual of Theorem (5.2). Attention is naturally restricted 
to functions f on J which are integrable with respect to n, and we denote by HfN~ 
the usual L 1 norm o f f  in the space of all rc-integrable functions on J: [If!l~ = n  ]f]. 

(5.7) Theorem. (Dual of (5.2).) Let r be a non-negative integer and suppose that P 
has recurrence times with finite moment of order r. Then for all real valued functions f 
on J with re-integral zrf equal to zero and r~ (Ju) r If[ finite for some (and hence every) 
state j in J, we have 

(5.8) lim n' ]1P"f !l ~ = O; 
n ~ o o  

if P is positive recurrent (r > 1) then also 

(5.9) ~ n "-1 IlP"fll~<oe, 
n = O  

n - - 1  

and as n tends to infinity the function ~ p k f  converges in I[ !1~ to the function 
k=O 

g = -- G f  where G is the matrix with entries 

gij=fnji /mjj  = [7~(iU)]j, j *  i 

=0, j = i ,  
indeed 

(5.10) 
n - 1  

l imnr-l  [k~=oPkf--g n=0; 
n ~ o o  
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the limit function g is such that ng =0, and f may be recovered from g through the 
identity 

(5.11) f = g ( I - P ) .  

Remarks. (i) We note that because of the assumption that P has recurrence 
times with finite moment of order r, the condition that n(JU) r If] be finite is 
satisfied if either f has finite support or if the recurrence times of P also have finite 
moment of order r + 1 and f is bounded. 

(ii) It is easy to derive the following explicit formulae for ff~jl in terms of first 
passage moments of the original chain: 

r~lji = mij d- ~ (mk i -- mk j)/mkk 
keJ 

m i j  -~- mTz i - -  m ~  j 

1 { ml~ ) m(.2. ) x 
=mijq_ ~ ~ "-JJ },  

mii mjj ] 

where the first formula holds in any positive recurrent chain but the last two are 
only valid if recurrence times have finite second moment. 

Proof One simply applies Theorem (5.2) to P with the signed measure ~o = 
(~0~)=(njf~) of total mass zero, for a trite calculation shows that Pl~0P"[[ = NP"fIt~, 
and one finds that 

[~o](J(f)rl=n(JU) ~[f[ since ((J(/)~)ik=-~((JU)r)ki 

(see [10], Section 6.2). 
The probabilistic content of the theorem above is this: if P has recurrence 

times with finite r-th moment and f has K-integral zero and n(U) ~ [f[ finite, then 
for all probabilities ~0 on J (or even signed measures ~0) which are bounded by a 
multiple of n (e.g. ~0 with finite support), 

(5.12) lira n ~ ~0 P " f = 0 ,  
n ~ o o  

and for fixed f the convergence is uniform over all ~o bounded by a particular 
multiple of n. (For a probability measure ~0 on J the quantity ~o P"f  is of course 
the expectation of f (X, )  for a Markov chain (X,) with initial distribution ~0 and 
stationary transition probabilities P.) One derives (5.12) from (5.8) by simply 
observing that if [q~ [ __< c n then 

[q~ P"f[ < ]~o] [P"f[ <cn [P~f[ =c ![P"f![~, 

and naturally enough the other statements in Theorem (5.7) can be given similar 
interpretations. It is interesting to observe that the statement above concerning 
the convergence in (5.12) is the dual of a similar amplification of (5.3) which does 
not however admit quite such an immediate probabilistic interpretation: if P has 
recurrence times with finite r-th moment and ~p is a signed measure with total mass 
zero with [q~](JU)rl finite, then (5.12) holds for all functions f on J which are 
bounded (by a multiple of 1), and for fixed q~ the convergence is uniform over 
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uniformly bounded f. The greatest value of these results concerning the con- 
vergence (5.12) is that for positive recurrent chains with invariant probability 
they give two dual criteria for rates of convergence of 2 P" h to n h for probabilities 
2 and n-integrable functions h: one can either take f - - h - 1  (gh) in (5.12) with 
r and use the first result above for functions with K-integral zero, or one can 
take f---h and r = 2-z~ and use the second result for signed measures of total 
mass zero, though to obtain a useful result in either way one ends up wanting 
~z(JU)r 1 to be finite, which is tantamount to requiring that the recurrence times 
actually have finite moments of order (r + 1). We have in fact the following corol- 
lary of Theorem (5.2) and its dual (5.7): 

(5.13) Corollary. Let r be a positive integer and suppose that P is positive recurrent 
with invariant probability n and recurrence times with finite moment of order r. 
Suppose that either 

(i) 2 is a probability on J such that 2(JU) ~-1 1 is finite for some j in J and f is a 
bounded function on J, or 

(ii) 2 is a probability on J bounded by a multiple of n and f is a function such that 
n(~U) r-1 Ill  is finite for some j in J. 

(In particular both conditions are satisfied if 2 is bounded by a multiple of n 
and f is bounded.) 

Then 

and if r >= 2 then also 

and 

lim n ~-1 ( 2 P " f - n f ) = 0 ,  
n-- ,  oo 

• n ~ - 2 1 2 p " f _ n f ] < ~  
n = O  

lira n ' -  2 pk f _  n n f - -  ( n -  2) 
n--* nO k 

where D is the matrix with entries di3 = mij/mj2. 

In case (i) for f ixed 2 the convergence is uniform over uniformly bounded f, 
while in case (ii) for f ixed f the convergence is uniform over all 2 bounded by the 
same multiple of n. 

Remark. Note that the sums in the last part are from I to n again. This simplifies 
the expression for the limit signed measure (n - 2) D which has j-th component 

[(it - 2) D]j = (m,~j - mxj)/mjj 

= [(m~ ) + m j j)~2 mjj - mxj-l/mjj. 

Proof. As outlined above. 
It may be observed that under condition (i) the corollary is just another way 

of expressing Corollary 2 in the introduction, and the result under condition (ii) 
is dual. We mention one final corollary of Theorems (5.2) and (5.7) which explicitly 
concerns the limiting behaviour of the n-step transition probabilities n! ~) and 
illustrates how these theorems really do tell us more than Corollary (5.13). 
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(5.14) Corollary. Let r be a positive integer and suppose that P has recurrence 
times with r-th moments finite. Then for all states i, j, k and l in J, 

and 

lien n~(pl~)/r~. - p~]/n,) = 0 
n ~ cJo J 

~ n r - 1  (n) (n) I p~j ~Ks- P~t/u~I < oo. 
n=l  

Remark. The point is that from (5.13) we only know that 

lim n ~ -  1 (,) (p~j/7~j- 1) = 0. 
n~oo 

Proof  Taking cp =6i-c ik  and f=6~/rcj in (5.12) and using the second criterion 
for convergence derived from (5.3) we have 

lim r (n )  ( . )  _ _  
, ~  on (p~j ~re j -  pkj/n,j)-  O, 

while taking q~ = 5k, f =  5~/r~j--5t/r fi in (5.12) and using the first criterion derived 
from (5.8) we have 

lim r (,) (,) _ ,~ ~on (Pkj/~j- Pkl/7C~)-- 0. 

The first result above now follows on adding and the second result is proved 
similarly from (5.4) and (5.9). 

We conclude this section by examining the possibility of obtaining converses 
to our theorems above. Let us consider Theorem (5.2). The strongest conclusion 
of the theorem is evidently the convergence of the series of norms (5.4), and one 
might at least hope that this implied the hypotheses of the theorem. However any 
such hopes are dashed by the counterexample considered below. This example 
provides an irreducible, aperiodic and recurrent Markov matrix P which has 
recurrence times with finite moments of all orders, together with a signed measure 
q~ of total mass zero such that 

~lq ) i lm i j=oo ,  j e J ,  
i e J  

but such that 
~0 P ' = 0 ,  n__>l. 

(5.15) Example. Let Q=(q~) be the Markov matrix with state space the non- 
negative integers N which was used in the proof of the renewal Theorem (2.14) 
for the distribution (fk)= (1/2k): 

qoj= 1/2 j+l, j=>0, 

qj, j-1 " =  1, j > 1. 

It is obvious that Q is irreducible and aperiodic, and that Q has recurrence times 
with finite moments of all orders. Let N' and N" be two further copies of the non- 
negative integers N, with non-negative integers j in N corresponding to j '  in N'  
and j" in N". Now on the countable state space J = N w N ' w  N "  define a Markov 
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matrix P by 
poj=0, j e N  

1 1/2 j+2, j e N  Poj" =Poj" =gqoj = 

pj, j =pj , , j= 1, j e N  

Pj, j-1 =1, j e N \  {0}. 

Roughly speaking, a Markov chain with transitions P may be thought of as a 
Markov chain with transitions Q which has been altered by putting in shunts 
through one or other of the extra copies of N at each transition away from zero 
of the original chain: each transition 0--*j is altered with probability half to 
0--}j' ~ j  and with probability half to 0--*j" ~ j ,  the alterations being made 
independently of each other and of the original chain. We have the following 
communication diagram for P which makes it obvious that P is irreducible and 
aperiodic, and that P too has recurrence times with finite moments of all orders: 

N, 

Y \  
{0}, N-.{o} 

c~3 

We now take a distribution (a j) on N such that ~ja2= o% say ao =0, a j= 1/j(j+ 1), 
j = l  

j > 1, and define a signed measure ~o on J with total mass zero by 

Then since evidently 

we have 

(5.16) 

q~)=0, j e N ,  

q~j,=aj, f e N ' ,  

q)j . . . .  aj, j" eN".  

mj, o=mj , ,o=mjo+l=j+l ,  j e N \ { O } ,  

i ~ J  j=O j = l  

while rp P is quite obviously the zero signed measure. 
The Markov chain constructed above also provides a counterexample to an 

erroneous result of Kemeny, Snell and Knapp (Theorem (9.53) in 1-10], the assertion 
that g = - G  f). Their claim is equivalent by duality to the assertion that if ~ is a 
signed measure of total mass zero then ~ is the potential of the charge ~ = ~ ( I -  P), 
and that ] ~ = - ~  C where C was defined in Proposition (5.2). The first assertion 
is certainly correct, but the second is not, as we see by taking P as in the example 
above with ]~=go, when ~=rp( I -P)=q~  too, but o~C=~C is undefined by (5.16). 
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The error in their proof occurs in the second last sentence, where it is tacitly 
assumed that A (~ f )  equals (A~ However, only the first of these products is 
necessarily well defined, and the associative rule cannot therefore be invoked. 

Confining attention to the case r = 1 of Theorem (5.2) it is worth observing 
that the kind of behaviour in Example (5.15) is only possible if ~ + m q)i ij and 

i~J 
(p[- mij are both infinite. If only one of these quantities is infinite, say the first, 

ieJ 
then it is easy to deduce from Lemma (3.11) that for all j in J 

n - - 1  

n~oo k j 

hence certainly 

n=O 

However whether or not this implies 

lira sup n !l~0Pnlr > 0  
n ~ o o  

I do not know. It is also possible to make similar observations for r = 2, 3 . . . . .  
and one can thus formulate partial converses to Theorems 1 and 2 and Corollary 1 
in the Introduction, but this is left to the reader. 

6. Applications to Renewal Theory 

Let Yo, Y~ . . . .  be a sequence of independent N-valued random variables defined 
on a probability space ((2, ~ IP), and suppose that the initial random variable Iio 
has distribution (a,) and that the later random variables Y~, Y2, ... have identical 
distribution (f,) with fo = 0. Setting 

(6.1) S,, = Yo +"" + Ym, m e N ,  

we say that (Sin, meN) is a delayed renewal process with delay distribution (an) 
and recurrence distribution (fn), and putting 

(6.2) Vn=IP{Sm=n for some meN}, n e N ,  

we say that (vn) is the delayed renewal sequence associated with the delay distri- 
bution (an) and the recurrence distribution (fn). The sequence (v,) is the obviously 
unique solution to the renewal equation 

(6.3) v , = a , +  ~ Vkfn-k, n e N ,  
k=O 

and (v,) is also determined by 
/ 1  

Vn= Z ak Un--k~ 
k=O 

where (u,) is the zero delay renewal sequence associated with (fn) through (6.3) 
with a o = 1, an=0, n =  1, 2 . . . . .  For background on this set up the reader is referred 
to Feller [6], XIII.10. We consider here various limit theorems for delayed 
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renewal sequences (v.) which extend those to be found in Feller [5] and [6] and 
Karlin [9]. These results can either be interpreted probabilistically through (6.2), 
or alternatively they can be viewed as purely analytic theorems concerning the 
limit behaviour of the convolution equation (6.3), where it is assumed that f.____ 0, 
a. > 0, and 

oo 

(6.4) Z f . =  1, ~ a . =  1. 
n = l  n = 0  

It may be noted that by arguing as in Feller [6] it is a simple matter to extend 
results to the more general situation where only the sequence (f.) is required to be 
positive and the assumptions (6.4) are dropped. We shall also assume from now 
on that (f.) is such that 

g.c.d. {n: f , > 0 }  =1,  

but again it is well known how to reduce questions for periodic renewal sequences 
to this aperiodic case (see [6]). 

The connection between Markov chains and renewal theory is extremely 
close. Indeed if (X,) is an irreducible and recurrent Markov chain with initial 
distribution 2 and transition matrix P, then the sequence of times that (X,) visits 
a particular state i forms a delayed renewal process with delay distribution the 
distribution of the first passage time to state i, recurrence distribution the recurrence 
time distribution of the state i, and associated delayed renewal sequence the 
sequence of transition probabilities (P~]).~N- Conversely we see below that every 
delayed renewal process can be viewed as the sequence of times that its own 
forward recurrence time chain visits state zero, and there is thus a one to one 
correspondence between theorems concerning sequences (P~)).~N of Markov 
chain transition probabilities to a fixed state i and theorems concerning delayed 
renewal sequences (v.).~N (cf. Kingman [13], Theorems 1.1 and 1.6, (xiv)). 

Consider now our delayed renewal process (Sin) defined by (6.1). Let V. be the 
indicator function of the event {S,. = n for some meN},  so that from (6.2) 

v. =IP(V. = 1), n~N.  

In the terminology of Kingman [13] the process (V.) of zeros and ones is a delayed 
regenerative phenomenon. The forward recurrence time random variables F. are 
defined by 

F,=inf{k: k>0 ,  Vn+k----- 1}, n e N .  

If Vm = 1 we say there is a renewal at time m, and thus F, is the time which elapses 
between time n and the time of the first renewal at or after time n. The sequence (F,) 
is a Markov chain with state space N and transition matrix P given by 

po~=f~+l, j e N ,  

pi~=l if i_>_l, j = i - 1  

= 0 otherwise. 
We clearly have that 

(6.5) 
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and (Sin) is just the sequence of times that the Markov chain (F,) visits state zero. 
Furthermore, Fo = So so that the delay distribution (a,) is not only the distribution 
of the first passage time to zero of the forward recurrence time chain (F,), but also 
its initial distribution. This fact is particularly useful since in view of (6.5) we have 
simply 

(6.6) v, = p(~, 

and thus we are immediately in a position to apply the Markov chain theorems 
of the previous sections to obtain limit theorems for the most general delayed 
renewal sequence (v,). We observe that if M = sup {n: f ,  > 0} = oe then the forward 
recurrence time chain is irreducible, aperiodic and recurrent so that our Markov 
chain theorems can be applied directly. If on the other hand M is finite the state 
space of the forward recurrence time chain decomposes into an irreducible, 
aperiodic and positive recurrent class {0, 1, ..., M} and a transient class 
{M+ 1, M + 2  . . . .  }, with the probability of absorption into the recurrent class 
being one regardless of the initial distribution. This creates no real difficulties 
however since the theorems of the previous sections are easily adapted to cover 
this situation, but details are omitted. 

The first result is of course the renewal theorem (see Feller [6], XIII.10): 

(6.7) Theorem. Whatever the delay distribution (a,), 

lim v. = 1/p, 
n ~ o o  

where p = ~ nf.  is the mean of the recurrence distribution (f.) and lip is taken to 
n = l  

be zero if # -- oo. 

Proof Just as for (2.14), one simply applies Kolmogorov's theorem to the 
forward recurrence time chain with initial distribution (a.), exploiting (6.6). 

If we go back through the proof of the Kolmogorov theorem given in Section 2 
we find that the argument being used here to establish the renewal theorem is 
essentially this: On a suitable probability space ((2, ~,  lP) we define two inde- 
pendent delayed renewal processes, both with recurrence distributions (f.) but 
with delay distributions (a.) and (a'.) respectively, and we let (v.) and (v'.) be the 
associated delayed renewal sequences. Let T be the time of the first simultaneous 
renewal. Then it is easy to see directly that just as for (2.6) we have 

(6.8) Iv,-v',l<=21P(T>n). 

If the mean recurrence time/~ is finite then the second delay distribution (a',) can 
be chosen so as to make the sequence (v;,) identically equal to a constant (necessarily 
1/#), by taking 

(6.9) a',=(1/k t) ~ fk, n~N 
r - t 3  

k = n + l  

(this is of course the invariant probability for the forward recurrence time chain). 
The renewal theorem (6.7) then follows from (6.8) since T must be finite with 
probability one by virtue of part (i) of the following proposition: 
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(6.10) Proposition. Suppose that on a probability space there are defined two inde- 
pendent delayed renewal processes with the same aperiodic recurrence distribution 
(f.), but with possibly different delay distributions. Let  T be the time of  the first  
simultaneous renewal. Then 

( i ) / f  the recurrence distribution has f inite mean then T is f inite with probability 
o n e .  

(ii) For positive integers r, T has finite moment of  order r if and only if both the 
delay distributions and the recurrence distribution have f inite moment of  order r. 

Proof  These results follow immediately from (2.6) and (4.15) applied to the 
forward recurrence time chain. 

Another way to prove (6.10)(i) is to observe that if (S,,) and (S~,) denote the two 
independent delayed renewal processes, then the time T is certainly earlier than 
SN, where N is the first m such that Sm = S'~. But N is just the time of the first visit 
to zero of the aperiodic random walk on the integers (Sm--S'~, meN) which has 
mean zero increments if (f,) has finite mean, whence N is then a.s. finite by a well 
known theorem of Chung and Fuchs (see Chung [3], 8.3). This furnishes a direct 
proof of the renewal Theorem (6.7) for # < ~ which avoids the use of the forward 
recurrence time chain, but unfortunately there does not seem to be any such 
simple argument when # =  ~ .  Part (ii) of (6.10) leads of course through (6.8) to 
rates of convergence in the renewal theorem, and indeed (6.10)(ii) is equivalent 
to the case of Proposition (4.15) when ~/ is of product form ~/1 x ~/2, the result 
which is so important for our proofs of Theorems 1 and 2. It would be most 
desirable to prove (6.10)(ii) directly without recourse to the rather devious Markov 
chain methods employed in the proof of (4.15), but I have been unable to do this. 

Let us now consider rates of convergence in the renewal theorem (6.7) when 
the aperiodic recurrence distribution (f,) has finite mean #. For the rest of the 
section let (a.) and (a'.) be two different delay distributions with finite means/~a 
and #',, and let (v,) and (v',) be the delayed renewal sequences associated with (f~) 
through (a.) and (a',). The central result is the general Theorem (6.11) below which 
compares the asymptotic behaviour of the differently delayed renewal sequences 

(v,) and (v'.). Note that the quantity ~ v k is the expected number of renewals after 
k = l  

time zero and up to and including time n for delay distribution (a.). 

(6.11) Theorem. I f  pa, #'~ and # are all finite, then 

(6.12) lira n Iv, -v'.[ =0 ,  
n ~ o o  

! t (6.13) lim Vk -- Vk = (V, -- V',) = (#, -- #,) /#,  
n ~ o 9  L k = l  k = l  d n = l  

and the central series is absolutely convergent. Let  r be a positive integer. Generalising 
the above results for r = 1 we have that if (an), (a',) and (f,) all have finite moment 
of  order r, then 

(6.14) lim n r ] v,, - v',,] = O, 
n ~ c x )  

(6.15) ~, n r-1 [Vn--V'nl<~, 
n=l  
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and 

(6.16) It t , ] lira n'- 1 Vk -- V'k -- (#. -- p~)/l~ = O. 
n--*m k = l  k = l  

Proof is a straightforward application of Theorem 2 to the forward recurrence 
time chain, using (6.6). Alternatively the results can be derived directly from (6.8) 
and (6.10) (ii). 

The following corollary to Theorern(6.11) corresponds to Theorem(5.2) 
applied to the forward recurrence time chain: 

(6.17) Corollary. I f  p is finite and (b.) is a sequence of real numbers with 

~ b.=0,  ~ nlb, l<oo, ~ n b , = # b ,  
n=0  n = l  n = l  

then the unique solution (w,) to the renewal equation 

w , = b , +  ~ Wkf,_k, n----0, 1 . . . . .  
k=0  

is such that 
l imnw,=0 ,  

~ w, = - I~b/l~, 
n= l  

the series is absolutely convergent, and the obvious analogues of (6.14), (6.15) and 

(6.16) hold if (f.) has finite r-thmoment and ~ n r [b,[ < oo. 
n = l  

Proof Let B =  ~, b + =  ~ by, and then apply Theorem (6.11) with a,=b+/B, 
a,=b2/B" ,=o .=o 

Taking b, = a , - a ' ,  for an arbitrary pair of delay distributions (an) and (a',), 
Corollary (6.17) makes it clear that it is unnecessary to assume for (6.12) and (6.13) 
that both (a,) and (a'.) have finite means/~, and P'a; rather it need only be assumed 

that ~, n la,-a',[ is convergent, provided P'a-#a is replaced by ~ n(a',-a,), and 
n = l  n = l  

similar remarks apply to (6.14)-(6.16). 
Given an arbitrary delay distribution (a,) with finite mean we may take the 

second delay distribution (a'.) in Theorem (6.11) to be given by a; = 0, a', =a ,_ l ,  
n > 1, when we get v; = 0, v'. = v,_ 1, n > 1, and we obtain the following corollary: 

(6.18) Corollary. Let r be a positive integer. I f  (a,) and (f,) both have finite moment 
of order r then 

(6.19) 

and 

(6.20) 

Proof Immediate. 

lim n r Iv . -v ._ l  [=0,  

~nr-llv,-v._l[<~. 
n = l  

16 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 29 
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This corresponds of course to the Markov chain result expressed as Corollary 2 
in the Introduction. Perhaps surprisingly, the only known case of (6,18) seems to 
be the result (6.20) for the zero delay renewal sequence (u,) with r= 1 (see (3.14)). 
Even the corresponding case of (6.19) does not seem to be known: if (u,) is the 
renewal sequence associated with an aperiodic distribution (f,) with finite mean, 
then 

limn lu.-u._~l = 0 .  
n--* oo 

Finally, taking (a',) in Theorem (6.11) to be the stationary delay distribution 
(6.9) which makes v'~ - l / p ,  we have the following result corresponding to Corol- 
lary 1 in the Introduction. 

(6.21) Corollary. Let r > 2 be a positive integer. I f  (a,) has finite moment of order 
r -  1 and (f,) has finite moment of order r, then 

limn '-1 Iv , -  1//~1 =0,  
n ~ o o  

~ nr- 2 lvn--1/#[ < oo, 
n = l  

and 
n 

lira n'- 2 ~ Vk-- n/#-- [(p(2)+ #)/2 # -- #,]/~ = 0, 
n ~ c ~  k=l 

where #(2) is the second moment of (f~). 

Proof. Immediate. 

The results of Corollary(6.21) are due to Feller [53 (r=2) and Karlin [9] 
(r > 3), both these authors basing their proofs on power series arguments involving 
Wiener's theorem on the reciprocal of an absolutely convergent Fourier series. 
Sharper results for the zero delay renewal sequence (u,) were obtained by Stone 
in [19] using different Fourier analytic techniques, but it does not seem to be 
possible to achieve Stone's results with the present methods. In fact both Stone's 
and Karlin's results apply to distributions (f,) on the whole set of integers and 
these authors also have analogues of Corollary (6.21) for renewal theory on the 
line, but unfortunately these generalisations seem to be quite beyond the scope 
of the present probabilistic methods. 

The emphasis here on Theorem(6.11) being the basic result rather than the 
known Corollary (6.21) is quite important: neither Theorem (6.11) nor either of 
its Corollaries (6.17) and (6.18) could possibly be derived from Corollary (6.21), 
since for example the former all give results when #<oo but #(2)=0% whereas 
the latter does not. As far as I know both Theorem (6.11) and its Corollaries (6.17) 
and (6.18) are new, though Theorem (6.11) r no doubt also be established 
using the techniques of Karlin and Stone, and this would lead to generalisations 
to distributions on the whole set of integers and to analogues for renewal theory 
on the line. 
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