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Summary. Let (x~,y~) be a sequence of independent identically distributed 
random variables, where xi~R p and yiER, and let OcR p be an unknown 

t vector such that yz=xzO+u~(), where uz is independent of x~ and has 
distribution function F(u/a), where o->0 is an unknown parameter. This 
paper deals with a general class of M-estimates of regression and scale, 
(O*,a*), defined as solutions of the system: ~)(x i , r i )x i=O,  ~z(Iri l)=0,  

i i 

where ri=(y~-x '  ~ O*)/a*, with ~: R p x R---,R and X: R--,R. This class contains 
estimators of (0,~r) proposed by Huber, Mallows and Krasker and Welsch. 
The consistency and asymptotic normality of the general M-estimators are 
proved assuming general regularity conditions on qb and Z and assuming 
the joint distribution of (x~, Yi) to fulfill the model (*) only approximately. 

1. Introduction 

Let (xi, Yi) be a sequence of independent identically distributed (i.i.d.) random 
variables, where x ~ R  p and y~R ,  and let O~R p be an unknown vector such 
that 

yi=x;O+ui, (1.1) 

where ui is independent of x i and has distribution function F(u/a), where cr > 0 
is an unknown scale parameter. It is well known that the classical least-squares 
estimator for 0 is not robust, i.e. although it is optimal when F is normal, its 
efficiency for nonnormal F may be arbitrarily low, and its bias arbitrarily 
large, even for F arbitrarily close to the normal. Several classes of robust 
estimators have been proposed to deal with this problem. The most extensively 
studied ones are generalizations of maximum likelihood estimators, or "M- 
estimators". This paper deals with the asymptotic behavior of a very general 
class of M-estimators of regression and scale, (0*,a*), defined as solutions of 
the system 

' 0 r  0) /a )  xi  = , (1.2) 
i = 1  
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z(lYl--x'i 01/o3 = 0; (1.3) 
i = l  

where ~b: RPx R--+R, and )~: R--+R. 
The best-known estimators of this type are those with ~b of the form 

~b(x, u) = 6(u) (1.4) 

for some function 0. We shall call them "classical M-estimators" (Huber 1964 
and 1973). They have robust efficiency of ~/ is a properly chosen bounded 
function. An important example is the "Huber psi-function" defined as 

0k(u) = sgn(u) min(lul, k) (1.5) 

where k is a properly chosen parameter. Other possible choices for ~, which 
yield greater efficiency for heavy-tailed F in (1.1), are the so-called "redescend- 
ing" functions, i.e. functions such that O(u)~0 when u--* _+ oo. An important 
case is the "bisquare" (Beaton and Tukey, 1974) defined as qJ(u)=u(1--U2/k2) 2 

I([ul <k) (where I is the indicator function and k is a parameter). 
Note that the family (1.4) includes Maximum Likelihood Estimators (MLE) 

for model (1.1). An interesting case is the MLE for the Cauchy distribution, 
which is a redescending one. 

The classical M-estimators are not "qualitatively robust" (Hampel 1971 
and 1974) in the sense that they may have an arbitrarily large asymptotic bias 
when the joint distribution of (xi, y~) follows model (1.1) only approximately. 
This is due to the fact that ~b(x,u)x is not bounded (Maronna, Bustos and 
Yohai, 1979). Several recent proposals attempt to correct this drawback. The 
family proposed by Mallows (1975) has the form 

6(x, u)= ~(x) ~p(u) (1.6) 

where rc is a positive weight function. A choice for n is: rc(x)=~k(lxl)/lxl, where 
Ixl is Euclidean norm. Denby and Martin (1979) have used these estimators to 
estimate autoregressive parameters, calling them "GM-estimates". 

Estimators of the form 

•(x, u) = ~(x) 4'(u/~(x)) (1.7) 

have been studied by Hampel (1977) and Krasker and Welsch (1979), for the 
particular case 6=~b k and ~(x)= i/ix[. This estimator has important optimality 
properties within the family (1.2), as shown by these authors and by Maronna, 
Bustos and Yohai (1979). However, it is worth while to consider the general 
case (1.7). 

As to the Eq. (1.3) for scale, a popular choice is Z(u)= qk(u) 2 -  fl, where fi is 
a constant; this corresponds to Huber's (1964) "Proposal 2". Another method 
is Hampel's (1971) "median deviation" defined by X(u)=sgn(u-c) where c is a 
constant. 

As far as we know, all the results on consistency and/or asymptotic nor- 
mality in the literature are concentrated in the case of classical M-estimators, 
with the xi's fixed (nonrandom) vectors. See (Relles, 1968), (Huber, 1973), 
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(Yohai and Maronna, 1979) and (Carroll and Ruppert, 1979). If the x~'s are 
random, and (x~,yi) satisfy (1.1), then the consistency of classical M-estimators 
with ff monotone and ~r known is obtained in the Corollary to Theorem2.1. of 
(Yohai and Maronna, 1979) assuming that P ( x ' 0 = 0 ) < l  for all 0+0.  The 
asymptotic normality follows from Theorem3.1 of that paper, assuming 
Elx~L2< ~ ,  by using a conditional argument. Consistency and asymptotic nor- 
mality for a known and ~ not necessarily monotone, may also be proved by 
applying the results of (Huber, 1967). 

However, the former methods of proof do not extend to the situation we 
consider here, namely: the use of general @functions, which include cases (1.6) 
and (1.7), simultaneous estimation of a, and random x~'s which do not obey 
model (1.1) exactly. 

The contents of the paper are the following. In Sect. 2 we state our general 
assumptions on q5 and Z, prove the existence of solutions of (1.2)-(1.3) and give 
conditions for their uniqueness. The interest of the existence theorem is that 
consistency is easily derived from its method of proof. In Sect. 3 we prove 
consistency without assuming (1.1). In Sect.4 asymptotic normality is shown, 
and in Sect. 5 the former results are extended to the case in which the x's are 
normalized by using some estimated scale matrix. Section 6 contains the proofs 
of some technical results used in Sect. 2. 

Notation. Vectors and matrices will be respectively denoted by lower and 
upper case boldface letters. If M is a matrix, its transpose is written as M' and 
its norm as operator as HM]I; the euclidean norm of vectors is written I.[- If A 
is a set, its indicator function is denoted by I(A), and its complement by A c. In 
general, P will denote a probability measure on R p+I, and E e the respective 
expectation functional which will be written as E when this causes no con- 
fusion. 

2. Existence and Uniqueness of Solutions 

Although the existence of solutions is not a very interesting statistical problem 
in itself, the same method used to prove existence yields consistency, by using 
the same treatment of regression/scale problems as in (Maronna, 1976). 

Let P be any distribution on R p § We shall consider solutions (0, a) of the 
system 

Ep qi (x, ( y -  x' 0)/a) x = 0, (2.1) 

Up z~(ly- x' 01/.) = 0 (2.2) 

If P is the underlying distribution, then (2.1)-(2.2) define the parameters to 
be estimated; if P is the empirical distribution corresponding to a sample 
{(xl,yi) , i=  1, ...,n}, then they are equivalent to (1.2)-(1.3), thus defining the 
estimators. Note that the parameter space is O=RPx(0,  c~). The following 
assumptions will be used throughout the paper. 

(A1) For each x, qS(x,.) is odd and uniformly continuous, and qS(x,u)>0 for 
u>0.  
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(A2) The function #(x, u)= ~b(x, u)/u is nonincreasing for u > 0, and there exists 
Uo>0 such that #(X, Uo)>0 for all x. 

(A3) X is nondecreasing, continuous, and bounded. Let X(0)=-a ,  Z(+ oo)=b, 
with a, be(0, oo). 

(A4) )~ is strictly increasing in the interval {u: X(u)<b}. 
(15) Let g(x) =supl~b(x, u)[. Then Eplx[ K(x)_-< ~ .  

u 

(A6) sup{P(x'0=0): 04=0} <Z(Uo)/(a+x(uo) ), with u o defined in (A2). 
(A7) sup{P(c~y+O'x=O): c~R, OsRP, [.l+lO[+O}<b/(a+b), with a,b as in 

(13). 

We shall briefly discuss the assumptions. For both families (1.6) and (1.7), 
(A1) is satisfied if ~z(x) is positive and 0(u) is odd, bounded and uniformly 
continuous, and nonnegative for u > 0. 

The first half of (12) states that if one writes (2.1) as weighted least squares 

E#(x,r)rx=O, with r = ( y - x '  O)/~r 

then the weights #(x,r) should decrease with r, which is a reasonable require- 
ment. It holds for (1.6) and (1.7) if 0(u) is either monotonic and concave for 
u>0,  or if for some ul__>0 it is concave on [0,ul] and vanishes on (ul, oo ) (as 
in the case of the bisquare). It is also easy to verify this assumption for the 
Cauchy Maximum Likelihood estimator and other redescending O's. 

The second part of (A2) is needed for technical reasons in the proofs. For 
(1.6) it holds for any O; but for (1.7) 0(u) must remain positive for u>0,  since u 0 
should not depend on x. 

The validity of (A5) for (1.6) and (1.7) is ensured, regardless of P, if the 
functions O and fxJ ~(x) are bounded. 

Assumption (A7) is needed to avoid solutions with o-=0. It implies that the 
distribution of the "residual" y - x ' O  should not be too concentrated in any 
value. For Huber's Proposal 2, it implies that P ( y - x '  0=r0 )<  1-fl/k 2 for any 
r o and any 0, which is the assumption used in the hypothesis of the Proposi- 
tion in p. 97 of (Huber 1964) for the location case. 

Assumption (16) implies that x may not be concentrated on any subspace. 
For the proofs to work, the upper bound must be more stringent than in (A7). 

The median deviation violates (A3) and (11). It might be considered under 
stronger assumptions on P. 

The main result of this section is the following: 

Theorem 2.1. I f  ~, X and P satisfy (11) through (17), then there exists a solution 
(0, t~) of (2.1)-(2.2). 

The proof follows the same strategy as Theorem 2 of (Maronna 1976). 
Some lemmas will be first needed, the proofs of which are deferred to Sect. 6 to 
clarify the exposition. Since they will also be needed to prove consistency, we 
shall work not only with P but with all distributions Q in some "neigh- 
bourhood" W of P. Let ~r = ~/r the family of all sets W of the form 

W= {Q: EQlf/I < o% [Epf i --EQfl[ "(ei, i=  1 .. . .  m}. (2.3) 
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where m is any natural number, f i , ' " , fm are any P-integrable functions on 
R p+I, and ei,--',em any positive numbers. If the f~'s are restricted to be 
bounded and continuous, then the respective W's generate the weak topology 
on probability measures, but no use will be made of this fact. 

From now on it will be assumed without further notice that (A1)... (A7) 
hold. 

Lemma 2.1. For each fixed OeR p and all Q in s o m e  W I ~ ' ~  , there exists a 
unique solution a = ~r(O, Q) of the equation El2 Z(lY-X' 01/~r)=0. 

Lemma 2.2. Let A o be any positive number. There exist constants 
AI ,A2,A3,A4e(O, oo) and W2~CU such that for all Q ~ W  2 

i) cr(O,Q)> A l f o r  all OeR p, 
ii) a(O,Q)/IOI~A 2 iflOl>=Ao, 

iii) cr(O,Q)< A 3 iflOl< Ao, 

iv) IOIN(O,Q)<A4for all O. 

Corollary. ~(0, P) is a continuous function of O. 

Lemma 2.3. Let B(O, Q) = :EQ Oh(x, ( y -  x' 0)/a(0, Q)) x' 0/101. There exist 
As,A6~(0 , 00) and W3~tK such that 

sup {B(0, Q:IOI > A5, Qs  W3} < - A6. 

We comment briefly on these results. Lemma 1 allows one to work with a 
as a function of 0, and thus to concentrate on (2.1) only. Then parts (i) and (iii) 
of Lemma 2.2 imply that a must remain bounded away from 0, and also away 
from oo if 0 does. Parts (ii) and (iv) imply that a(O) increases roughly linearly 
with [0l for large 101, and thus that a(O) is unbounded if 0 is so. Thus (0, a) 
remains in a compact set if and only if 0 does. Finally Lemma 2.3 implies that 
there are no solutions outside a certain compact set. 

Proof of Theorem 2.t. Define the function g: RP-rR p as: 

g(0) = 0 + ~(101 + 1) Ep 4(x, ( y -  x' 0)/~(0, e)) x, 

where 7 is a positive constant to be later conveniently determined. If 0 is a 
fixed point of g (i.e. g(0)= 0), then (0, a(O, P)) is a solution of (2.1)-(2.2). By (A1), 
(A5), and the Corollary to Lemma (2.2), g is continuous, so that we may apply 
Brower's Fixed Point Theorem (Dunford-Schwartz, 1958). That is, to prove the 
existence of a fixed point of g, it suffices to show the existence of a positive 
constant C such that IOl<C implies [g(0)l<C; and to this end it suffices to 
show that, for some C' and z>0:Ig(0)[/i01 < 1 - e  for all 10l_>_ C'. To obtain this, 
note that by the Cauchy-Schwartz inequality: 

Ig(0)12/[0[ 2 =< 1 + y2(1 + ]0l- 1)2(EK(x)Ixl) 2 

+ 2(1 + 101-1) yB(O, P), (2.6) 

where B(O,P) is defined in Lemma (2.3). This Lemma implies that B(O,P)< 
- - A  6 if IO[>As, and thus by taking y small enough, one can make the right 
side of (2.6) strictly less than one for [OI>As. 
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We have thus proved the existence of a solution, say (0o, Oo). It seems 
difficult to prove uniqueness without imposing much stronger assumptions. 

Theorem 2.2. Let Gx(r ) be the conditional distribution of r = y - x ' O o  given x. I f  
G x is symmetric for all x, then each of the assumptions (a) and (b) is sufficient for 
the uniqueness of (0o, ao). 

a) For each x, r is nondecreasing and is strictly increasing for [ul<uo, 
where u o satisfies A6. 

b) G x has a density gx(r) which is a decreasing function of frf. 

Proof Without loss of generality, take (0o, ao)=(0, 1). Let (O,a) be another 
solution, with a=a(0,P) .  The assumed symmetry and (A1) imply that 
E r y/a) x = 0, and hence 

E(r ( y -  x' 0 ) /o ) -  r y/~)) x' 0 = 0. 

If 0 4 = 0, then the assumed monotonicity implies: 

1 < P(x'O = O) + P(IY-  x' 01/0 > Uo). 

Since o-= a(O, P), it is not difficult to show, using (2.2), that the last term is < 1 
-X(uo)/(a + Z(uo) ). This and (A6) complete the proof of (a). 

The proof of (b) is similar to that of Theorem 3(i) in (Maronna, 1976). The 
details are left to the reader. 

Remark. Note that even in the absence of uniqueness, all solutions must 
remain in a compact set, since Lemma2.3 implies that, if (0,0) is a solution, 
then B(O, P)=0, and hence [01 < A  5. More generally, if (0n, an) is a sequence such 
that (2.2) holds and the left-hand side of (2.1) tends to zero, then J0nl =<A 5 for 
large n. This may not hold for estimators with fixed scale - i.e. when 0 is 
defined as a solution of (2.1) alone, for a fixed r - if r .) is not monotonic. 
The simplest case is location with a redescending ~9: here EO((y-O)/G)~O for 
0--+oe, and may even become =0  if 0 = 0  outside some interval and P has 
compact support (as in the case of the bisquare when P is an empirical 
distribution). 

3. Consistency 

Since in robustness problems one avoids making "exact" statements about 
distributions, consistency will be proved for general P, without assuming (1.1). 

Theorem 3.1. Let P be a distribution satisfying (A5), (A6) and (A7) and such that 
(2.1)-(2.2) has a unique solution (0o,Cro). Let (xi,yi) , i=1 ,2 , . . . ,  be independent 
with.distribution P, and let (0,, a n) be any sequence such that 

, . �9 lira n -1 (o(xi,(yi-xiO,)/a,)xi-O- a.s., (3.1) 
n ~ c o  i =  1 

n 

Z(lYi- xiO, l/crn)-Oo (3.2) 
i = 1  



M-estimates for Regression and Scale with Random Carriers 13 

Then hm (0~ ,G)- (00 ,%)  a.s. 
n~oo 

Proof. It may be assumed without loss of generality that (0o,O-o)=(0, 1). By a 
classical argument (Huber, 1967, part B), it suffices to show the existence of a 
compact set C~_O such that the sequence * * (0., o,)E C ultimately a.s. 

Let P~ be the empirical distribution corresponding to the sample {(x~, Yi), 
i=  1, ..., n}, so that G*-~ * The Strong Law of Large Numbers implies 
that a.s. for large n,P n remains in the intersection of W 2 and W 3 defined in 
Lemmas (2.2) and (2.3). The latter implies that a.s. 

lira sup sup {B(O, Pn): I OI > A 5 } < - A6, 
n~oo 

and (3.1) implies that limB(O*,Pn)=O; so that limsupl0*l must be <A 5 a.s. 
Parts (ii) and (iii) of Lemma (2.2) then imply that lim sup o-* <max(A2As,A3) ,  
and part (i) yields lira info-* >A 1 a.s. This completes the proof. 

Remark. Theorem (3.1) is still true when the equality in (3.2) is replaced by a.s. 
equality in the limit when n~oo.  The proof is based on a reformulation of the 
proofs of Lemmas (2.2) and (2.3), but the details require much more care. 

4. Asymptotic Normality 

The asymptotic distribution of the estimators is easily derived by applying the 
results of Huber (1967). To simplify notation, define as ~ the (p+l)-  
dimensional vector with coordinates (0, o-), and as ~(x,y,~) the (p+l)-  
dimensional vector with coordinates x4 (x , ( y - x 'O) /o )  and z(Iy-x'OI/cr). Let 
{(xi, Yi)} be a sample from the distribution P,, and ~* be any sequence such that 

p lira n-  i /2 ~ (//(Xi, Yi, ~n*) = 0 "  (4.1) 
n~oo i= 1 

Assume that ~* is consistent; let ~o=lim~ *. Assume that Z(.) and q~(x,.) 
are absolutely continuous. Let J(x,y,~) be the ( p + l ) x ( p + l ) - m a t r i x  of de- 
rivatives of ~ with respect to 0 and rr. Let r u)=0r  u)/Ou and 

C =Ep tF(X, y, ~o) ttu( X, Y, ~o)' and D = EeJ(x, y, ~o). (4.2) 

Let L(x) = K (x) Ix I, H1 (x) = sup I q~'(x, u)[ and H 2 (x) = sup lush' (x, u)l 
u u 

Theorem4.1. Assume that (besides (A1) through (A7)) ~b,X and P satisfy the 
following assumptions: 

(C1) The functions Z'(t) and tz'(t ) are bounded, and Z'(0)=0. 
(C2) EHl(x) lx l2L(x)<oo and EH2(x) lx lL(x)<oo.  
(C3) EHI(X) IXI2<oo and EH2(x)Ix]<oo. 
(C4) Elx l< oo. 
(C5) D is nonsingular. 
(C6) EL(x) 2< oo. 
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Then ni/2(~n*--~o ) tends in law to a (p+l)-variate normal with covariance 
matrix V = D - 1 C(D - i). 

Proof Let 2(r = E  ~(x, y, r and 

U(x, y, ~, b) = sup {I ~(x, y, ~) - 5U(x, y, t/)l: Iq - ~l < b}. 

Then, according to (Huber, 1967, p. 227), it suffices to show that for certain 
constants cl, c2, c 3 and C~o, and for 1~-r  we have: (i)[2(~)[>cl] ~ 

- ~0}; (ii) EU(x, y, ~, (5) < c 2 (3; and (iii) EUZ(x, y, ~, (3) < c a 6. 
Part (i) stems from (C5). By (C3) one may interchange expectation and 

differentiation, hence (ii) and (iii) follow from (C1) through (C4) (which ensure 
the integrability of J for all 5) and the Mean Value Theorem. Finally the existence 
of C in (4.2) follows from (C6). 

A more tractable expression for V is obtainable only under further re- 
strictions. Assume that P satisfies model (1.1). Without loss of generality take 
~0=(0,1). Let M=EqY(x,y)xx '  and N=EqS(x,y)2xx '. Assume that y has a 
symmetric distribution and M is nonsingular. Then it follows from Theorem 
(4.1) that 0* and a* are asymptotically independent, and 0* has asymptotic 
convariance matrix V o = M -  1 N M -  1. 

Remark 4.1. The inclusion of L(x) in (C2) is due to (iii). For the "qualitatively 
robust" estimates which are mainly of interest, L(x) is bounded and hence its 
inclusion is not restrictive. However, for classical M-estimators, (C2) implies 
that E / x l 3 < ~ ,  which seems too strong a requirement. The difficulty is that 
our theorem depends heavily on Huber's result, which is not adequate for 
regression problems. For example, in the case of the least squares estimator 
with fixed scale, assumption (iii) implies E l x ] ~ < ~ .  It would be useful to 
modify Huber's approach to treat regression problems more adequately. 

Assume that the functions ]xl~z(x), ~(u), r and u(/(u) are bounded. 
Then estimators (1.7) satisfy (C2) and (C3) if E[XI2<oo, while for estimators 
(1.6), (C2) is implied by (C1). 

In general, asymptotic normality is not true without some restrictions 
about the tails of Ix[, of which (C4) seems to be the lightest one. For estimators 
(1.7) with monotonic 0 under model (1.1), it is easily seen that if P (u=0)>0 ,  
then the existence of the matrix M defined above Remark4.1 - and hence 
asymptotic normality - implies E[xI2< oo. 

In effect: 
trace(M) = Er (x)) Ix[ 2 > r (0) P(u = 0) E Ixl 2 (4.3) 

This fact points out that the asymptotic normality of estimators (1.7) is less 
robust than that of estimators (1.6). The practical interest of asymptotic nor- 
mality lies in the possibility of constructing approximate confidence intervals 
for 0 by using the normal approximation to the distribution of 0", and 
estimating the matrices C and D - or M and N - from the sample. In the case 
(1.7) one would estimate M by 

M* = n --1 Z @'(Fi/TC(Xi))XiXI' 
i 
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where r~=(y~-x'~ O*)/a*. Thus a small residual at a large x~ will unduly inflate 
M*, and hence spoil the confidence intervals. Exploratory simulations perform- 
ed by S. Morgenthaler indicate that in effect the confidence intervals for (1.7) 
are in general far from being "approximately distribution free", while those for 
(1.6) are much more reliable. 

5. Scaling the x's 

It is easy to see that classical M-estimators are equivariant under nonsingular 
linear transformations of the x's, but this is in general not true for the 
estimators (1.2)-(1.3). To obtain estimators invariant under some desired group 
of linear transformations, it is natural to replace (1.2) by 

,~ (Sn X,, (y~ -- X,' 0.  )/G. ) X~ = 0, (5.1) 
i = l  

where S* is a p • p-matrix which depends on the data. The matrix S* may be 
obtained from a "robust covariance" as in (Huber, 1977) or (Maronna, 1976). 
Krasker and Welsch (1979) study some matrices possessing certain optimal 
properties for regression. The former results will be extended to this situation 
by showing that if S* tends to a matrix S when n-~oe, then the asymptotic 

�9 

behavior of 0* is the same as if S, were replaced by S in (5.1). 
Assume that EelxlK(x)< ~ ,  and that (00, o0) is the only solution of 

Ev(9(Sx , (y-x 'O)/~)x=O,  Evz( ly-x 'O[/o)=O.  

Let (0n, an) be a solution of (5.1)-(1.3). Then: 

Lemma 5.1. Let S*--+S a.s., where S* and S are nonsingular. Assume that for a 
constant c and all x, z and u: 

l0 (x, u) - 0 (z, u)[ < [z - x l c/rain (Ixl, I z I) 2. (5.2) 

Then (0,, a,)~(Oo, ao) a.s. 

Proof. According to Theorem (3.1), it suffices to show that 

Define for O~RV: 

(l/n) ~ qS(Sx~,(yi-x'i0*)/o*)x~--,0 a.s. 
i = 1  

Y~(0) = (l/n) i (qb (S~* xz, (y~- x'f 0)/o*) 
i = 1  

- 4 (Sx~, (y~ -  x'i 0)/o.*)) xi 
(5.3) 

Then it suffices to show that T~ (0n)~0 a.s. Since ISxl>lxl/llS-l]L, (5.2) 
yields: 

I T,(0*)[ < HS* - SI] max (lIS- 111, II S* - l ll)z c ~ 0  a.s. (5.4) 
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Remark. For Mallows estimators, (5.2) is satisfied if 0 is bounded and n is of 
the form 

n(x)=h(lx[), with Ih'(t)l<c/t 2 for t>0 .  (5.5) 

This holds in particular for h(t)=min(1,  c/t). For estimators (1.7), it suffices 
that n satisfies (5.5), and that 0 be of the form O(t)=th(t), with h as in (5.5); in 
particular for the Huber psi-function. 

The treatment of asymptotic normality is more complicated. To simplify 
the problem, assume that cr is known and equal to one. Without loss of 
generality take 0o=0.  Let 0* be a solution of (5.1) (with a * = l )  and assume 
that p lim0* =0. In R p+I define the norm: 

II(x, y) l] =max  (Ix1, IY[). 

If A is a set in R p+I  let f o r 6 > 0 :  

h(cS)= {(x, y): [l(x, Y)-(Xo,Yo)N <6  for some (Xo,Yo)~A }. 

Lemma 5.2. Assume that the assumptions of Lemma (5.I) and (C6) of Theorem 
(4.1) are satisfied, that S* depends only on xl ,  ..., x,, and ]IS*-S]] nI/Z=Oe(1). 

Assume also that the conditional distribution of y given x is symmetric, and 
that for each e>0,  there exist a set A ~ _ R  p+I, and c~=6(e)>0, such that 
P ((Sx, y)cA) > 1 - e ,  and the derivative d (x, y)= ~ (x, y)/c3x Oy exists and is bounded 
in every bounded set contained in A~(~). 

~:~1. Then p lim nl/2T*(O,)=O, where T, is defined as in (5.3) but with a, 

Proof Put nl /2T,(On)-r ,+s , ,  where r,=nl/2T,(O). First we prove that Ir.I 
=oe(1). Call E x and c o w  the conditional expectation and covariance matrix 
with respect to X = {x~ . . . . .  x,}. Then a symmetry argument yields E x r, = O. 

Since y~ and yj are conditionally independent with respect to X for i+j, this 
implies that, by (A 1): 

E x r. r'. = (l/n) ~ E x [q5 (S* x~, Yi) - 0 (Sx~, y~)] 2 xi x'i (5.5) 
i=1 

Reasoning as in (5.4), and taking the trace in (5.5), one obtains Exlr.[2< IIS* 
-Sl l  z Or(1 ), and this yields p lim]r.I =0. 

Now we shall show that for any e>0,  fs.[<eOv(l) for large n. Let C be the 
set {(x, y): (Sx, y)~A~, Ixl<k,[yl<k} where k is chosen large enough that 
P(C)> I - e .  

Decompose s,, =s', +s~', where s', contains those terms with (x~, y~)~ C. Then 
by bounding the terms in s', using the Mean Value Theorem applied to d(x, y), 
one shows that s ' ,~0; and applying (5.2): 

ISn'[ ~ n  1/2 [ ,S*-S, ,  Op(1)In -1 ~ / ( ( x i ,  yl)(~ C)] 
i=1 

and the last expression tends to P(C~)<e. The details are left to the reader. 
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Remark. Let P be continuous. To apply this Lemma to Mallows estimators, it 
suffices that ~z be a piecewise differentiable function of Ixl, and that ~ be 
piecewise differentiable. For estimators (1.7) it suffices that 0 be twice piecewise 
differentiable. 

6. Appendix 

In this section we prove the Lemmas of Sect. 2. We begin with an auxiliary 
result. 

Lemma 6.1. Let P be any distribution o n  e v+ l. Let K be a compact set in R m, 
and k(z) a P-integrable function on R p+i. Suppose that g(z, v) (with zER p+I and 
v~K) is continuous in ~ .for each z, Ev[g(z, ~)[ < oo for ~EK, and g(z, z) > k(z) for 
all z and z~K. Then, given e>0,  there exists We~CU (defined in (2.3)) such that 
for all Q~W: 

infEQ g(z, ~) > infE v g(z, z ) -  e. 
�9 eK ~r~K 

Corollary 1. I f  h(z, z) is continuous in "r for each z, and measurable in z for each 
T~K, then given e>O, there exist 3 > 0  and W ~  such that for all QEW: 

sup Q (z: h (z, -c) < 3) < sup P (z: h (z, z) < 0) + ~. 
~aK 'reK 

Corollary 2. I f  P satisfies (A6) and (A7), then there exist positive c, d and e, and 
W I ~ , ,  such that for all Q~W i 

sup {Q (Ix' 0l < e):l 0l = 1 } < Z(Uo)/(a + Z(Uo)) - c, (6.1) 

sup {Q(ly-  x' 0l <d): oee  p} <b/ (a+b) -c ,  (6.2) 

where u o is defined in (A2), and a and b in (A3). 

The proof of Lemma (6.1) follows along the same lines as that of Lemma 1 
in (Yohai, 1974). The proofs of the corollaries are left to the reader. 

Proof of Lemma2.I. For brevity put qo(a,O)=Eez(ly--x'O[/a), so that by 
definition 

qe(a(O, Q), O)=0. (6.3) 

Let Q belong to the neighbourhood W i in Corollary 2 above. Then (6.2) 
implies that lim qQ(a, 0) < 0 < lim qe(o-, 0). Since qa( ' ,  0) is continuous by (A 3), 

O-moO O-~0 

the Intermediate Value Theorem yields the existence of a solution. Uniqueness 
is proved by using (A4), (6.2) and the monotonicity of Z. 

Proof of Lemma 2.2. (i) Choose A 1 such that z(d/A1)=b-(a+b)c/2,  where c 
and d are defined in (6.2). Partition the expectation in (6.3) into the sets: ]y 
- x ' 0 l  < d  and >d. Then by the monotonicity of X, ~<A1 implies qe(o-, 0 )>0  if 
Q~W i (with W 1 as in the former Lemma). 

(ii) Take A 2 large enough that Epz((lYl/Ao+lXl)/Aa)<-a/2. Take W'~/r 
such that EQ((ly[/Ao+lxD/A2)< -a /4  for all QeW'.  If [0[>A o and Q~W'c~W1, 
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and if a(O, Q)/IOJ >A2, then (6.3) would yield 

O<Ee)~(ly[/o(O, Q)+ Ixt 101/o(0, Q))< - e l 4 .  

(iii) Take A 3 such that Ep)/(([y I + [xl Ao)/A3)< -a /2 .  The rest of the proof is 
like in (ii). 

(iv) Recall the definitions of c and e in (6.2) and of A 1 and W~ in (i). 

Take k such that ) / (k )>b-6 ,  where 6 >0  is to be determined later. Define the 
event U = { e A 4 - l y l / A ~ > k  }. Then one may find A 4 and W'e~## such that 
Q ( U ) > l - c / 2  for all Q~W'. It will be shown that if Q ~ W ' ~ W  1 then 
101/o(O,Q)>A4 contradicts (6.3). In effect, let V={xzlx'Ol/lOl>e}, so that 
Q(V)>a / (a+b)+c  by (6.1). Partition the expectation in (6.3) into the sets Uc~V, 
U n V  C, and U c. Then recalling (i), (6.3) yields: O > ( z ( k ) + a ) ( Q ( V ) - c / 2 ) - a ,  and 
this can be made positive by choosing 6 small enough. 

Finally to prove the Corollary, note that qp(a, O) is continuous on O, and 
that (i) and (iii) imply that 0(0, P) is bounded if [0l remains bounded. A simple 
argument shows then that 0 , ~ 0  implies 0(0,, P)~o(0 ,  P) for any sequence {0,}. 

Now to prove Lemma (2.3) an auxiliary result will be needed. Proceeding as 
in the proof of Lemma (2.1) it is easy to show that for each v~R p, there exists a 
unique solution C = C(v) of the equation El, )/(Ix' vl C)=0.  Then: 

Lemma6.2. For each e>0,  there exist A ~ and W~CU such that for all 
Q c W  ~, 101 > A ~ implies 

- e <-_lOI/o(O, P ) -  C(O/fO]) <=e. 

Proof We shall find A s and W ~ to ensure 10l/a(O,P)<C(O~ where 0 ~ 
=0/101; the other inequality is dealt with in the same way. Put S={vCRP: I~1 
= 1}. A simplified version of the proof of the Corollary to Lemma (2.2) shows 
that C(v) is continuous for vzS. Let f l=infEez(lx 'v[(C(v)+e)).  Then the con- 

"c~S 

tinuity and uniqueness of C(v), and the compactness of S, yield fl>0. By 
Lemma (6.1) there exists W'~CK such that for Q~W'  

infEe Z (I x"cl (C (v) + e)) >/3/2. (6.4) 

Now note that Lemma(2.2) (iv) implies that, given any constant A, 
1/o(0, Q)<__A4/A for IOI>A and Q e W  2. Since z is continuous, monotone and 
bounded by (A3), it is uniformly continuous, and it is easy to show the 
existence o fA  ~ and W"~CK such that for QEW" and 101>A~: 

lEe Z(lY- x' 01/o(0, Q) ) -  E e z(lx' 01/o(0, Q))I </3/4. (6.5) 

Suppose that Q ~ W ~ = W' c~ w "  (~ W2, I O[ >= A s and 10[/o(0, Q) > C(O ~ + e. Then 
(6.4) and (6.5) and the monotonicity of Z would yield: EeZ([Y 

- x' 01/o(0, Q)) >/3/4, contradicting (6.3). 

Proof of Lemma 2.3. Let for e>0:  

e~ = infEp q5 (x, ix' z[ (C(,) + e)) ix' ~1; 
"gES 

where S={T: IT[= 1}. 
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Note that the integrand is nonnegative by (A1). We shall first show the 
existence of e>0  such that c~>0. Put for brevity: r(t)=z(t)/(a+z(t)) (with a as 
in (A3)). From the definition of C(v) one derives 

P(lx'~[ C(~)<O>r(O for all t>0 .  (6.6) 

Then by the continuity of C(v), the compactness of S, and (A2), if c~=0, then 
for some �9 one must have: l=P(x ' z=O)+P( lx ' z l (C(v)+e)>uo) .Thus  (6.1) and 
(6.6) imply 

1 < r(Uo) - c + 1 - r(u o C(v)/(C(v) + e)). (6.7) 

Now note that r(t) is uniformly continuous in a neighborhood of u0, and 
that Lemma (6.2) together with Lemma (2.2) (ii) and (iv), imply 

1/A 2 <= C('Q <= A 4 for v~S. (6.8) 

Hence there exists e > 0 such that r(u0) - r(u 0 C(T)/(C(z) + e)) < c/2 for all v~S. 
The preceding reasoning implies that this e makes G >0. 
Put ~ = ~ .  Lemma (6.1) yields the existence of W'~## such that for Q~W': 

infE~ q~ (x, Ix' ~[(C(~) + e)) Ix' ~L > ~/2. (6.9) 
~ES 

Now let J(x, t )=sup {IqS(x, u)-qi(x, u')l: lu-u ' I  <t}. Then (A1) implies that 
J(x,t)-~0 when t~0 ,  and hence by (A5), there exists k such that 
Ep J(x, l yl AJk)Ixl < A6/4, where A 6 = e/(4(1 + eA2)), with A 4 and A 2 as in Lemma 
(2.2). Then there exists W"e ~#2 such that E e J (x, l Yq A 4/k)lxl < A6/2 for Q e W": and 
this implies that for 101 > k and Q~ W": 

IB(O, Q) + Bll <A6/2, (6.10) 

where B, = E  e ~(x, Ix' 01/o-(0, Q))Ix' 0~ 
Finally let As=max(k,A~,Ao),  and W3=W'c~W"c~W2mW ~, where k, W' 

and W" are defined above, A ~ and W ~ appear in Lemma (6.2) and A o and W 2 
in Lemma (2.2). By Lemma (6.2), 101 > A5 and Qe W 3 imply ]O]/a(O, Q) < C(O ~ + ~; 
and (A2) implies ~b(x,s)>/~(x, t ) s=4(x ,  t)s/t for 0 < s < t .  In consequence: 

B~>EQO(x, lx'O~176176176 (6.11) 

Now (6.9), Lemma(2.2) (ii) and (6.8) applied to (6.11) yield: 
Bl>=(~/2)(1/A2)(1/A2+~)-l=2A6; and this, together with (6.10), yields 
B(O, (2)_-< - A6.  
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