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Summary. We consider the Kadanoff transformation T (depending on a 
positive parameter p) acting on probability measures # on the space { + 1, 
- 1} e~. A measure/~ is called a non-trivial fixed point of T, if it is extremal 
in the set of T-invariant measures but is not a product measure. We 
describe the set of trivial fixed points and show that non-trivial fixed points 
exist provided that d > 2 and p large enough. A strong mixing condition on 
# implies convergence of Tn/~ towards a trivial fixed point. In particular 
this applies to the two-dimensional Ising model except at the critical point. 
What happens at the critical point still remains unknown. 

1. Introduction 

The ideas of the renormalization group, as described for example in the recent 
report [9], pose many mathematical problems. In order to clarify one of them, 
Griffiths and Pearce [4] consider simple cell-type transformations for Ising 
models like the Kadanoff transformation (which we will define precisely a little 
later). They find out peculiarities in the behavior of these transformations as 
acting on Hamiltonians. Hence it is somewhat obscure how it should be 
possible to make precise the approximations physicists use. In this paper, 
however, instead of working with Hamiltonians themselves, we consider the 
simpler questions of how these transformations act on probability measures. 

We consider the configuration space ~ 2 = { + 1 , - 1 }  ~d of an Ising spin sys- 
tem. The associated family of a-algebras {~A; AcT/a} is defined by 

~A = a{~o(x); xeA}. 

~A is the information from inside spin configurations of A. ~ is used for ~ d  
for simplicity. 
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For each xeT7 d, a subset ("cell") V x of 7/e is defined by 

gx ~ {yETla; 2xi<= yi< 2(xi+ 1), i=  1, 2 . . . . .  d}, 

where x =(x 1, x 2 . . . . .  xd)~7~ d. 
The (d-dimensional) Kadanoff transformation T is a mapping from the 

space ~ of probability measures on (f2, J~) into itself which satisfies the 
relation 

T#(co(x) = + 1, x~A)= ~ H Px( + ]co)/~(dco) (1) 
Y2 x~A 

for every finite subset A < 2U, where 

P~( + Ico)= [Z~(co)] - * exp{p ~ co(y)}, 
y~ Vx 

(2) 

Zx(co)=exp{p ~ co(y)} + e x p { - p  ~ co(y)}, 
yeV~ yEV~ 

where p > 0 is a given parameter. 
We are going to consider the following problems: 
1. What are the possible invariant probability measures (fixed points) for T, 

i.e. what is the structure of 

where 

J={~s~ ;  g#--~}? 

2. For which # does lim T '#  exist, in particular what happens if we take 1~ 
n ~ o o  

to be a Gibbs state/%h (with inverse temperature fi and magnetic field h)? Is 
the critical point (tic, 0) distinguished by a special limiting behavior of T"/%, o 
different from that of {T'#e,h }, (fi, h)#(tic, 0)? 

We were not able to give a satisfactory answer to these questions, the main 
problems are left open. In order to describe our partial results we use the 
following notation: 

Let F--F(xl ,x  2 ..... x~), s = 2  a be the [0,1J-valued function defined on 
[0, 1] s by 

k 

F(xa,x>...,xs)= ~ %  ~ [Ixz= ~ ( l - x ) ,  (3) 
k = 0  l < i l < . . . < i k < = s v  1 j + i l  ..... ik 

l < j < s  

% = eep(2k-~)/[ 1 + 82p(2k-s)] 

=P~(+lco) for co such that ]{yeV~: co(y)= + l } l = k .  

Then it is obvious that 

T~(co(x) = +1, xeA)=~ x~. [ IF  ({1 +2(y) yeVx})~(dco). (4) 

In Sect. 2 we prove 
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Theorem 1. (i) Assume that s> 3 (or d>2).  Then there is a critical pc>0, 
depending on s (or d), such that J={Va/2} if O<p<pc, and J ~ { v l / 2 }  if P>Pc, 
where vl/2 is �89 measure. 

(ii) Let p >Pc and ~ be the set of all product measures on (f2, ~ ) .  Then we 
have 

where 

and 

YF = {h' 7Z d --, [0, 1] with h(x)=F({h(y), yeV~}) for any x62~ d} 

Vh(CO(X)= + t, x~A)= l~h(x) 
x 6 A  

for every finite A c ga. 

For the proof we use a recursion formula defined by means of F and study 
the fixed points of the function 

s 
- ( 5 )  

s  x . . . . .  x) (x~[0,1]). 

In Sect. 3 we investigate the structure of 

J ex - -{#~J ;  # is extremal in J }  

and prove 

Theorem 2. I f  P > Pc, then 

We can only show that non-trivial fixed points # ~ x \ ( . ~ J )  exist but have 
no information about the structure of this set. We have no example for a 
translation invariant non-trivial fixed point. 

As for the second question, we were able to show only very few things. In 
the two-dimensional Ising model case, we can give our best result, while for 
d >  3 there are strong restrictive conditions which we will discuss in detail in 
Sects. 4 and 5. 

Theorem 3. Let t%h be an extremaI Gibbs state in the two-dimensional Ising 
model. The limit lim Tn ##,h exists and is a product measure if (fi, h) 4:(fic, 0). 

This theorem follows from a more general statement proved in Sect. 4 
(Theorem 4), which is based on the strong mixing property of the initial 
measure #. In the case of the two-dimensional Ising model, this property holds 
exactly for (/3, h) @(tic, 0), see [5, 2]. If it is violated for # we have no result on 
the behavior of T"#. In particular the most interesting problem whether 
T"##o. 0 converges towards a non-trivial fixed point, is unsolved. In the last 
section we discuss some conjectures and give partial results on the identifi- 
cation of lim zn##,h for some values of (/3, h) (Theorem 5, Theorem 6). 

n ~  ~3 

We thank Patrick Ion and Nguyen Xuan Xanh for helpful discussions. 



112 Y. Higuchi and R. Lang 

2. Proof of Theorem 1 

The proof of Theorem 1 is carried by the following three Lemmas. 

Lemma 1. F(x l , x2 , . . . , x s )  is strictly increasing in each ,Jariable 
j = 1 , 2  . . . . .  s. 

Lemma 2. Let s >= 3 and f= be defined by (5). Then 

<0  if x>�89 d 2 
d x  2 fs(X) = 0  if x=�89 

> 0  if x<�89 

Lemma 3. Let s & 3. Then 

xa~[0, 1], 

d 
)Tx L(x)l== ~ is increasing in p > 0 and 

lim f=(x)l~=~ > 1. 

Proof of Lemma 1. It suffices to know that 

8 
- - F ( x I , X  2 . . . . .  Xs)>O.  
0x 1 

The left hand side of (6) is equal to 

s 1 k 

E (~k+l--~k) E [ I  X/~ l--[ ( l - -x ) .  
k-O 2<=i~<...<ik<sv-1 j~-il ..... i~ 

2<j<_s 

By the definition of ~k: 
C~ k = e2 P( z k -  s) /[1 q- e2 p( 2 k - s)] , 

it is easy to see that %+~-c~k>0 for every k. This proves 
(x 1 ....  ,x=)e[0, 1] s. Q.e.d. 

Proof of Lemma 2. We first note that 

S2(O:k+l__O:k  ) S 1 x k ( l _ _ x ) S _ k _ l  
k=0 

By differentiating both sides, we get 

d x  2 f=(x)=s(s-1)  ~ (O(k+2--20~k+lq-Ctk) S 2 x k ( l _ _ x ) s _ k _ 2  
k=O 

= S ( S - - 1 )  ~ S 2 (O:k+2__2C~k+l+O~k) X k ( l _ X ) k  
k=O 

�9 [ ( 1 - - X ) s - 2 - 2 k - - x S - 2 - 2 k ] .  

(6) 

(6) 

for 

(7) 

(8) 
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In the last equality we used the fact that 

a s_ j = 1 - c~j for any j. 

From the definition of %, we get by direct calculation that 

a k + 2  - - 2 a k +  1 +~ 'k  

>0 if k< s - 2  
2 

s--2 
=0  if k=  

2 

Thus, if s > 3, there is at least one k > 0 with 

which proves 

%+2 - 2 % +  1 -~- ak > 0, 

d 2 /<00 f~ x>�89 
dx 2 f,(x) = for x=�89 

[ > 0  for x<�89 

Proof of Lemma 3. By direct differentiation we get 

Q.e.d. 

Hence 

d 
Yx  L(x )  = s(a y - ~ - ~o(1 - ~)~- ~ ) 

+ ~ ak x k ~ ( 1 - x ) ~ - l - k [ k ( 1 - - x ) - ( s - l ~ ) x J .  
k = l  

k=O s - 1  

_ 1 ~  1 k)(2k_s)(Sk) ' - (3) 2 (ak-  as 
k=O 

But %-%_k=thp (2k - s )  and (2k - s ) thp(2k-s )  are positive for all k and 
increasing in p > 0. 

Finally we have 

• =os-1 lira 
p ~ d x  ~�89 k=0 

If s is odd, then s - 2 k > l  for any k<  [ ~ 1 ] ,  andwe  have 

s 1 
[2 - - ]  

/ d x ~\ (�89 (Sk) lim [dxx fs()[x=~) > - ~ = 1 
p~m k=0 
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s - l > l  I s - l ]  i f ~ - - =  , i.e. s>3.  I f s  is even, then s-2k>_2_ for any k_<_ ~ - -  =~ , l ,S  and 

s _  l 

() =2 s -  s k = o s/2 > 2~- 1 (s > 4, s even) 

by easy calculation. Q.e.d. 

get 

Now we are going to prove Theorem 1, we begin with part (ii): 
Let #~N and #(x)=#(co(x)= +1). Using (4) and V~c~V~=O if x~=l=x 2, we 

- -  

= FI F(~(y), y~ v~). 
x c A  

This proves (ii). For the proof of (i) we use the following properties of fs(x)" 

fs(�89 =�89 

L(o) = ~o > 0 (10) 
L ( 1 ) = ~ < 1 .  

t 1 0 1 Furthermore, by Lemma2, fs is concave on [3, ] and convex on [ ,33. There- 

fore the equation x = f s ( x  ) has unique solution x =  1 in [0, 13 iff d-~fs(x)lx=~ ~ 1, 

_1 ( O < r < � 8 9  1, r = l - ? )  and three solutions x = L  x - z ,  x = ?  _ 

d 
iff dxx f s (x ) l~  = I > 1.  

Thus, by Lemma 3, there is Pc > 0 for s > 3 such that 

d 
dxf~(x)lx=~ < l  iff O < p < p  c. 

For each n>  1, we define a family {P~'(+ leo), xe2U} by 

P2(+ Ico) =P~(+ Ico) (11) 
P~'+ I( +I(~})= F({P,~.( +Ico), y~V~}). 

Then it is easy to see that for any finite set A c 7Z d 

T"~(co(x)= + 1, x~A)= S [-[ Px'(+ Ic~) ~(dco}. 
x c A  
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From Lemma 1 and (11), Px"(+]co) is increasing in co. Thus if we take +11, 
- 11 ~f2 with 

+ll(x)= +1, - J l (x)= - 1  for every x~TZ d, 

we have 
P;'(+ I-  ~)_-<P2(+ Ico)<U(+ I +~). 

{P~"(+I+J1},~I and {P~(+[-I1 ~ 
satisfy 

P~"(+l+ll)=fs(P ]' 1(+1_+11)) for all n>2.  (12) 

If fs(X) has unique solution x=�89 then x>f~(x) if x>�89 and x<f~(x) if x<�89 
This implies that {Pd'(+] + 11)}~ 1 is decreasing and {Px~(+ [ -/l)},,~ 1 is increas- 
ing and 

lim P]'(+ [ _+ 11) = �89 (13) 
n ~ o o  

By the monotonicity of P~"(+ ]co) in co we get 

lira r'#(o~(x)= + 1, x~A)=(�89 IAI. (14) 
n ~ c ~  

If x=f~(x) has solutions r<�89 the product measures v~ resp. v~ with 
%(o~(x)= + 1)=r  resp. v~(co(x)= + 1)=~: (xeT/d) are invariant under T because of 
(9). Thus the uniqueness of the solution for fs(X) is equivalent to the unique- 
ness of J .  This completes the proof of Theorem 1. 

3. Proof  of  Theorem 2 

In order to prove Theorem 2 we show 

Proposition 1. I f  v s J  is trivial on 

A: f i n i t e  
A c ~ d  

then V~Jex. 

Proof. Let C(f2) be the set of all continuous functions on f2 with supremum 
norm. For any finite A c i d ,  CA denotes the set of functions depending on 
{co(x),x~A}. 

K ~  U CA 
A: f i n i t e  

A c Na 

is dense in C(f2). For fixed finite A ~2g d we have for f~  C A 

S f(og)(T#)(dco) = S(fT)(co) #(dee), 

where 

(fT)(co) = ~ f(t7) t-I Px(tl(X)lC~ 
rl~YgA x~A 
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where P ~ ( - ] c e ) = l - P A +  Ice). It is easily seen that T can be uniquely extended 
to C(Q) as a positive contraction operator. The following ergodic theorem 
holds for T: 

A measure v e J  is ergodic for T iff vSJ~x (see e.g. [7], p. 359 or [8], 
Theorem 3.8). 

In order to prove Proposition 1 we therefore have to show: if v ~ f  is trivial 
on ~| then 

1N-1 
lim V ~' (fT~)(ce)=5 fdv  v-a .s .  (15) 

for f eK. 
We denote by 

1 N - 1  
g(ce)-= lira ~ ~ (fT")(ce), (16) 

N~r n=O 

A o = {x~2U; x~Vx} = {x~7la; - 1 <x~<-O for 1 <i<d}.  (17) 

What we only need to show is that g is ~ha-measurable; because then for n > 2  

gT" is ~;-measurable,  

where 

A,={xe~a;  l l x - (  i2, 2,1 ...,-�89189 

and ]]x-y]l = max Ix i - j ] .  
l<i<a 

Since g is T-invariant we get that g is ~-measurable .  Hence (15) follows 
because v is trivial on Y~. 

Let x be such that x~V~. We are going to show that g is ~o -measurab le  
( .~-measurabil i ty follows similarly). 

The proof is based on the following 

Lemma 4. Assume that t l and cedE2 satisfy 

/l(y)=ce(y) for all yeV:+l \Vb " (18) 

for some n> 1, a~Z a and b~V., where 

fy; there exist z = u  o, u 1, u 2 . . . . .  u._ 1, u,,=Y t 
V~"=( such that ui+leV., i=O, 1 . . . . .  n - 1  

i 

) 
Then we have 

[p~+ 1(_~_ [(A)), pan+ 1(+ I~)l ~(~ th 2P)]Pbn( + Ice)-P~( + Irl)l. 

Proof. From the definition, the left hand side of (19) is smaller than 

OF 
I ~ ( ( x , ,  {P~(+ Ice), cr Va\{b} })[' IPbn(+ Ice)-Pb"(+ 117)1 

< max (~k+l--~k)[Pb'(+lce)--P{(+lq)l. 
O < - k < - s  - 1 

(19) 
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As is easily seen, 

max (%+l- -~k)=c~s+l - -c~_=l th2p .  Q.e.d. 
O<_k<_s-i  2 2 

In order to apply Lemma 4 we denote by 

U~ co(y) = {+(1 if y = x  
y) if y@x. 

Then co(y)=(Ufco)(y) for all y~V"+I \V2  ', hence assumption (18) is fulfilled 
trivially. Therefore we get from Lemma 4 

max IP2( + Ico) - P~"( + l U+ co)l - ,  0 as n - ,  oo. (20) 

We write 
f(co) =f(Ux + co) )Q,o(x)= + 1}(co) + f(U~- co) 7~{~o(x)_ ,}(co) 

and get from this 

f T'(co) = r ( f  ~ u +)  r "] (co). Px'(+[co) + [ ( f  o U~-) T ~] (co)-pn(_ ico). 

By (20) the last expression is approximately equal to 

[ ( f  o U + ) T n] (co). p n( + j U + co) + [ ( f  o Ux ) T"I (co)' P~'( -]U~- co) 

which is ~x}c-measurable. This proves that  g is ~x}c-measurable. Q.e.d. 

Kolmogorov 's  0 - 1  law and Proposit ion 1 imply 

Corollary 1. J ~ ~ c Jex" 

In order to show the strict inclusion, we construct an example in the 
following way: Let A, be 

A , - { y ; y ~ V x "  for some x~Ao},  n > l .  

Define a measure # on (f2, ~ )  by 

n=0 

Then it is easy to see that  lim T " #  exists and satisfies 
rrl ~ co 

k 

{~(~ _ )} lira T~#(co(x)= + l ,  x e A ) =  [ I  a rlA~l+rlad ' (21) 
m ~ m  i - 1  

where A = A ~ u A z u . . . ~ A  > such that  A ~ c A , ' - . A , , _ ,  for some 
n 1 < n z < . . . < n k ;  IAI] is the cardinality of A i. v =- lira Tmkt is invariant under T 
and , ,~o 

v(co(x) = co(y) = + 1) = �89 + r 2) d= #(co(x) = + 1) #(co(y) = + 1) 
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i f x  and y are in the same A , \ A ,  1 for some n > l .  F rom (21), it is easy to see 
that v is trivial on ~ .  Thus, VeJex. Q.e.d. 

Remark 1. Proposition 1 can also be proved via the more general Theorem 
(4.6) of F611mer [3]. It implies that two measures vl, v z e J  are identical 
whenever they coincide on ~-~. However in order to check F611mer's condition 
(4.7) one needs an estimate similar to (20). Therefore we prefer to give the 
above self-contained proof. 

4. Theorem 4 

Let us turn to our final topic. Before we state the result, we need some 
definitions. Let ~b ,  _ oo < a < b < oo be 

~ b -  a{o)(x); a< x 1 <b}. 

Definition. Let #e~/g be translation invariant./~ is said to be strongly mixing in 
xl-direction iff 

~(1)= sup sup I t l (A~B)-#(A)#(B)I  
A e~ '~~ l:~e / T 

converges to zero as l ~  oo. 

Theorem 4. Assume that p > Pc and 

S 
6 = 3 ( s , p ) = ~ t h 2 p < l ,  s = 2  d. (22) 

Then, for any translation invariant t~, which is strongly mixing in each direction, 
the limit lim Tin# exists and is equal to either vl/z, v r or vr where v1/2, vt, v~ are 

m ~  oo 

product measures with constant density vl/2(co(x)= +1)=�89 v~_(c0(x)=+l)=r, 
v~(~o(x)= + 1)=? ~, and r < � 8 9  are the solutions for the equation x =f~(x). 

Remark 2. This theorem states a somewhat stronger fact than what we stated 
in Theorem 3. The dimension d comes in only through (22) which is trivial 
when d = 2  (s=4). Since every Gibbs state is translation invariant in two 
dimensions ([1, 6]), Theorem 3 is completely included in Theorem 4. 

Remark 3. The condition (22) is not satisfied when p is too large for more than 
two dimensions. Unfortunately we were not able to give a better condition. 

Let us define n o = no(l ) as 

no(1)=-min{n; 2"> I} for every I>1 .  

For the proof  of Theorem 4 we need the following two lemmas. 

Lemma 5. Let A c 7Z d be a finite subset. Under the conditions of Theorem 4, we 
have 
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7.(A)--IT'll(co(x) = + 1, x ~ A ) -  [ l  T'#(co(x) = + 1)1 
x 6 A  

=< 2d [Al(a'-n~ + ~b(1)) 

for any 1>1 and any n>no(l ). 

Proof. We prove this by induct ion on [A], ]AI = 1 is trivial. Let  

Mi(A ) - m a x { x / ;  x = (x  1, x a . . . . .  xa)eA}, 

mi(A ) = min{xi; x = (x 1, x2, ..., xe)eA} 
for l <=i<=d. 

Without  loss of generality we can assume that  

Ma(A)+ma(A)>=O, m~(A)>O for l < i < d - 1 .  

Let  A 1 = {xeA;  xe=Ma(A)}, A 2 = A \ A  1. 
Both A 1 and A 2 a r e  non-empty.  For  fixed l > 1  and n>no(1), we define a 

+ by configurat ion co,, 

+ ~ + 1  if 2"Md(A)<=ya<=2nMd(A)+I 
co"' ~(Y) = ) co(y) otherwise. 

Then  it is clear from L e m m a  4 that  

n n + n IP;(+lco)-P;(+[co.,31_-<[�89 ~ IP/ ~(+lco)-P. " ~(+lco.,,)] 
y e y x  

if n - 1 _>_ no(I ), where V~ = {y~ V~; j = 2xa}. 
Thus, we have for every k with no(l)<=k<=n, that 

n n + IP; (+ Ico)- P; (+ hco.,31 

<_-[�89 "-k ~ ~ --. y '  IP~_k(+lco)-Pyk k(+lco+~)l 
yl~_Vx y2ffyy 1 Y n - k E V y n - k  1 

< th2p]  , 

V_ s since I_x[ = ~  for any x e ~  a. 

From  this we have 

IT',(co(x)= + t, x e a ) -  H T"~(co(x) = +l)l 
x E A  

< i5 H P]'( +[  co+,) H P:(+lco)  .(do)) - H r ' . ( c o ( x ) =  + 1)i + I.A1 i~ n- no. 
x~A1 xEA2 x~A  

The first term of the right hand  side is smaller than 

tTn/~(co(x)- - § 1, xeAz) T'p(co(x)= + 1, xeA2) -  H T'#(co(x) = § 1)[ §  
x E A  

+]Al[fi  . . . .  . 
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Using the induction hypothesis and noticing that A 1 is at most (d-1)-  
dimensional, we get 

7.(A) < Z(d_ l )lA ll( 6.-.o + 4'(1)) + 2d[A 2[( ~. .o + 4'(l)) + 4'(l) + 21A1 [ ~.-.o 

_-<2dlAlO . . . .  +4,(1)). Q.e.d. 

Lemma 6. Under the conditions of Theorem 4, for any e>0, there exists 
n l ( 0 > 0  such that if n>nl(e), 

]~ px n + 1( ~_ If D) # ( d o )  - - L ( ~  pxn( -]- I cO) #(dco))l < e 
for every xeTZ a. 

Proof Denoting by T"#(x) = - T"/~(co(x)= + 1), we have 

T "+ l#(x)= j F({Pf( + leo), y~ Vx}),u(do)). 

Combining this with the definition of F and Lemma 5 we get 

IT "+l#(x) - F(T"#(y), y~ V~)I _-< (2d) s 22s(c5 .... o(0 + 4'(0) (23) 

for l> 1, n > no(l ). Taking first l>  1 large enough so that 4'(1)<e/(2d)$22 s+ 1 and 
then na>no(l ) such that 6"-"~ for any n>ni ,  we obtain the 
desired inequality, since # is translation invariant. Q.e.d. 

Proof of  Theorem 4. Assume lira Tm#(x)>�89 (the case lim Tm#(x)=�89 is trivial). 
m~c 9 m~c(3 

By Lemma 5 every limit point of {Tin#} is a product measure. Since 

lim rm#(x) <= lim P~( + [ + ll) =?, 

it suffices to show 
lira Tm#(x)>~ for any ~(�89 (24) 

m~co 
First we prove 

Tm#(x) > ~ for infinitely many m. (25) 

Let v* be a limit point of {Tin#} satisfying v*(~o(x)= +1)>�89 Since v* is a 
translation invariant product measure it is easy to see that lim Tmv*=v~. 

m~t~ 
Therefore v~(x) is a limit point of { T m #(x)} which implies (25). 

Now (24) is easily proved by means of Lemma 6 and (25): Let ~>0 be 
sufficiently small so that 

~<f(~)- -e .  

For this e we take nl(e ) as in Lemma 6. By (25) there is too>n1( 0 such that 

Tm~ #(x) > ~. 

Using induction on l we then get 

T~~162 for any positive I>1,  

because Lemma 6 implies 

Tm~ f(Tm~ Q.e.d. 
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5. Comments on the Case of the Two-dimensional Ising Model 

In this section we consider the two-dimensional Ising model. It is known ([5]) 
that if (fi, h)~(fl~, 0), i.e. besides the critical point, the strongly mixing property 
holds for every extremal Gibbs state. Thus by Theorem 4, 

lim Tm#fl,h converges to some product measure. 
m ~ c o  

For this limiting measure it would 

(i) lim T"#~,h=V ~ if h > 0  
m ~ c o  

m + _ _  (ii) lira T #~, o - v~ if h = 0, 
m ~ a o  

(iii) lira T~#~,o=v, if h=0 ,  
m - ~  co  

(iv) lim T"#~,o=V ~ if h--0, 
m ~ c o  

(v) lim Tm#~,a =v~_ if h<0 ,  

and we further hope that 

lim Tm#~o, o 
m ~ c o  

be natural to expect that 

exists and is in ~r 

Unfortunately, we were not able to prove even (i)~(v), except (iv). Here, we 
give a result what we were able to prove. 

Theorem 5. Assume that p > p~. For sufficiently large fi we have 

lim Tm#~,o = lim Tm#B,h=V~ (h>0) 
m ~ c o  t ~ l ~  co 

tim . . . .  _ (h<0). T #8, o - lim T #~, h-- V~ 
m ~ c o  n / ~  

I f  fi < tic then we have 
lim Tm#r 

m ~ o o  

(26) 

Thus we only have to prove that 

lim Tm#~,o(X)=g for all xe7Z d. 
m ~ c o  

Take ~o~(�89 as f~'(~o)=l and a<f~(~o)-~  o. For this ~>0, we take nl(~ ) 
according to Lemma 6 as applied to #~.o, where fi is large (nl(e) can be taken 
uniformly for large fi's because the mixing coefficient ~ is estimated uniformly 
in large fi's; see [5], proof of Theorem 1). Then 

Proof. The latter half is trivial since lim T~#~,o is a product measure and 
m ~ c o  

T'*#p,o is invariant under the spin reversal co ~ -co. By the FKG inequality we 
have 

lim T"#;,o(X)< lira rm#lLh(X) for h>0 .  
m ~ c o  m ~ c o  
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T "  #~, o(co(x) = + 1) - T "~ p~+ o(co(x) = - 1) 

"1 f P " ~ - I c o )  ~+, o(dco) = ; P ;  (+lc~ x , 

= ~ {P2~(+ [co)- P;" (-Ico)} {/~+ o(co)-/~, o(co)} 
~: pnl (+  1o) - pnl  ( _  1o0 > 0 

-#~,  o(co~{ + 1, - 1} v~ , there exists y~ Vx ~ such that co(y)= - 1) 

>(r-r)-2[V~"~[ ~ k2(3e-~)k==-D(nl; fl) 
k - 4  

by Peierls' argument. As is easily seen, D(nl; f i)~(7-s as f l ~  oo. 
Therefore if fi is sufficiently large, D(n~; fi)=>2~o-1. This implies that  

r'l/2~, o(X)= ~o. 
By Lemma 6 we have 

Tn~+l + n~ 1 + #~,o(X)> L(T +~- #~,o(X))--~>~o 

by induction. Thus, we have 

T m + > 1  lim #~,o(X)> ~o 2, 
m ~ o o  

which implies that lim Tm#~, o(X)= ~. Q.e.d. 
m ~ o o  

Theorem 6. If h > 2 (h < - 2  resp.), then 

m _ (v~ resp.). lim T /% h - v~ 
m ~ o o  

Proof Note that by the FKG inequality we have 

Tm #~,h(x)> ~ ~ iPx~( + ]co)/~(dcof-lllavz ) 
zE V~ 

(27) 
= f s  o f~ . . . . .  .L(S P0( + Io) #(dcoJ - lr~vo)), 

m ~ l  

where ~(. ] -~ovo) is given by 

/@l[- : l iovo)=Z-~ exp{fl[ ~ rl(x)rl(y)+h ~, r / (x)-2Ut/(x)]},  
( x , y )  x~Vo 

x,  y~  VO 

where the summation 2;' is taken over all x's in V o such that there is a y~c~V o 
nearest neighbour to x. 

S no( + Ico) ~(dco [ - 1 iovo) - ~ P o ( -  Ico) u(d~o I - 1 IO~o) 

= ~ {no( + Ico)-no(-Ioo)} {/4col- liiOVo)-/4--col- llleVo)}. 
o~: P o ( +  Io)) > 
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By direct calculation, we can show that this is positive, which implies that 

5Po(+ Ico)#(dcot- llqago) > �89 

This and (27) prove our statement. Q.e.d. 
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