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Let M+(t) and - M - ( t )  be the maximum and minimum of a Wiener process 

on the interval (0, t). This paper gives an integral test for P(M+(t)<a(t) l / i ,  

M- ( t )  <b(t)V/t i.o.)= 0 or 1. The case of i.i.d, random variables is also treated 
here. If a(t) = b(t), then our result gives Chung's law of the iterated logarithm 
[5], while b(t)= ~ corresponds to Hirsch's theorem [9]. Finally, a converse 
to Chung's L T L  is given. 

1. Introduction 

Let X, X1, X2,. . .  be a sequence of independent identically distributed (i.i.d.) 
random variables having finite second moment. Assume that EX=O,  E X 2 =  1 
and put S , = X I + . . . + X , ,  n = l , 2 , . . . ,  M + = max Si, M ~ - = -  min Si, M, 
= max(M +, My). 1 <=i<=, 1 zi<_, 

Consider also a standard Wiener process W(t) and introduce the notations 
M+(t )=  max W(u), M - ( t ) =  - rain W(u), M(t)=max(M+(t) ,M-( t ) ) .  

O<__u<_t O<~u<_t 

The usual law of the iterated logarithm gives precise upper bounds for the 
growth rate of all the variables M +, M2, M,;  M+(t), M-(t),  M(t). The cor- 
responding precise lower bounds however are not the same for the above 
variables. The first result in this respect is due to Chung [5]. His result, 
specialised for i.i.d, variables says that under E IXI3< ~ .  

P ( M . < a , ] ~  " 1 1 ~2 = ~  1.o.)= <~=~-2e 8o~. . (1.1) 
0 n n a n  < 0 0  

It follows from (1.1) that 

P(lim infM,(log logn/n) ~ = n8 -~) = 1. (1.2) 
n~oo 
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On the other hand, Hirsch [9] investigated the lower limit of M, +. For the 
particular case of i.i.d, variables his result states that under ElXIS< oo 

i f  ~ 1 ~ a , = o o  
P(M, + <a, i ' ~  --n<oo' (1.3) 

Obviously the same holds true for M~-. Comparing (1.2) and (1.3) it is 
apparent that there is a difference between the lower limit of M n and M, +, 
especially M, + can be much smaller than M n and furthermore there is no liminf 
sequence for M, + (i.e. for any non-random sequence %, lim infc~ n M, + is either 0 
or oo). ,~oo 

Similar results hold also for M(t) (Robbins and Siegmund [20], Jain and 
Taylor [12]) and M+(t) (or M-(t)). 

The object of this paper is to give a deeper insight into the above phenome- 
non by investigating the joint behavior of (M, +, M~-) and (M+(t), M-(t)), resp., 
i.e. we consider events A n and A(t) of the type 

An={M + <an]In, M ;  < bn ]/-n }, (1.4) 

A(t) = {M + (t) < a(t) lfi ,  M-( t )  < b(t) ]/~} (1.5) 

and decide whether P(An, n --* oo i.o.) and P(A(t), t --* oo i.o.) is 0 or 1. 
In Section 2 we prove our results in the case of Wiener process and by 

invariance it follows that the same holds for (M+,M2), provided E IX l Z+a < oo 

for some 6 > 0. 
In case when nothing more than the existence of the second moment is 

assumed, Jain and Pruitt [11] have shown that (1.2) (called sometimes the other 
or the converted law of the iterated logarithm) still holds true. In Section 3 we 
extend the results of Section 2 with certain modifications. In particular, we show 
that (1.3) is still valid in this case too. Finally, a converse of Chung's L I L  will 
be proved: 

�9 
lira lnfMn(log log n)- < oo a.s. 

n ~ c o  

implies t h a t  E X  2 < oo. 

Throughout the paper K, K1, K 2 ,  . . .  will denote (not necessarily the same) 
constants, whose values are unimportant in our investigations. 

2. T h e  C a s e  o f  W i e n e r  P r o c e s s  

In this section we consider events defined by (1.5) with a(t), b(O satisfying certain 
regularity conditions. We may assume for symmetrical reason that a(t)<b(t) and 
in view of (1.2) and (1.3) that for some 0 < 6 <  1. 

(log t)- 1 -~ <= a(t) < (1 + 6) ~z(8 log log t)- ~ (2.1) 
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and 

(1 - 3) ~(8 loglog t)- -~ <= b(t). (2.2) 

We prove the following 

Theorem 2.1. Let a(t) >0, b(t) > 0 be continuous nonincreasing functions such that 

a( t ) l / t  and b(t)]/t  are increasing. Set c(t)=a(t)+b(t) and let A(t) be defined by 
(1.5). 

(i) Put b(t)= oo in (1.5). Then 

1 ~ a(t) = oO 
P(A(t), t --+oo i.o.) =0<=> dt . (2.3) 

t < 0 9  

(ii) Let b(t) < oo. Then 

1<=> ~ a(t) ~2 _ 
P(A(t), t ~ oo i.o.) = 0 j t c ~ e  2 ~ d t  <oo- oo. (2.4) 

Part (i) of this theorem is Hirsch's result for Wiener process, of which a 
simple proof will be given below. In part (ii) the particular case a(t) = b(t) = c(t)/2 
gives Chung's theorem for Wiener process. This part allows also b(t)= b (con- 
stant) 0 < b < oo and in this case formally we get the same integral test as in part 
(i). 

For the proof of Theorem2.1 we need the joint distribution of M+(t) and 
M-(t) .  Let a>0 ,  b>0,  c - - a + b  and define 

G(a, b) = P(M +( t) < a l/t ,  M- ( t )  < b I/t). (2.5) 

G(a, b) is given e.g. in Feller [7]. 

Lemma 2.1. 

G(a,b)= ~ ( - 1 ) # [ O ( j c + a ) - O ( j c - b ) ]  (2.6) 
j =  - c~ 

4 ~ 1 (2j+ 1)2~2 + l ) ~ a  
= -  )__, - - e  ec2 sin (2j (2.7) 

~ j = o 2 j + l  c ' 

where dp(x) denotes the standard normal distribution function. 

For b= o% i.e. for the (marginal) distribution of M+(t), (2.6) gives the well 
known expression 

G(a, oo) = 2 qS(a) - 1. (2.8) 

Proof of the Convergent Part of (i). Since both m +(t) and a(t)]/t  are nondecreas- 
ing, by virtue of the Borel-Cantelli lemma it suffices to show that for suitably 
chosen t k with the property tk <tk+ a, lim tk= O0 

k~oo 

P(M+(tk) < a(tk+ 1) ]/~--k + 1 ) < oO. (2.9) 
k 



208 E. Cs~ki 

Using (2.8) and the inequality 2 r  < a V e ,  we obtain for tk= 2 k that 

P(M +(tk) < a(t k+ i) tl/~k+ 1) 

2 
=2cP(V~a(tk+ 1))- 1 <=a(tk+ l) 1//-~. (2.10) 

But ~a(t)/tdt < oe implies the convergence of ~ a(tk+ 1), proving that P(A(t), 
t ~ o e  i.o.)=O, k 

Proof of the Convergent Part of (ii). Now assume that the integral in (2.4) 
converges. Define the sequence t k by t I = 1, 

tk+l=(1 +c2(tk) )tk, k =  1,2 , . . .  (2.11) 

For brevity put a k = a(tk), b k = b(tk), C k = C(tk) and define the event A~ by 

A* = {M+(tk) < ak+ 1 ]/tk+k+ 1 , M-(tk) < bk+ 1 ~ }. (2.12) 

We show that ~ P(A~) < oe. 
k 

By (2.5) we have 

p(A~)=G(ak+ 1 t~k+l b i]~--kt + l )  
' V---t~--k ' k+ V ~- -k  -" (2.13) 

Applying (2.7) and the inequality [sin ul __<u (u > 0), we obtain 

4a ~ (2j+ 1)2.: 
G(a,b)<--  ~ e 2c2 (2.14) 

C j=o 

Since the right hand side of (2.14) is a lacunary geometric series we get 
further that for c__<co, 

4a ~2 ~2 ~2 
G ( a , b ) < - - e - ~ ( 1  - e-TC~)- i < K a e  2C 2. (2.15) 

C C 

Hence by (2.11), (2.13) and (2.15), due to the boundedness of c(t), 

~2 tk ) 
P(A~)<=K ak+l exp 2 

Ck+ 1 2Ok+ 1 tk+ i 

( ) =Kak+lexp  -- 2 i ( l + c  2) Ck+ 1 2ek+ 

_< K ak + 1 exp - - T  + n ck \ 
-- Ck+l 2Ck+i 

~2 
<~K1 ak+i e 2c~+1. 

Ck+ 1 
(2.16) 
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The last step follows from the fact that t c2(t) is increasing and c2(t) is 
bounded 2 2 (r l ~_~ tk+ 1/tk = 1 + c2). 

But from our assumptions it follows that 

l ~ e - ~  dt = ~k t~5~  e 2ca(tf dt 

~ tk+,dt 
> ~  a k + l e = -  3 2c2+1  I - -  

T Ck tk t 

= - ~  G+ l~ 
k ~ a k + l e  2c~+ 1 1 2 

Ck + 1 Ck Ck 
~2 

> K 2 ~  ak+x e 24,+, (2.17) 
k Ck+l 

proving the convergence of the last sum, which in turn implies that ~ P(A~) < oo. 
This completes the proof of the convergent part of Theorem 2.1. k 

For  the proof of the divergent part of Theorem2.1, we need the joint 
distribution of (M+(tl), M+(t2)) and that of (M+(tO, M-(q),  M+(t2), M-(t2) ). 
The required formulae are given by 

Lemma 2.2. Let 0<a1] /~1  <a21~22, 0 < b l l / q [ < b 2 ~ 2 ,  c ,=al+bl ,  c2 =a  2 
+ b 2. Then 

P(M+(tI) <al l/q1, M+(t2)<a2 ]/772) 

e dxdy, (2.18) 

where qffx) denotes the standard normal density, T= Tl w T2w T 3 and the domains T z 
are given by 

T1= {-a,1/7-11<x <a, 1/~, x-a21/77 < y<a21/7-ii - x} ,  

Ti= {x < - a t  ]/77, a2 ]/77- 2al ]/77 < y + x <a2 ]/77}, 

T 3 = {x < - a  11/77, - a  2 ] ~ 2  < Y -  x < - a  21/772 + 2al ] /q l  }. (2.19) 

Moreover 

P(M+(tO<aa ]ffql, M-( tO<bl  1 ~ ,  M+(t2)<a2 1/772, M-(t2)<b2 ]/~) 
4 & 1 (2j+ 1)2~ 2 t l  

= -  ~ - - e  2c~ (1-~) 
n j = o 2 j + l  

2 ~ r2~2 rna 1 
x - -  ~ e ~ sin 

C1 r =  1 Cl  

a l  ]/tl  

x-b~r a / c21//772 )dy. (2.20) 
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The proof of Lemma 2.2 can be given by considering W(t) (0 < t < t2) under 
the condition W(tO=y , under which (W(t), 0<= t <tl) and (W(t), t 1 < t~t2) are 
independent. Applying the well known formulae for the joint distributions of 
(M+ (tl), M-(tl), W(tl) ) and of (M+(t2-tl), M- ( t2 - t t )  ) (see Feller [7]) further 
straightforward calculations lead to (2.1 8) and (2.20). Details are omitted. 

From Lemma 2.2 we obtain the following estimations: 

P(M+(tl) < al ]/~1, M+(t2) < a2 ]~2) 

< ala2  
= v v 

and 

P(M+(tl)<all/~l, M-(tl)<bl]/~l,  M+(t2)<az]~22, M-(t2)<b2]~2) 
16 ~ 1 (2~+1)2~2 (1-~) 

• 
C2 C2 ~ 2  

1 (2r+1)2~ (2r+l)rcax 
• ~ - - e  2~ sin (2.22) 

, = o 2 r + l  cl 

We prove first (2.21). Since the area of T, given by (2.19) is 4a~a2t~lt~, the 

double integral in (2.18) over T 1 can be estimated by 4a la2  t ] / ~ l  t2 q~2(0)t[�89 
- t~)  -+, which is the first term on the right hand side of (2.21)�9 The double 

integral over T 2 is equal to P(U < - a  1 ]/~1, a21~2-  2al ~ < U + V<a 2 l~22), 
where U and V are independent normal variables with mean 0 and variances t~ 
and t z - t  ~, resp. Hence U+V is N(0, t2) and the above probability can be 
estimated by 

P ( a 2 ~ 2 - 2 a l ~ 2  < U + V < a 2 ~ 2 1  

\ ]/ t2 ] = ~ - ~  V ~2" (2.23) 

The same holds for the integral on T3, thus (2.21) is proved. 
The inequality (2.22) is a simple consequence of (2.20) and the following 

estimation: 

sin ff 2j + 1) ~(a z ~ 2  - Y) ~ (2j + 1) ~ a 2 < sin 
c 2 ~  2 ] ~- c2 

�9 . ( 2 j  + 1) ~ c l  ] / ~ -  1 + (2j + 1) nlyl < sin (2j + 1) na 2 + 

C2 I/t2 -- C2 r ]~2-2 (2.24) 
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Proof  o f  the Divergent Part o f  (i). Now let ~ a( t ) / td t= oo and without  loss of 

7 generality we may assume that  a2(t ) / td t< co. If follows that  ~ a(2 k)= oo and 
1 k 

a2(2 k) < oo. Define the event B k by 
k 

B k = {M+(2 k) < a(2 k) ] / ~ } .  (2.25) 

Since 

P(Bk) = 2 ~b(a(2k)) -- 1 = V  2 a(2 k) + O(aZ(2k)) (2.26) 

therefore ~ P(B k) = oo. 
k 

To show that P(B k i .o . )= l ,  we apply the Erd6s-R6nyi version of Borel- 
Cantelli l emma (see R6nyi [-19]): 

Lemma 2.3. I f  ~ P(Bk) = oo and 
k 

liminfk= 1 l= 1 _< 1 (2.27) 
. ))2 - ( Z P(Bk 

n ~  oo 

\ k =  1 

then P(B k i.o.) = 1. 

F rom (2.21) and (2.26) we obtain for k<l :  

P (B k Bl) < 2 a (2 k) a (2 z ) ( 1 + 2 - q - k)) + 2 a (2 k ) ] / 2  2 �89 (l k) 

7~ F i r  

<__ P (Bk) P (Bl) + K 1 P (Bk) 2 -  -~ (l - k) 

+ K 2 a 2 (2k), (2.28) 

from which (2.27) is easy to verify. This proves the divergent part  of (i). 

Proof  o f  the Divergent Part o f  (ii). Now assume that  

i a(t) ~2 ~ e  2c2(t) d t =  oo. (2.29) 

Let t 1 = 1, 

tk+ 1 =(1 +c2(tk))tk,  k =  1,2, .... (2.30) 

Put ak =a(tk) , bk=b(tk) , Ck=C(tk) and define the event B k by 

S k = { M  + (tk) < a k l/~k, M -  (tk) < b k ]/~k } �9 (2.31) 
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Lemma 2.4. L P(Bk)  = oe. 
k 

Proof. By (2.7) 

( 2 j +  1)2~ 2 
4 o~ 1 2c~ (2j + 1) ~ a k 

P(Bk)= ~- ~ 2~- i -e  sin (2.32) 
'~ j= 0 Ck 

Since the summands are all nonnegative fo r1  < j < l  ( C k  1], we estimate 
P(Bk) by omitting these terms from the above sum: z \a k / 

~2 T~ a k 
P(Bk)>=4e 2c~ sin 

7~ C k 

(2.33) 
4 1 - ( 2 , i +  1)2r~2 ' a k 

+ -  L 2j + 1 e 2c2 sin (2j + 1) 
">• Ck _ l) Ck 

J 2 (ak  

Using the inequality sin x > x/2 for 0 < x <re/2 and applying the same argu- 
ment for the above sum as used to derive the inequalities (2.14) and (2.15), we get 
further 

ak ~2 ~2 
P(Bk) > 2--  e 2c2 - -  K ak e '2a2. (2.34) 

C k C k 

~2 

Since by (2.1), ~ e  2 a 2 < o 0 ,  Lemma 2.4 will be proved by showing that 
k g2 t ' /  

L ~k e 2c~ = oe. This can be seen as follows: 
k Ck 

i a(t) ~2 t~+l a(t) ~ t ~ - ~ e  2c2(t) d t = 2  ~ t - ~  e 2c2(t) dt 
k tk 

e 2c2 log(1 + c 2) 
k Ck+l  

< K ~k ak e - ~ .  (2.35) 
Ck 

In the last step we used that Ck/Ck+ 1 is bounded (see (2.16)). The proof of 
Lemma 2.4 is complete. 

Next we are going to apply Lemma 2.3. In order to verify (2.27), write 

~ P(BkBt)= ~ P(Bk)+2 E L  P(BkB,) (2.36) 
k = l  / = 1  k = l  l < k < l < n  

and split L into three parts. For given k > 1 define 
k<l<n  
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L I = { / :  l < l - k < c i  -2} 

L 2 ---= {1: cf-  2 <= l - k < k ~/2 } (2.37) 

L3={ l :  k~/2<=l-k} 

where c~ will be defined in Lemma 2.6, below. 
We shall repeatedly use the inequality 

~ <(1 +c~) -Cl-k) (k<l)  (2.38) 

easily obtained from (2.30). Without  loss of generality we assume that 

at e-1~74< 1 
C 1 ~ ] ~ "  

(2.39) 

Lemma 2.5. I f  1 < 1 - k < c i- z, then 

~2 (1 _tk~ rr 2 
e 2c~ , J < e - ~ t - k k  (2.40) 

Proof Using the inequality (2.38) and 1 - ( 1  +u)-S>us /2  for O < u <  1/s with s=l  
- k, u = c 72, we have 

re4( 1-- t~) re c212 (1 -(1 +c~ )-(t-k)) ~eTrC2(l_k).4_ 
e , d e -  

Lemma 2.6. I f  c t  2 <=l-k, then there exists a number cffO<c~< 1) such that 

~2 [1 tk~ 7Z2 

e G T t - 7 , ) < e - ~  ~. (2.41) 

Proof 1 -tk_> 1 - ( 1  +C~)-(l-k)> 1--(1 +C~)-c�89 >C~, where 
t I - -  

1 
1 - e = max (1 + c 2)-7~. (2.42) 

l 

Lemma 2.7. Given any e>0 ,  there exists k o such that for k > k o and I - k >  U/2, the 
following inequality holds: 

r~ 2 
eg/74 < 1 + e. (2.43) 

Proof For  given k, define l o as the largest I for which k < l <  k + (log l) 2, and 11 as 
the smallest l for which l > k + k  ~/2. Then for k large enough, l l>lo,  because 
otherwise U/2< l 1 - k  < (log l l )2< log(k + k~/2+ 1), which is impossible for large k. 
Hence l > k + k ~/z will imply that  l - k > (log l) 2. 

But from (2.2) and (2.30) it follows that  c~ -2 =0( log  I) and for 1 large enough 

log 1 + log 
7~ 2 
-~- -  log log(1 + e) 

(log/)z > Lt  
log(1 + c~) (2.44) 
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Hence there exists k 0 such that k > k o and l - k  > U/2 together imply that l - k  
is greater than the right hand side of (2.44), which by using (2.38) yields (2.43). 

Upon replacing t 1 by t k and [2 by t z in the inequality (2.22), we have 

P ( U k U l ) ~ V ( U k )  4 ~ 1 -(2i+ 1)2~2 (1-~) - 2 - ~  e 2 c  2 

j=O 

(sin(2j+ l)rcat (2j+ l) ck]/-~k) 
" ~ . . . .  �9 (2.45) 

Cl Cl ~ l  

If l~L1, then from (2.45) and by Lemma 2.5, 

~z (1 tk] 
P(BkBz)< KP(Bk) e 2T,, -~f 

< KP (Bk) e- ~ (t - k), (2.46) 

hence 

P(BkBt) < K 1P(Bk). (2.47) 
I~L1 

If l~L2, then from (2.45) and by Lemma 2.6, 

P(BkBl)<4P(Bk)e 2i74 ~ ~ cl]/-~t " 

By using (2.39) and by the definition of L 2 (2.37) 

~2 -5-;2~ a I ~ /a ,~2 ,a ( l~L2 Cl - -  l~L2 Cl e l 

< ~ I-~/2< ~, k-~/2< 1. (2.49) 
IeL2 l~L2 

therefore 

Z P(BkBz)<4P(Bk)(1+ E ckl/~k] (2.50) 

If IEL3, then from (2.45) and by Lemmas 2.6 and 2.7, for k>=ko, 

P(SkBl) < (1 + 0 P(Bk) P(B1) + 4P(Bk) ck ]/-~k , (2.51) 

P(BkB~) 
l~L3 

_-<(1 +OP(Bk)P(B1)+4P(Bk) ~ ck- ~/_ 
l~L3 C l V i i  

(2.52) 
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Since the sequence t k defined by (2.30) is nearly exponential (grows at least as 
fast as exp(fl k/log k)) it is easy to see that 

c~_~k < K 2 
/ = k + l  C l ~  l 

(2.53) 

where K 2 does not depend on k. By (2.36), (2.47), (2.50), (2,52) and (2.53), we 
obtain 

~, P(BkBz) 
k = l  I = I  

k = l  k = l  l = 1  
(2.54) 

and since e is arbitrary, (2.27) is verified. This completes the proof of Theo- 
rem 2.1. 

Theorem 2.1 yields immediately the following 

Corollary 2.1. Assume that for a sequence Sn, n > 1 of random variables a standard 
Wiener process W(t) can be given on the same probability space such that for some 
q >0, 

P(sup IS k - W(k)[ = O (n~-' ) )  = 1. (2.55) 
k < n  

Let a(t) and b(t) satisfy the conditions of Theorem 2.1. Then 

1 ~=~ ~ a(n) = Go (2.56) 
(i) P(M,+<a(n)]fni .o.)= 0 n <oo 

(ii) P (M + < a (n) l/n, M,- < b (n) 1/4 i.o.) 

1<=~ a(n) - ~  = e 2c2(n) =. O0 

0 ~ <oo" 
(2.57) 

Example of S n satisfying (2.55) can be given by the partial sums of i.i.d. 
random variables with ElXI2+~ for some ~ > 0  (Major [-13]). For partial 
sums of certain dependent random variables satisfying (2.55) we refer to Berkes 
[2, 3] and Philipp and Stout [18]. 

3. The Case  o f  i.i.d. S u m m a n d s  

In this section we are concerned with the maxima and minima of the sums S n of 
i.i.d, random variables X i with EXi=O, E X { = I .  In this case Strassen's in- 
variance principle [22] says that with probability one 

sup IS k - W(k)] =o((n log log n) ~-) (3.1) 
l<=k<=n 
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and Major [14] have shown that in general this result can not be improved. To 
handle the lower limits of M,  + and M~- by invariance however a rate better than 
o(n +) would be required (see Breiman [4]). Hence neither Chung's L I L  (1.2) nor 
Hirsch's theorem (1.3) is a consequence of the invariance. Jain and Pruitt [11] 
have shown that (1.2) is still valid when nothing more than the existence of the 
second moment is assumed. We shall prove the validity of (1.3) in this case too 
and give the convergent class and divergent class concerning the joint behavior 
of M,  + and M~-. In this case however we do not expect that the convergent and 
divergent classes can be separated so nicely as in Theorem 2.1. (For similar 
phenomenon in case of the usual law of the iterated logarithm we refer e.g. to 
Petrov [17].) 

We consider events A, defined by (1.4). 

Theorem 3.1. Let a, > o, b, > o be nonincreasing, a, l fn  and b, ]fn be increasing and 
put c, = a, + b,. 

+ V~ 1 ~ a, =oo 
(i) P (M,  <a ,  i.o.)= 0 <=> -- (3.2) 

n <oo 

(ii) For each ~ > O, small enough 
Tg 2 

~ e-  2c-~ (1 +~)= oo ~ P(A, i.o.)= 1 (3.3) 
n c n 

rC 2 

~ a, e - ~ ( 1 - ~ ) <  oo ~P(A, i . o . )=O.  (3.4) 
n c n 

Proof of the Divergent Part. To prove the divergent part of both (i) and (ii) we 
follow Jain and Pruitt [11], i.e. use Skorohod embedding and then apply the 
result proved already for the Wiener process. 

By Skorohod embedding, instead of S,, we can consider W(T 1 + ... + T,), 
where T/>0 are i.i.d, random variables with ET~=I. By the law of large 
numbers, with probability 1, for given e>0,  T I + T 2 + . . . + T , < ( I + O n  even- 
tually. Hence 

M + = max W(T 1 +.. .  + Tk)< max W(t)=M+(n(1 +e)). (3.5) 
i <-k<-n t < n ( 1  + e )  

Similarly, 

M 2 < M -  (n(1 + e)). (3.6) 

It is then obvious that A* ~_A,, where the event A* is defined by 

a. b, 

and an appeal to Theorem 2.1 shows that the divergence of the series in (3.2) and 
(3.3), resp. implies that P(A* i.o.)= 1, hence P(A, i.o.)= 1, proving the divergent 
parts of both (i) and (ii). 
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(i) 

(ii) 

(iii) 

Then 

Proof of the Convergent Part. Here we employ a method developed by Heyde 
[8] and used to give a simple proof of the Hartman-Wintner law of the iterated 
logarithm (see also Petrov [17]). This method relies on the Berry-Esseen bound 
for the speed of convergence in the central limit theorem. Therefore we need also 
a Berry-Esseen type bound for the deviation between the joint distribution of 

(M~ + 1/~, M~-l/n) and their limiting distribution. For the case of M~ +, i.e. for 
one-sided maximum, Arak [1] has given a bound that could be used to prove 
the convergent part of (i). The two-sided case has been considered by Nagaev 
[15, 16], and Sahanenko [21], who by improving Nagaev's method, has given a 
bound satisfactory for our purpose. Since this involves also the one-sided case, 
we quote only Sahanenko's result as 

Lemma 3.1. Let Xi, 1 <i<_n be a sequence of i.i.d, random variables with EX~=O, 
E X ~ = I ,  T3=EIXela<oc. Suppose that functions gl(t) and g2(t) are given that 
satisfy the following conditions: 

g2(t)<gl(t)  for 0_<t_<l 

g2 (0) < 0 < (0) (3.8) 
Fg~(t+h)-g~(t)[<Klh for all h>O; i=1,2.  

\n / ]/ n 

-P(g2(t)<W(t)<gl(t),O<=t<l) <K2~nn , (3.9) 

where S k = X  l +. . .  + X k (k= 1, ..., n); K 1 and K 2 are numerical constants. 

The next lemma is an analogue of Theorem 4 of Heyde I-8]. 

Lemma 3.2. Let X, X~ .... be a sequence of i.i.d, random variables with E X  =0, 
E X  2= 1 and denote by F(x) the distribution function of X. Put S n = X~ +.. .  + Xn, 

2 X2  an= ~ d r ( x ) - (  ~ xdr (x ) )  2 (3.10) 
Ixl < r Ixl < Va 

and 

Gn(a,b)=P(M + < a a n ] / n , M ;  <ban] /n  ). (3.11) 

Let G(a,b) be given by (2.5) and no>O, 2>1  be given constants and nk~no 2k. 
Then 

sup IG,k(a, b ) -  G(a, b)f < o0. 
k a>O,b>O 

Proof Define the truncated variables )~k. by 

X k n = { o  k if /Xk[<]fn 
if Ixkl _-__ 

and put Si, = X'I, + " "  +)(in, 57/~ + = max Sin,/~7/2 = - rain Sin. 
l<<_i<n l<~i<n 

(3.12) 

(3.13) 



218 E. Cs~tki 

Then by a standard argument for truncated variables (see e.g. Petrov [173), 
for all a > 0, b > 0 we have 

IP(M,+ <alfn, M2 <bl/~) 

_ p ()~r+ < a ]fn,  2f/~- < b 1~)1 _-< n P([X] > I/n).  (3.14) 

Let 

I xdF(x) 
Ixl< Va 

Since 

p(~/+ < a ]/#n, AT/~- < b l / ~  ) 

( b k#. - a k#. ) =p < Sk"-k#" < - -  l<k<-n , 
a. a. l/~ a. l/~ a. a. ' 

we obtain, by using Lemma 3.1 and lira a. = 1 that 
n ~ o 9  

IP(M, + < a l/n, 2~2 < b l/n) 

( - b - t # " l f n  W(t)< a-t#"]/~ 0 < t < l )  

<K2 E X I . - P .  3 4K 2 < 3 _(E [21.13 + I#.13) 

= < ~ ( E  [21.13 + 1#.[3). 

It is readily seen that 

a ) _<P - ~  u~<W(t)<---tu~,O<=t<=la. 

(3.15) 

(3.16) 

(3.17) 

<G (~+]u,[ ,  b~+lGl)'a, (3.18) 

where u=#.]/n/cr., and since G(a, b) has bounded partial derivatives, we obtain 
further that for sufficiently large n, 

p(b - - - - t u , < W ( t ) < a - t u , ,  O < t < l )  
O'n O- n 

( a , b  t l/n. (3.19) -G  w. Gq <K4Iu"I<KSI#'I 
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(3.14), (3.17), and (3.19) together yield the following inequality 

<P([XI >=]~)+Ks  n-~(E 121,,I 3 +l~.lS)+Ks I~t,I n . (3.20) 

We can complete the proof of Lemma 3.2 in exactly the same way as Heyde 
has proved his Theorem 4 in [8]. (See also Petrov [17].) 

Now we are ready to prove the convergent part of Theorem 3.1. 
First assume that ~a,,/n<oe. Choose a subsequence nk=2 k. Then 

n 

~a,k+l < oe. We want to show that ~P(M,+<a .... nl~k+ 1)< oe. By Lemma 3.2, 
k k 

this sum and ~ G(a . . . .  ~ / G , ~  ]~k,  Oe) converge together. But 
k 

O'n k ~ ' \ Gn k ] 

proving the convergent part of (i). 
To prove the convergent part of (ii), we show that for nk=[(1 +e)k], 

Z P( M+ < a,~+, ] / n~+  ~, M• < b,~+l ] f~k  + 1) < oO. (3.22) 
k 

By Lemma 2.3, the sum in (3.22) and 

(3.23) , ' I 

converge together. By the inequality (2.15), 

a~k +1 exp [ ~2 o-2 n k < K (3.24) 
- ~ 2c~§  / Cnk + 1 Hk + 1 

2 > 1 - e 2 and since nk/n k + 1 = 1/(1 + e), the right For k large enough, one has a,~= 
hand side of (3.24) can be estimated from above by 

K a"~+~ exp ( ~r2(1--e) ) (3.25) 
%§ 2c.~§ ~ ' 

n k is an exponential sequence, therefore (3.25) and the sum in (3.4) converge 
together. This completes the proof of Theorem 3.1. 

Finally we remark that the following converse to Chung's law of the iterated 
logarithm holds true: 
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Theorem 3.2. Assume that X,  X1, X 2 .... is a sequence of i.i.d, random variables 
with E X  2 = o9. Then 

P ( l i m  M,( log  log n/n) ~ = ~ )  = 1. (3.26) 
n~GO 

A part ial  converse is implicit  in Jain and Prui t t  [10]. It  is clear that  (3.26) 
holds in cases t reated in [10]. But using their method,  together  with an 
inequali ty of  Esseen [6], it is not  hard  to see that  (3.26) is true in general. A 
sketch of p roof  is given below. 

We have to show that  for all ~ > 0. 

P ( M ,  < ~(n/log log n) ~ i.o.) = 0. (3.27) 

Jain and Prui t t  [10] show that  

P ( M ,  < ~(n/log log n) ~) < [P(IS,.I < 2 ~(n/log log n)~)] N, (3.28) 

where m = [n/log log n], N = [n/m]. 
F r o m  Esseen [6] (see also Pet rov [17]) it is easy to see that  

/ 2 ~t V"~ \ - ~ -  

P(ISml<Zc~l/-m)<-K [ S xZ dF(x)} , (3.29) 

where /~(x) is the distr ibution function of the symmetr ized  X. But E X 2 =  
implies that  the right hand  side of (3.29) is arbi t rary  small for m large enough, 
therefore 

P([S,,I < 2ct l /m)  < e-(1 +~), n>=no (3.30) 

consequent ly  

P(m,<~(n / log logn)~)<e  -(I+~)N, n > n  o (3.31) 

and to complete  the p roof  of  (3.27) we may  refer to Jain and Pruit t  [10]. 
Hence  l im i n f M , ( l o g l o g  n/n) -~ < o~ a.s. implies E X 2 <  oo and, as easily seen, 

n ~ o  

also E X  -- O. 
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