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1. Introduction and Summary 

Consider the general regression model 

(1.1) y,= M (x,) + e, (n= 1, 2, ...) 

where the errors el, e2, -.. are i.i.d, random variables with mean 0 and variance 
a 2. We shall assume that the regression function M(x) is a Borel function with 
a unique zero at 0 such that the following three conditions are satisfied: 

(1.2) M(0)=0 and M'(0)=/3 exists and is positive; 

(1.3) inf {M(x)(x-O)}>O for every 0<c~< 1; 
6<1x-0t<=6-~ 

(1.4) [M(x)[ _= A lxt + D for some A, D > 0 and all x. 

Adaptive stochastic approximation schemes for choosing the levels of x at 
which y is to be observed are useful in applications of the following nature. 
Suppose that in (1.1) x~ is the dosage level of a drug given to the i-th patient 
who turns up for treatment and that Yi is the response of the patient. Suppose 
also that an optimal response value y* is desired. Without loss of generality, 
we shall (replacing y~ by y~-y* if necessary) assume that y*=0.  If 0 were 
known, then the dosage levels should all be set at 0. Since 0 is usually 
unknown, how can the dosage levels xi be chosen so as to approach the 

unknown 0 as rapidly as possible? Calling ~ (x~-0) e the cost of the design at 
1 

stage n, we have shown in [10] that in the case where/3(=M'(0)) is known, the 
apparent dilemma of having to choose between a small cost (of interest to 
current patients) and a good estimate of 0 (of interest perhaps to future 
patients) can be resolved, at least for large n, by using the stochastic approxi- 
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mation scheme 

(1.5) x . . 1  = x . -  y . / ( n ~ )  (n = 1, 2 . . . .  ) 

with x~ =initial guess of 0. In practice, although ,6 is usually unknown, Theo- 
rem i below shows that the desirable asymptotic properties of the scheme (1.5) 
still hold if we replace fi in (1.5) by a strongly consistent estimator b, of ft. As 
in [10], we shall call the stochastic approximation scheme 

(1.6) x,+ ~ = x , - y f f ( n b , )  (n = 1, 2, . . . )  

adaptive if {b,} is a sequence of positive random variables such that l imb,= /?  

a,s. The following theorem, proved in [10], gives some asymptotic properties of 
adaptive stochastic approximation schemes. 

Theorem 1. Let M(x) be a Borel function satisfying (1.2)-(1.4). Suppose that e, ~1, 
e 2 . . . .  are i.i.d, random variables with Ee=O and O<Eg2=O'2"~OO. Let x 1 be a 
random variable independent of el, e 2 . . . . .  Let ~o denote the a-field generated by 
xt ,  and for k >= l let ~k denote the a-field generated by xl ,  e 1 . . . .  , ek" Let {b,} be 
a sequence of  positive random variables such that b, is ~ _  1 - measurable for all 
n ~  l and l i m b , = f l  a.s. For n=1,2 ,  ..., define inductively y, by (1.1) and x,+ 1 

by (1.6). 7(hen 

(1.7) n~(x, - O) ~ N(O, a2/fl 2) 

(1.8) lira x, = 0 a.s., and in fact 
n ~  oo 

(1.9) 

a s  n.--~,  c ~  , 

lira sup (n/2 log log n) ~- Ix, - 0J = a/fl a.s.," 

t } lira ~. (x i -  O)2/log n = a2/fl 2 a.s. 
n ~ o e  ~ . l  

In ignorance of fl, an obvious choice for b, in the stochastic approximation 
scheme (1.6) is the usual least squares estimate 

(1.1o) L 1 
n 

Y, (xi-X'.) 2 
1 

at least in the linear case M(x)=f l ( x -O) .  (Here and in the sequel, we use 8, to 
denote the arithmetic mean of any n numbers a 1, . . . ,  a,.) However, since the 
le~'els x i are sequentially determined random variables, it is not obvious that ft, 
will in fact converge to fl a.s. as n ~ oc. In the case where positive upper and 
lower bounds B and b for fi are known, as often occurs in practice, it is natural 
to truncate ft, above and below by B and b. For the stochastic approximation 
scheme (1.6) with b , = b v ( f l ,  A B), where v and /x denote maximum and 
minimum respectively, we establish in Sect. 5 that fl,, and therefore b, also, 
indeed converge a.s. to ft. This is the content of 
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Theorem 2. Let M(x), fl, O, a; x 1 " 51, 52, ... be as in Theorem 1, and assume that 
M(x) is continuously differentiable in some open neighborhood of O. Let b, B be 
positive constants such that b<f l<B.  Define inductively Yn, xn+l, fin by (1.t), 
(1.6), (1.10), and define 

(1.11) bn=bv(f i ,  AB)for  n>no, where 

no=inf{k: i~  1 (xi -  21f >0}, 

setting bn equal to some constant c between b and B for n < n 6. Then 

(1.12) fin--*fl a.s. and therefore bn~ fi a.s. 

Moreover, (1.7), (1.8), and (1.9) still hold. 

In a recent paper, Anbar ([1], Theorem 2) has considered the strong consi- 
stency of fin in Theorem 2 under the further assumption that B<2b.  Although 
in practice it is often possible to give upper and lower bounds for fl, the 
requirement that the upper bound be less than twice the lower bound is rather 
restrictive and appears somewhat artificial. However, Anbar's proof of the 
strong consistency of fl,, depends very heavily on the extra condition that 
B<2f l  in the assumption b<f i<B.  By using a different approach, we are able 
to remove in Theorem 2 this unduly stringent condition. We prove Theorem 2 
by making use of a general theorem on the strong consistency of fin in 
stochastic designs established in Sect. 2 together with some general results, 
established in Sects. 3 and 4, on the order of magnitude of xn-O and of 

~.(x~- 0) 2 for general stochastic approximation schemes of the type (1.6), where 
1 

{b,} is an arbitrary sequence of positive random variables (not necessarily con- 
vergent) satisfying some weak conditions on boundedness and measurability. 

While Theorem 2 assumes known positive bounds on fl so that the least 
squares estimate fin can be truncated below and above by these bounds in the 
definition of b, in (1.11), the general results on stochastic approximation and 
least squares estimation developed in Sects. 2, 3, 4 also enable us to deal with 
the case in which prior lower and upper bounds for fi are not known. We 
handle this general case by using a "stochastic" truncation of fin in the 
definition of b n in the following 

Theorem 3. Let d< 1 <D and c be positive constants. Let {f(n)} and {g(n)} be 
two nondeereasing sequences of positive constants such that lim f (n )=  lira g(n) 
- co, f(1) g(1)> 1, and n~o~ n~o~ 

(1.13) 

(1.14) 

(1.15) 

jg(j) f2(j) = co, 

{g(n)} is slowly varying (i.e., lira g([an])/g(n)= 1 for all a>O), 
t I  ~ 0 3  

g(n)=o jg(j)~f2 (j) 
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Let {m(n)} be a sequence of positive integers such that 

1-) 
(1.16) m(n)~oo and logm(n)=Ov_(j f ( j )  as n--,oo, 

(1.17) re(l)=1 and m ( n ) < n - 1  for n>2. 

Suppose that in Theorem 2 we replace b, in (1.11) by 

m(n) 

(1.18) b.=c if 2 (Xi--Xm(n)) 2=0' 
1 

=(g(n)) -~ v dfl* v {fl,/xDfl* A f(n)} otherwise, 

where 

(1.19) 

re(n) 

(x i - x.) Yi 
/3 ,_  1 

Y~ (x , -  x.) 2 
1 

Then with probability 1, 

(1.20) lira ft, =/3, 
n + ( ; o  

Moreover, (1.7), (1.8), and (1.9) still hold. 

and b,=fl ,  for all large n. 

A simple example of {f(n)}, {g(n)}, and {m(n)} satisfying the assumptions of 
the above theorem is f (n)=g(n)=a+b(logn)  p and m(n)=[exp((logn)a)] 
A{(n--1)vl}, where a > l ,  b>0, 0 < p < l / 7 ,  and 0 < ~ 5 < l - p .  The proof of 
Theorem 3 is given in Sect. 6, where we also discuss the rationale behind the 
use of d/3* and D/3* to truncate the least squares estimate ft, in the definition of 
b, in (1.18). 

In Sect. 7, we show that the slope estimate ft, in the adaptive stochastic 
approximation scheme of Theorem 2 or Theorem 3 has an asymptotically nor- 
mal distribution and that, in the linear regression model with normally distrib- 
uted errors, ft, is an asymptotically efficient estimate of/3. This is the content of 

Theorem 4. Suppose that in Theorem 2 or Theorem 3 we replace (1.2) by the 
stronger assumption that as x ~ 0 

M(x)=-/3(x-O)+O(]x-OI 1+~) for some ~/>0 and/3>0. (1.21) 

Then 

(1.22) 

and therefore 

(1.23) 

(log n)~-(fl _/3) , U ( O , / 3 ~ ) ,  

(log n)~(b _/3) 1 , N ( O , / 3 2 ) .  

Moreover, if M(x)=/3(x--O) and the s i are i.i.d. N(O, 0 "2) random variables, then 
fin is an asymptotically efficient estimator of/3 in the sense that given any r > 0 
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and fl, 

(1.24) l imsupP~[( logn)=lTn- f l [<r]<l imP~[( logn)  I l fn- f l j<r ] 
n ~  oo n ~  oo 

for any other estimator T, = T,(xl ,  Yl . . . . .  x , ,  Yn) such that if {~,} is a sequence of 
constants satisfying -~ 7n=0((logn) ) then 

(1.25) lira {P~+~.[ ( logn)~ lT , - f i l<r] -Pp[( logn)~ fT , - f l l<r]}=O.  
n ~ c o  

The notation P~ (or P~+~.) in (1.24) and (1.25) signifies that the unknown 
slope parameter of the linear regression function is equal to fl (or fl + 7,). As 
pointed out by Weiss and Wolfowitz ([13], pp. 19-20), the regularity condition 
(1.25) on the estimator T n rules out super-efficiency. 

In [12] Venter proposed a modified version of the stochastic approxima- 
tion scheme (1.6) to obtain successive estimates of fi which are consistent. His 
scheme requires that at the n-th stage (n = 1, 2 . . . .  ) two observations y', and y,' 

! /t __ - - a  be taken, at levels Xn=Xn--an and x n - x . ~ -  ,, where {an} is a sequence of 
positive constants such that 

(1.26) a , ~ a n  -~ for some constants a > 0  and �88  • 2~ 

and x n is the n-th approximation to 0 defined by (1.6) with 

(1.27) a , ,, Y,=g(Y, ,+Y,) .  

Assuming that positive constants b and B are known such that b < f l < B ,  
Venter defines the slope estimate b n in (1.6) by 

(1.28) bn = b v Y'i' - Y'i)/(2a~ �9 

At stage n, 2n observations have been taken, and assuming M(x)  to be 
twice continuously differentiable in some open neighborhood of 0, we have 

t 2 /t shown in [10] that the cost C , =  (x i -O)  + ~ ( x  i - 0 )  2 grows like pn 1-2~ 
1 i 

where p is a positive constant depending on a and 7. In order that the cost be 
of logarithmic order, we have to take a, smaller than (1.26) so that 

(1.29) i a2 =o(log n). 
1 

But then b, as defined in (1.28) fails to be strongly consistent (cf. [10]), and we 
proposed in [10] the alternative estimator 

f n - i  (1.30) /~n=bv BA�89  Z a~(y'{--y'i) 
i = l  

(n l t} a 2~ , n~_2,_ (bl=b). 
i 1 
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Using/~, as defined in (1.30) and choosing a, such that (1.29) holds and 

(1.31) a ,=O(n  -~) for some 7>1/4 but ~a ,2=oo,  
1 

we showed in [10] that the cost C. indeed grows like (er2/flZ)logn and that 

2 

(1.32) a b , - f i )  ~ ,N(O, �89 

In view of (1.29), comparison of (1.32) with (1.22) shows that/~, is asympto- 
tically much less efficient than ft,. Thus the adaptive stochastic approximation 
scheme of Theorem 2 or Theorem 3 uses an asymptotically more efficient 
estimator of fl than the Venter-type pairwise sampling scheme with {a,} satisfy- 
ing (1.29) and (1.31). Some simulation studies comparing the performance of 
these two kinds of adaptive stochastic approximation schemes for moderate 
sample sizes will be reported elsewhere. 

2. Strong Consistency and Asymptotic Normality 
of ft. in Stochastic Designs 

For the regression model (1.1) with i.i.d, errors el, g2, " ' "  such that Ee 1 =0 and 
Ee2=o'2<o% we shall assume throughout this section that the levels x, are 
random variables such that 

(2.1) x, is ~3,_l-measurable for all n>  1, 

where ~30c~3tc . . .  is an increasing sequence of e-fields such that e, is ~3,- 
measurable and is independent of ~3,_ 1 for all n > l .  Defining ft, as in (1.10) if 

/1 

(x~-ft,)2> 0 and setting ft, equal to some constant b otherwise, we note that 
1 

n 

(x, - ~.)(M (x,) + ~,) 
n 

(2.2) ft, = 1 , if Z (x~- ~,)2 > 0, 

Y, (x~- x.) ~ 
1 

- b  otherwise. 

In this section we establish some general results on the a.s. convergence of ft, 
and on the asymptotic normality of ft,. These results will be applied in Sects. 5, 
6, 7 to prove Theorems 2, 3, 4. We begin with conditions for the asymptotic 
normality of ft, in stochastic designs in the following 

Theorem 5. Let  e, el, e 2 . . . .  be i.i.d, with E e = O  and E82~-t72< oo. Let  {x,} be a 
sequence of  random variables satisfying (2.1). 

(i) Assume that there exists a constant 0 and a sequence o f  positive con- 
stants {A,} such that 
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(2.3) A, ~ o% 
n 

(2.4) ~ (x i -  O)2/A, e , 1, 
1 

and 

O) /A.----+O. (2.5) max (x~- 2 e 
1 < i < n  

Then 

x i O)zi A~----~N(O, 0-2). 

335 

(ii) Assume further that 

(2.6) (n/A,)~(~2, - O) P , O. 

M(x)=~ + flx and ft, is defined by (2.2), then 

, N(O, oz). (2.7) A, (ft, - B) - ~ 

(iii) Let M(x) be a Borel function such that, as x---,O, 

(2.8) M(x)=M(O)+f l ( x -O)+O( lx -OI  1+") for some q>0.  

Assume that (2.3), (2.4), and (2.6) hold and that 

(2.9) ~ lx~-012p<co  a,s. forsome l < p < l + q .  
1 

Then lira x,=O a.s. and (2.5) also holds. Moreover, defining ft, as in (2.2), (2.7) 
n ~  o~ 

still holds. 

Proof Let x,~=(x~-O)/A~, and x',~=x,~Itl~.,l~ = ~1" By (2.5), 

(2.10) P[x, i~x ' , i  for some i=1  . . . .  , n ] ~ 0  as n-~oe. 

Moreover, E [x',i eir< oe and E(x',i ei l f13~_ 1) = 0, and by (2.4) and (2.10), 

n n 

r t 2 > 0 . 2 .  (2.11) Z E((x,~ el) 2 t ~3 i_ a)= a2 ~ (x,i) - e 
1 1 

Using (2.5) and (2.11), it can be shown that 

n 
r 2 P (2.12) ~ E[(x,  ie 3 I[(x;,~d;>~lt~i_l]----~O for every b>0.  

1 

Hence by (2.10) and a theorem of Dvoretzky (see Theorem 2.2 and Sect. 3.1 of 

[5]), (i) follows. Using (i), (2.2) and the central limit theorem for ~ e~, we 
obtain (ii). 1 
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To prove (iii), first note that lira x, = 0 a.s. by (2.9) and hence (2.5) holds by 
n ~ o o  

(2.3). Therefore, in view of (ii), (2.2), and (2.8), we need only show that 

(2.13) (x~-Y, )u  i (x~-Y,) 2 ~ 0  a.s. on (x~-y,)2--+oo , 

where {u,} is a sequence of random Variables such that with probability 1 

(2.14) tu,I = O ( I x , -  0[ i +"). 

Take 6 > 0  such that (1-6)(1  +~/)>p, where p is given by (2.9). By the Schwarz 
inequality, 

~l (Xi--Xn) Ui ~ {~l (Xi--Xn)2 'Ui'2a}�89 {~l 'Ui[2(1-a)}�89 
=O({~(x l - - xn )2} �89  a.s. on [~(Xi--Xn)2"-~oO], 

since u , ~ 0  a.s. and ~Luil2(*-a)<oo a.s. by (2.9) and (2.14). | 
1 

We now consider the question of strong consistency of ft, for stochastic 
designs. For multiple regression models with stochastic regressors, Anderson 
and Taylor [2] have recently considered the strong consistency of least squares 
estimates under certain conditions on the design. When specialized to the 
model M ( x ) = e + f l x ,  their strong consistency result requires, among other 
conditions, the condition that 

n 

(2.15) Z ( X i - - . ~ n ) 2 > ) > n  a . s .  

1 

(Here and in the sequel, we shall sometimes use Vinogradov's symbol 
instead of Landau's 0 notation. Thus, the order relation c , ~ d ,  between two 
nonnegative sequences c, and d, means that there exist positive constants K 
and m such that e , < K d ,  for all n>=m.) The following theorem considerably 
weakens the condition (2.15) to an analogous condition which we shall demon- 
strate to be in a sense the weakest possible. 

Theorem 6. Let e, Q, e2, . . .  be i.i.d, with Ee=O and Ee2 < oo. Let {x,} be a 
sequence of random variables satisfying (2.1). 

(i) Assume that 

(2.16) 

Then as n -+ oo~ 

(2.17) 

n 

lim ~ (x i -  Y,)a/(log n) = oo a.s. 
n ~ r  1. 
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(ii) Let M(x)=c~+ flx and define ft, by (2.2). I f  (2.16) holds, then fl,---'t3 a.s. 
(iii) Let M(x)  be a Borel function that is continuously differentiable in some 

open neighborhood of a given point O. Define fin as in (2.2). I f  (2.16) holds and 

(2.18) lira xn=0 a.s., 
n ~ o o  

then f ln~ M'(O) a.s. 

W e n o t e  t h a t i n T h e o r e m 6 ,  {~lXi~i,~3n, n > l } i s  amar t inga le t rans form 

but need not be a martingale, since E(xne,) may be undefined. The following 
lemma lists some properties of such martingale transforms that we use to 
prove Theorem6 and other results in the sequel. We note that if a, is a 
sufficiently large constant such that P[[xnl>an]<n -2 for every n, then P[x ,  
=x', for all large h i = l ,  where x'n=xnltlx.l~. ~. Moreover, E[X'nenl<oo and so 
n 

x'i e~ is a martingale. In view of this truncation argument, parts (i) and (ii) of 
1 

the following lemma follow from the (local) convergence theorem and the 
strong law for martingales (cf. [11], pp. 148-150). Part (iii) is a special case of a 
theorem of Freedman ([6], p. 919), while part (iv) follows from part (iii) and the 

Kronecker lemma, since [un[ 1 + [ui[ < oo for 2 >  1. 
1 

Lemma 1. Let z, Zl, z2, ... be i.i.d, random variables such that E[zl< oo. Let 
~3 o c~3, ~ ... be an increasing sequence of ~-fields such that z, is ~n-measurable 
and is independent of ~ , _  1 for n > 1. Let {u,} be a sequence of random variables 
such that u n is ~ , _  1-measurable for all n > 1. 

(i) I f  E z = 0 and Ez2 < o% then ~ u i z i converges a.s. on u 2 < oo . 
1 

(ii) I f  Ez=O and Ez2 < o% then for every tl>�89 

Z ~ 00] .  / (~U, ) ~O a.s. on [~U,= n 

(iii) ~ lu~ z~l < oo a.s. 
1 

(iv) For every 2 > 1, 

@luzz,I)/@lu,lf--+O a.s. on [~luzl=~].  

Proof of Theorem 6. Simple algebra (cf. [8]) shows that 

( x l  - • . )  e, = (x ,  - ~ _  2 ) ( e ,  - ~-~- 1), 
1 2 

(2.19) 

and 

(2.20) (x,-  ~2.) ~ - % -  ~,_ 0 ~. 
1 2 
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Let d,=j-l(j-1)(x.-)2. 1), j > 2  Then d. is ~3. 1-measurable and therefore 

d~ej, ~j , j>2 is a martingale transform. Assume that (2.16) holds. Then by 

(2.16) and (2.20), ~d2~(x i - )2 , )2~oo  a.s. Therefore by Lemma l(ii), with 
probability 1, 2 1 

(2.21) Z djej (Xi--)2n)2--+O. 
\ 2  

We note that by the Schwarz inequality, with probability 1, 

t ~(Z41  Z(xi-)2o) 2 �9 

\ 2  \ i I L I  

By Corollary 1 of [10], with probability 1, 

(2.23) ~ g~ ~ (Ee 2) log n. 
1 

From (2.16), (2.22), and (2.23), it then follows that with probability 1 

(2.24) dj gj_ 1 (x i - )2,) 2 ~ 0. 

From (2.19), (2.21), and (2.24), (i) follows. In view of (2.2), (ii) is an immediate 
corollary of (i). 

To prove (iii), let g(x)=M(x)-flx. By (2.2) and (2.17), to show that fl,--+fl 
a.s., it suffices to prove that 

(2.25) {~(x~-)2n)g(xi)}/~(xi-)2,)2~O a.s. 

Since lim x , = 0  a.s., g'(0)=0, and g is continuously differentiable in some 

neighborhood of 0, we obtain that with probability 1 

(xi-)2.) g(xD <=~ ix,-)2.11g(x,)-g()2.)l--o (Xi--)2n) 2 , 

and therefore (2.25) follows. I 

It is natural to ask whether in Theorem6 the condition (2.16) that 
~ (x~-)2,) 2 grows faster than log n can be weakened to, say, the condition that 

1 
n 

(2.26) 3- (x i _ )2,)2 >> log n a.s. 
1 

The answer to this question turns out to be negative, as is shown by the 
following 
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Example. Let c ~ 0  be a real constant and let e~, e z . . . .  be i.i.d, random 
variables with Ee, =0  and EeZ~= 1. Let x~ =0  and for n>  1 define 

(2.27) x,+ 1 =)~, + c~-,. 

By (2.20), (2.23), and (2.27), 

(2.28) ~(Xi--Xn)2=C2~I g2_l~C21Og/a a.s. 

Therefore (2.26) is satisfied. By (2.19), (2.27), and (2.28), 

(2.29) 1 _ 1 2 , - c-  1 a.s., 
C 

(x , -  e.) 2  -L1 
1 2 

u s i n g t h e s t r o n g l a w f o r t h e m a r t i n g a l e { ~ l i - l ( i - 1 ) g i _ l e i ,  n > l } . H e n c e ( 2 . 1 7 ,  

fails to hold. Consequently, even in the linear case M(x)=c~+flx, fin fails to be 
strongly consistent; in fact, by (2.2) and (2.29), f l n ~ f l - c  -1 a.s. 

If the x, are constants, then the condition ~ (x i -  y , )2~  oe is both necessary 
1 

and sufficient for (2.17) to hold (cf. [-8]). The above example shows that if the 
x, are sequentially determined random variables, then (2.17) may fail to hold 

even when (x i -  ~y,)2 grows like log n. Therefore if ~, (x i -  9~,)2 does not grow 
1 1 

faster than log n (as is the case in adaptive stochastic approximation schemes 
in view of Theorem 1), additional assumptions on x, have to be imposed to 
ensure that (2.17) holds. The following theorem allows very slow growth rates 

for ~(x~-)~,) 2, but requires [)~-01 to be sufficiently small when compared 
1 

n 

with ~ (x i - 0) 2. 
1 

Theorem 7. Let e, el, ez, ... be i.i.d, with Ee=O and Ee2 < oe. Let {x,} be a 
sequence of  random variables satisfying (2.1). Assume that there exists a constant 
0 such that with probability 1 

(2.30) ~ (x i - 0) 2 = c~, 
1 

(2.31) lim sup n(~, - 0) 2 (x i - 0) 2 < 1, 
n~o9 

(2.32) (n log logn) - [x , -O]=o (xi-O) 2 . 
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Then (2.17) holds. Consequently, if M(x) is a Borel function that is continuously 
differentiable in some neighborhood of 0 and lim x,=O a.s., then fl,~M'(O) a.s., 
where ft, is defined in (2.2). ,~ oo 

Remark. For multiple regression models with stochastic regressors, Drygas [4] 
has obtained sufficient conditions for the least squares estimate to be consi- 
stent. When specialized to the model M(x)=c~+~x, his conditions imply (2.30), 
(2.31), and 

(2.33) n Iff, - 81 ~ ~ (x , -  8) 2, 
1 

which is much stronger than (2.32). 

Proof of Theorem 7. Since (2.31) holds a.s., 

n n 
(2.34) ~ (x , -  8) 2 ~ (x,-:~,) 2 a.s. 

1 1 

Therefore with probability 1 

n ~i ! n 
(2.35) ~(x,-Y:,) ~ (xi-8)e , -q ]Y~,-S] ~e,  

n n 
Y , ( x , - x . )  2 Z ( x , - 8 )  2 2 
1 1 1 

By (2.30) and Lemma l(ii), 

(2.36) ~ ( X i - - 8 )  g i (x i -  0)2 ~ 0  a.s. 
1 

By the law of the iterated logarithm, with probability 1, 

n 

(2.37) lY,-  81 ~ ei ~ (n log log n) -~ IX,- 81 

- -  0 X i -  8) 2 , by (2.32). 

From (2.35), (2.36), and (2.37), we obtain (2.17). | 

, In view of (1.8) and (1.9), the condition (2.16) on the growth rate of 
(x i -  ~,)2 in Theorem 6 fails to hold for the adaptive stochastic approximation 

1 
schemes of Theorem 1. However, (1.8) and (1.9) imply that the conditions 
(2.30)-(2.32) of Theorem 7 are satisfied by adaptive stochastic approximation 
schemes. Therefore, if fl,~/~ a.s. in the stochastic design of Theorem 1, then the 
random variables x, defined by the recursion (1.6) with b ,~f l ,  satisfy the 
assumptions of Theorem 7, which in turn implies that ~,--,/~ a.s. While this 
circular argument does not prove that fl,~/~ a.s. in Theorems 2 and 3, we shall 
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establish the desired strong consistency of ft, in Theorems 2 and 3 by applying 
the following 

Theorem 8. Let ~, al, e2, ... be i.i.d, with Ee=O and Ee2 < oo. Let {x,} be a 
sequence of random variables satisfying (2.1). Assume that there exist constants 
0 < 3, < 1/2 and 0 such that with probability 1 

(2.38) x , -O=o(n -~ ) ,  

and 

(2.39) ~ (x i - 0) 2 >> log n. 
1 

Then (2.26) holds. Let M(x) be a Borel function that is continuously differentiabIe 
in some open neighborhood of 0 and let ~=M'(O). Define 1~, as in (2.2). Then 

( x i - 2 , ) e  i (x i - 'Y , )2~O and f i ,+f l  a.s. 

on the event 

lim sup ~ (x i - 0)2/(log n) < m u (x i - 0)2/(log n) --+ m . 
L n--+ oO 1 

In fact, there exists an event f2 o such that P(Q0)= 1 and all sample points coEQ o 
have the following property: 

(2.40) Given fi > 0 and p > 0, ~ positive numbers A, 2, and N (depending on (o, c~, 
p) such that at oo, for all n > N, 

(a) ~ ( x i - O ) 2 < = p l o g n ~ l f l , - f l l < a ,  
1 

(b) l Y , - O l < 2 n - ~ ( l o g n ) ~ l ~ , - ~ l < f i ,  
[n2~,] 

(c) ~, (xi-O)2>=A l o g n ~ l f l , - f l l < &  
1 

Proof Without  loss of generality, we shall assume that 0 =  0. Since 

1 z ] ~  

it follows from (2.39) and the law of the iterated logari thm that with proba- 
bility 1 

(2.41) lira 92~ e i x/2 =0.  
n ~ o o  

From (2.38), we obtain that  with probabili ty 1 

[n2~] [n2~] [n2~j 

(2.42) 
In 2~] 

E (x,-e.) 2= E x +l-n q E x,= E 
1 1 1 1 
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From (2.39) and (2.42), (2.26) follows. Moreover, by (2.39) and Lemma l(ii), 
with probability 1, 

(2.43) lim x i e i xZi = O. 
n - *  oo 

Let A denote the event on which (2.21), (2.23), (2.38), (2.39), (2.41), (2.42), 
and (2.43) all hold. Then P(A)= 1. Let 

(2.44) B = [ lira v, = 0], where 
n--* oo 

Then, as in the proof of (2.25), P (B)=I .  Let f2o=AoB. We now show that all 
sample points coe~2 o have the property (2.40). 

Let u ,=  (x~-Yc,)e i (x i -~ , )  2. Let co~A. Then by (2.39) and (2.42), 

there exist positive numbers C and N1 (depending on co) such that at co 

[n2V] [n2y]  

(2.45) • (xi-Xn)2~>�89 Z x2i-~ C logn for all n>N~. 
1 1 

Let 8 > 0  and p > 0 .  For n>N1, if ~ x ~ < p l o g n  at co, then (x~-ff,,) 2 
n 1 1 

>(C/p)~x~  at co by (2.45). Hence, by (2.41) and (2.43), we can choose 
1 

N2(>N~) such that at co 

(2.46) [u,1<6/2 whenever ~x~<__plogn and n > N  z. 
1 

In view of (2.45), for n>N~, if ]Y,l<2n-~(logn)-~ at co and 0 < 2 < C  ~, then 
at co 

n n n n 
--2 __ ~ 2  Z ( x e - ~ y , ) z - - - Z x Z - n x , > E x 2  l o g n > � 8 9  2. 

i i 1 I 

Hence by (2.41) and (2.43), we can choose N3(>N1) such that at co 

(2.47) lu,l<6/2 whenever [~,l<2n-~(logn)~ and n> N 3. 

Choose A > 0 such that 

(2.48) (8 E e2/A)~ < 8/4. 

[//2"/] 

Let d~=j- l ( j -1 ) (x ; -Y j_O,  j>2.  For n>N1, if ~, x~>A logn at co, then by 
(2.20) and (2.45), 1 

n [n2v] 

(2.49) d 2 > � 8 9 1 8 8  Z x2>�88 A logn at co. 
2 1 1 
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In view of (2.19), (2.20), (2.21), and (2.23), there exists N4(~NI )  such that at co, 
for all n > N4, 

(2.50) lu,[= ~ d i ( e j - g ; _  0 (xi-,Y,) z 

< 3/4 + d; gj_ d 

<3/4+ ej~'2 1 (~2 d; ) ,  

by the Schwarz inequality, 

From (2.48), (2.49), and (2.50), it then follows that at co 

[n2~ '1 

(2.51) lu.l<~/2 whenever ~ x~>A logn and n > N  4. 
1 

By (2,44), lim G=0  on B and /~,,=fl+u,+v,. Since f2o=Ac~B , we have 
t l ~  oo 

therefore established that all sample points co6f2 o satisfy (2.40). In view of 
(2.40a), 

~.~fl on ~?oo[limsup (~x~)/(log.)<oo]. 

 o.ov. by (,40c  o .  v ew of 
(2.46) and (2.51), u,--*0 on 

3. Convergence Rates of x. - 0 for Stochastic 
Approximation Schemes with Random Coefficients 

The main result of this section is the following 

Theorem 9. Let M(x)  be a Borel Junction satisfying (1.2)-(1.4). Let e,, b, be 
random variables such that 

(3.1) b ,>0  and l i m n b , = ~  a.s., 
n ~ c o  

and 
c o  

(3.2) ~ {e,/(nbn) } converges a.s. 
1 

For n= 1, 2 . . . .  define inductively Yn by (1.1) and x,+ 1 by (1.6). Assume that there 
exists an increasing sequence {0(n)} of positive constants such that 
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(3.3) 

(3.4) 

and 

(3.5) 

lim ~ (n)= 0% 
n ~ o o  

lim sup {nb,(~(n + 1) - ~(n))/~k(n)} < fi a . s . ,  

• { f f ( n  + 1) e,/(nb,)} converges a.s. 
1 

Then lira q/(n)(x,-O)=O a.s. 
n ~  oo 

The following two corollaries of Theorem 9 will be used in Sects. 5 and 6 
for the proof of Theorems 2 and 3. 

Corollary 1. Let M(x), fl, O; xl;  el, 52,. " q~o, 5> ... be as in Theorem 1. Let 
{bn} be a sequence of positive random variables, and assume that there exist 
constants B > b > 0 and random variables b', > 0 and u, such that 

(3.6) b', and u n are both ~ _  :measurable for all n > 1, 

(3.7) P l ib, ,-  b•t .~ lu, e,]] = 1, 

(3.8) P [ b < b , < B  for all large n] = 1, and 

(3.9) ~ 2 U n ~ (30 a . s .  

1 

For n = l ,  2 , . . . ,  define inductively y, by (1.1) and x,+ 1 by (1.6). Then for all 
0 < 7 < rain {fl/B, 1/2}, 

(3.10) lira n~(x,-O)=O a.s. 
n ~ c o  

Proof. Take 0<7<min{ f i /B ,  1/2} and let 0(n)=n~. Then O(n+l )  
co 

-~O(n)~7 n~-l, and (3.3) and (3.4) hold. Since ~ u , ~  n converges a.s., (3.7) 
implies that 1 

(3.11) bn-b' ,~O a.s. 

To show that (3.2) holds, first note that 

n n _ _ ~  ! . 

(3.12) ~ {@(jbj)} = ~ '  {~j(jbj)} ,.., {ej(bj-bj)/(jb~b))} 
1 1 1 

= U1 , -  U2,, say. 

(2O 

Since ~ ( jb} ) -2<oe  a.s. and bj is ~ _ : m e a s u r a b l e ,  U1, converges a.s. by 
1 

Lemma 1(i). By (3.7), (3.8), (3.11), and the Schwarz inequality, with probability 1 
n 

(3.13) ~, j ej(bj - b~)/(j bj b})[ ~ ~ j -~  [~jl ]uj @ 
1 1 

= < --  2 ,~, U j  g j  
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Since u~ is ~j_ ~-measurable, the series Uz, is absolutely convergent a.s. by (3.9), 
(3.13), and Lemma l(iii). Therefore in view of (3.12), (3.2) holds. A similar 
argument also proves (3.5). | 

Corollary 2. Let M(x), fl, O; Xl,  '~1, ~,2 . . . .  �9 q~o, q~l, "" be as in Theorem 1. Let 
{f(n)} be a nondecreasing sequence of positive constants such that 

(3.14) lira f ( n ) =  ~ and 
1 

,~,o 1 nf(n)= co. 

Let {b,} be a sequence of positive random variables such that there exist random 
variables b', > 0 and u, satisfying (3.6), (3.7), (3.9), and 

(3.15) P[bn-a<b ,< f (n )  and b',>bn -~ for all large h i = l ,  

where b > 0  and 0 < 3 < � 8 8  are constants: For n = l , 2 , . . . ,  define inductively y, 
by (1.1) and x,+ 1 by (1.6). Then for all 0<7<f l ,  

(3.16) ,-~oolim (x, - 0) exp 7 1 J ~ )  a.s. 

Proof Take 0 < 7 < ~  and let O(n)=exp 7 ( i f ( j ) ) -1 .  Then (O(n+l)  

-O(n))/O(n)~y/{(n+ 1) f (n+  1)} and the sequence {O(n)} is slowly varying (cf. 
[3]). Therefore in view of (3.14) and (3.15), the conditions (3.1), (3.3), and (3.4) 
are satisfied. Moreover, by an argument like that in the proof of Corollary 1, 
it can be shown that (3.2) and (3.5) hold. | 

We preface the proof of Theorem 9 by the following 

Lemma 2 ([12], p. 182). Let a,, c,, and d, be real numbers satisfying 

(3.17) a, ,+l=(1-c~)a ,+d, ,  n = l ,  2, ..., 

where c, > 0 for all large n, lira c, =0, ~ c, = oo and d, converges. Then lira a,, 
~ 0 . tt ~ oO 1. 1 n ~ oo 

Proof of Theorem 9. Without loss of generality, we shall assume that 0 = 0. By 
(1.1) and (1.6), 

M (x.) ~. 
(3.18) x"+l=x" nb, nb," 

By (3.4), (nb,)-i>>(O(n+l)-O(n))/O(n) a.s. Since ~,(n)]'o% ~ { O ( n + l )  
- O(n)}/O(n)= oo (cf. [7], p. 290), and therefore 1 

co 

(3.19) ~ ( n b ~ ) - l = o o  and l im(nbn)-x=o a.s. 
1 t l ~ o o  

The second relation in (3.19) follows from (3.1). In view of (3.2), (3.18), and 
(3.19), it follows from Lemma 5 of [10] that lim xn=0 a.s., and therefore by 
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M (x , )=(B+~ , ) x , ,  where lim ~ ,=0  a.s. 

By (3.4), there exists a random variable z such that 0 < z < �89 and 

(3.21) P[(O(n+l)-~b(n)) /O(n)<B(1-2z) / (nb, )  for all l a rgen ]= l .  

From (3.18) and (3.20), it follows that 

(~(n) --~b-.--. lJ O(n)~.- rib. ~" 

Using (3.21), the monotonicity of ~(n), and the fact that ~,-~0 a.s., we obtain 
that with probability 1, for all sufficiently large n, 

/3+z<~b(n+l)  (1 /3+~,]  
(3.23) 1 -  n b , =  ~b(n)  -~-ff~-, ! < 1 - -  

Therefore with probability 1, 

(3.24) (~ + z)/(nb,) > c n > ~z/(nb,) for all sufficiently large n, where 

~O(n+l) (1 /~+~"] 
1-. .-  ~(n~ -~L.-!' 

In view of (3.5), (3.19), (3.22), and (3.24), we can apply Lemma2 with 
a,=~p(n)x,, and therefore lira q/(n)x,=0 a.s. 1 

n ~ o o  

f l Z  

n b  n " 

n 
4. Order of Magnitude of ~ (x i -  0) 2 for Stochastic Approximation Schemes 

1 
with Random Coefficients 

In this section we first prove the following theorem and then derive two 
corollaries which will be applied to prove Theorems 2 and 3. 

Theorem 10. Let M(x), ~, 0, ~; x 1 �9 e 1, ~2, ..." 30, 31, ... be as in Theorem 1. 
Let {b,} be a sequence of positive random variables such that b~ is 3n- i -  
measurable for all n> 1. Assume that there exist two nondecreasing sequences 
{f(n)} and {g(n)} of positive constants satisfying (1.13) and (1.14) such that 

(4.1) P[(g(n)) -1 <=b,<_f(n) for all large n]= 1, and 

(4.2) Ilogg(n)l~=o jg(j)f2(]) for some 2>1. 

For n = l ,  2, ..., define inductively Yn by (1.1) and x~+ 1 by (1.6). Then with 
probability 1 
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" i (4.3) ~ (xi -  0) 2 >> 1 
1 1 jg(j)f2(/)" 

We preface the proof of Theorem 10 by the following two lemmas. 

Lemma 3. Let z, Zl, z2, ... be i.i.d, random variables such that E]z[< oo. Let {a,} 

be an ultimately nonincreasing sequence of constants such that ~, a, = ~ .  Then 
1 

... 

n n--1 j 
Proof. Note that ~ a~zj=a, S, + ~ (a~-aj+ 1)St, where $i= ~ zi, and apply the 

1 1 1 
strong law of large numbers. | 

Lemma 4. Let {g0(n)} be a nondecreasing and slowly varying sequence of positive 
constants. Let 

J=J - ~ -  n__>j, 

where J is so chosen that go(j)/j < l for all j > J. 

(i) I f  go(n)=c> 1 for all n> J, then 7 ,~bn-Cfor  some b>0, and therefore 

& b 
L 7k (c_l)nC-1 n~n/{ go(n)-- l }. 

k e n  

(ii) I f  l im(p(n)>l,  then yn~n -a for some a > l ,  and {nT.} is ultimately 

decreasing. 
(iii) I f  lim go (n)= ~ ,  then 

n ~  oo 

(4.5) ~ 7k,-~ n 7,/go(n), 
k = n  

and for every 3>0, there exist ~>0 and k o such that 

( 4 . 6 )  (kTk)/(ny,)<=3 if k>_k o and J<n<k-[~k/go(k)] .  

Proof To prove that {ny,} is ultimately decreasing in (ii), we note that 

(n+1)7~+1= 1+ n 1 <1 for all large n, 
nT. n + l  ] 

since lim go(n)> 1. The other parts of (i) and (ii) are obvious. To prove (iii), we 
n ~ o o  

note that for k > n > J, 

k go(/) < e x  j = . + l  

{ } <exp - g o ( n + l ) ~  x - l d x  - -{n+ l~  ~~ 
.+1 \ k + l ]  
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Therefore 

(4.8) 
co 

?~j7. < (n + 1) ~("+ 1) ~ x -e("+ 1) dx 
k ~ n  n 

q~ (n + 1 ) -  1 ~ n/r (n). 

Moreover, from (ii) and (4.7), 
no =< n __< k -  [~ k/q~(k)], 

it follows that there exists n o such that for 

kTk< k T ~  where n(k)=k-[~k/cp(k)-], 
nT, = n(k) 7,(k)' 

< 2~n(k) + 1 ~q~(n(k,+ l , -  1 

~ 2 e  -~ (as k~oo)  for every fixed 4>0. 

The last relation above follows from the fact that (p is nondecreasing and 
slowly varying. Choosing ~ >1og(2/6) and noting that lira kTk=0, (4.6) follows. 

k ~ c o  

To complete the proof of (iii), given e > 0, we have for all large n 

co 2. f k ] 
(4.9) L, /,~ ex ~ 

J 
2 n  

= 2 (n/k) (1 + '~ o(,)~ n/{(1 + e) ~o(n)}. 
k=, 

From (4.8) and (4.9), (4.5) follows. | 

Proof of Theorem 10. Without loss of generality we shall assume that 0--0. 

Since (4.1) holds and ~ (g(n)/n)2< oo by (1.14), it follows from Lemma l(i) that 
i 1 

e,/(nb,) converges a.s. Hence by Lemma 5 of [10], lira x , = 0  a.s., and there- 
J. n ~ c o  

fore (3.20) holds. 
From (3.18) and (3.20), it follows that with probability 1 

z = ( 1  f l+~ . ]  z 2 ( e .  ]2 ( _ f l+~ . ]x . e .  
x'+l \ nb. ! x . + \ n b . ]  - 2 \ 1  n ~ .  ] nb. '  (4,10) 

Define 

(4.11) q)(n)=3fl g(n) if lira g(n)= oo, 
n ~ c o  

= c ( > 2 )  if lim g(n) < oe, 
n ~ o o  

where c = 2 + 3 f l  lira g(n). 
n ~ c o  
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By (4.1) and (4.11), 

(4.12) b,, >> ((p (n))- 1. 

Let v ,=  1-(f l+~,) /(nb,) ,  and note that 
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(4.13) lira v, = 1 a.s. and v, is 5 ,_  1 -measurable for n > 1. 
n ~ o o  

From (4.1), (4.10), and the fact that ~n~0  a.s., we obtain that with probability 1 

(4.14) 2 > ( 1  ~)2 [Sn ]2(2UnXn]~sn 
x ,+l= - x , +  \nf(n)] \ nb,, ] 

for all large n, say n>m(=m(co)). 

With (p(n) defined by (4.11), define 7, and J as in (4.4). Choosing m > J  in (4.14), 
we obtain by iterating (4.14) that with probability 1 

(4.15) 2 > 7k X2+ ~, ( 7 ~ ) ( e j  12 
Xk+l=Tm-i j=m ,j ~]f(J)] 

j=m ~ ]  ej for k>=m. 

From (4.15), Lemma 4(ii), and the fact that xn~O a.s., it follows that with 
probability 1 

(4.16) E x2> • 7k [ ej ]2 
k=J k=S j=J ~]f(J')] 

= j=j ~ \ jbj laJ+O(1)" 

Let Fj = ~ 7k- By Lemma 4, 
k~j 

(4.17) Fj ~jTj/{(p ( j ) -  1} ~Fj+ 1 . 

Interchanging the order of summation gives 

(4.18) ~ ~ Yk [vjxjl aj=j~=j (Fj~F,,+l ] {vjxjl 
k=J j=s \ jb j  ] "= \ 7j I \ ~ - f  ] as. 

Applying Lemma 1 to the martingale transform (Fjvjxjaj)/(jyjbj), q~, 
) J 

n > J~, we obtain that with probability 1 
3 
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(4.19) 

where the 0(1) term indicates that 

event vj x j)2/0 " )2 < • . 
j = J  _1 

(Fj vj x; ej)/(]yj b;) 
j = J  

= o  vjx;)2/(j )2 + 0(1) 
J 

= o  x +O(1), by (4.12), (4.13), and (4.17), 
\ j =  J 

~(F~vixjej)/(jy~bj) converges a.s. on the 
j = J  

We now show that with probability 1 

(4.20) 

J 
Let Vj= 1 + ~ (Vkxk/bk) 2. By Lemma l(i), for every �89 1, 

k = J  

(4.21) ~ \jbj 7j ] / \ iT; / )  converges a.s. 

Since (jTj)-l~oe by Lemma 4, we obtain by (4.21) and the Kronecker lemma 
that with probability 1 

(4.22) (vj xj ej)/(jbj ~J) = o (V~ (log V,~)n/(nT,,)). 
j = J  

From (4.12) and (4.13) it follows that 

(4.23) l~ ~ ~o2(n)(1 + ~ x 2) a.s. 
j = J  

By choosing r/(>�89 sufficiently close to �89 we obtain from (4.2), (4.11), and (4.23) 
that with probability 1 

(4.24) (logV,)n~ log l + ~ x  z +{logq~(n)} n 

n 2 r/ 

jg0')f2 0')J 1" 

From (4.17), (4.22), (4.23), and (4.24), (4.20) follows. 
We note that 

By Lemma 4 and (4.11), with probability I, 
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(4.26) j=s~ (~)[kJf(J) ~j )2 >>i~=Jn jfz~cp(j) ~ >>j~=s" ~ gy g(J) 
~ 0"2 

j=sjf2(j)g(j ), by Lemma 3. 

We now show that with probability 1 

ff f2(j) 
To prove (4.27), first assume that lim g(n)< oo. Then by (4.11), (p (n) -c>2 ,  and 

n~co 
a straightforward application of Lemma 4(i) and the strong law shows that the 
left hand side of (4.27) is O(1) a.s. Now assume that lira g(n)= oe. We first note 
that by Lemma 3 "~ ~ 

ej _ 2 o(1))~ 1 (4.28) ~ 2 
t Jf2(J) - a  (1+ 1 jf2(j) a.s. 

By Lemma 4(iii), given 0 < 5 < 1 ,  we can choose 4 > 0  and k o such that (4.6) 
holds. By (4.6), (4.17), and (4.28), with probability 1, 

n -  [~n/q)(n)] 2 
g j  

(4.29) F~+ 1 j=s fff2(J)Yj 
<30"2(1 +O(1)) n-[~n/o(n)lv 1 

(p(n) j=z.,j j f  z(j) 
< ~ o'2 (1 +O(1)) " 1 
= 3fl i~=jjfZ(~g(j ), by (4.11). 

By (4.17) and (4.28), with probability 1, 

(4.30) F,+I ~ .2 ~ .  
j=  n-[~./~o(.)J Y f (J) 7j 

<- ~ - -  + o 
= (p(n) J=,-Er jf2(j) j ~  , 
~g2(n) " ( 1 ~ 1 ) 

g j- +o 

since f(n)g(n)>__l for all large n by (4.1). Choosing 6 arbitrarily small, we 
obtain (4.27) from (4.29) and (4.30). 

From (4.16), (4.18), (4.19), (4.20), (4.25), (4.26), and (4.27), it follows that with 
probability 1 

2 4 >  1 ~ J=, , )-f2(j) g ~ +  o x \j= g 

+o 1 x} jf2(j)g(j)j I" 

Hence (4.3) follows. | 
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Since b~ in Theorems 2 and 3 is ~,-measurable but not ~,_ ~-measurable, 
Theorem 10 is not directly applicable. However, we can modify the preceding 
proof to handle this case as well in the following 

Corollary 3. Suppose that in Theorem 10 we replace the assumption that b, is 
~,_ 1-measurable for all n by the condition 

(4.31) b, is ~,-measurable for all n and there exist random variables b',>0 and 
u, such that (3.6), (3.7), (3.9) hold and b'.>>(g(n)) -1 a.s. 

Moreover, suppose that we replace the assumption (4,2) by the stronger condition 
(1.15). Then (4.3) still holds. 

oo 

Proof. An argument as in the proof of Corollary 1 shows that ~e,/(nb,) 
1 

converges a.s., and therefore lim x, = 0 a.s. and (3.20) still holds. Since b, is ~,- 
n ~  oo 

measurable, x, and therefore 4, (as defined in (3.20)) are ~,_ 1-measurable. As 
in the proof of Theorem 10, let v,=l-(fl+~,)/(nb,). By (1.14), (3.7), (4.1), and 
(4.31), letting v', = 1 -  (fl + ~,)/(nb',), we obtain that with probability 1 

(4.32) Ivn--V'n[ ~g2(n) [b,-b',l/n=o([u,e,I). 

Moreover, lim v , = l =  lim v', a.s. and v', is ~,_l-measurable for all n > l .  
n ~ o o  n ~ o o  

Define cp(n) by (4.11) and 7, and J by (4.4). 
From (3.7), (4.1), (4.31), and (4.32), it follows that with probability 1 

(4.33) ~ ~ (7k)(VjXj] ~. ~ (~k]__ (VjXj] 
k=J k=J 72"J \?j/ \jb~ l 

Since xj, vj, and bj are all ~j_ 1-measurable, the same argument as that in the 
proof of Theorem 10 shows that with probability 1 

(4.34) ~ ~ (7k)( vjXj] 

=o Z +o 4 
j=s i jg ( j ) f2( j ) j  ! 

Interchanging the order of summation and using (4.17), we obtain that with 
probability 1 

(4.35) g2(n ) ~ •k lUjXjl ej 
k = J  j = J  

<__ g2 (n) luj xjl ~ 
j=J ,./~j 
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~gZ(n) ~ luj~jl Ix~jI 
j = J  

< g 2  2 2 2 = (n) uj ~j x i ~cj 
j =  J j =  J 

2 by (3.9) and Lemma 1 (iii), ~g2(n) x~ ~j , 
\ j =  J 

/ ( .  ) 1 - 2 ~ ( ,  1 )2n~ 
X 2 =oilg,  l JgwI 0   ) 

The last relation above follows from (1.I5) and Lemma l(iii) and (iv), noting 
that 1 - 2 , / > 1 / 2 .  The rest of the proof is similar to that of 
Theorem 10. | 

Letting g (n )=b-*  and f ( n ) = B  in Corollary 3, we obtain the following corol- 
lary which will be used in the proof of Theorem 2. 

Corollary 4. With the same notations and assumptions as in Corollary 1, assume 
that b. is ~.-measurabIe for all n > 1. Then with probability 1 

n 

(4.36) ~ (x i - O) 2 >> log n. 
I 

5. Proof of Theorem 2 

To prove Theorem 2, we apply Theorem 8, Corollaries 1 and 4, and the 
following 

Lemma 5 ([9], pp. 3066-3067). With the same notations and assumptions as in 
Corollary 1, there exists an event 01 such that P ( f 2 0 =  1 and all sample points 
co6f21 have the following property: 

(5.1) ~ C > 0  and positive integers M, k (depending on co) such that at c& for all 
l>=_M and m>=l k, 

3 fl/2 > b.( >= b ) V l <_ n <_m ~] y~.J < C n-~ (log log n)�89 V lk <_n <_m + m �89 

Proof of Theorem 2. We first prove that /~.~fl a.s. Note that b. is ~.-  
measurable and x.  is ~ ._  ~-measurable, where ~k denotes the a-field generated 
by x> e~ . . . .  , e k. Define 

Y, (x~-X~176 
(5.2) b'. = b v ~= t /x B n > n o, 

n 

Z (x~ - x~ 2 
1 

--'~C~ n < n o ~  

Then b'. is ~ ._  t-measurable, b'. = b. if n < n o, and for n >= n o 
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(5.3) fb.-b'nl <=(Ix.-x-d le. ( x , -  :L) ~ 

<2([xn-xn_l[lgnl)/~(xi-Ei_l) 2. 

The last relation above follows from (2.20) and the fact that x . - E . = ( 1 - n - * )  
- (x. - ~._ 1). Letting 

(5.4) U,=[X,--Yn_II/~(XI--2i_O 2, n>no, 

= 0 ,  rt < n O ,  

2 we note that u k < oe. Therefore the assumptions of Corollaries 1 and 4 are 
1 

satisfied. By Corollaries 1 and 4, the assumptions (2.38) and (2.39) of Theo- 
rem 8 are satisfied by {x,} (with 0<?<min{f l /B ,  1/2}). Without loss of gene- 

n 

rality we shall assume that 0 = 0. By Theorem 8, ~ (xi-y,,)2 >> log n a.s. and 
1 

n 

(5.5) ft, ~ f l  a.s. on [lira+sup (~t x/2)/(l~ n)< oo ].  

It therefore remains to prove that 

(5.6) 
n 

fln~fi a.s. on [lira+sup (~x2)/(logn)=ov]. 

By Theorem 8, there exists an event Q0 such that P(Oo)= 1 and all sample 
points co~f2 o have the property (2.40). Moreover, by Lemma 5, there exists an 
event ~21 such that P(f21)=l and all sample points co~f21 have the property 

(5.1).LetD=[limsup(~t x~)/(logn)=oe].Toprove(5.6),itsufficestoshow 
that L .+ oo 

(5.7) fi,,~fl on Dc~oc~f21. 

Let 3 > 0 such that b < f l -  6 and fl + 6 < min {3 fl/2, B}. Therefore, by the 
definition of b, in (1.11), for n>_no, 
(5.8) 1 f l , - f l l<6~b ,= f in  and b,<__3fl/2. 
Let coEDc~f2oC~f21. In view of (2.40), (5.1), and (5.8), there exist C>0,  A>0,  
and positive integers .~/, k(>=2) such that at co, for all n>~r ,  l>__.M, and m:>l k, 
(5.9) 1fl,-fl[<6Vl<_n<<_m~l,s ~, 
(5.10) 12n] < Cn-~(log log n)+~lfi.-- fl[ < 6, 

[.271 

(5.11) ~ xp> A logn~lfi,-fll<6. 
1 
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Since cosD, we can choose an integer L>37/such  that at co 

[L271 

x, ~ > kA log L, 
1 

and therefore at co, for L < n _<L k, 

[n2~ '] 

(5.12) ~ x~>kA l o g L > A  logn. 
1 

Hence by (5.11) and (5.12), ffln-/~[<g at co for all L<_n<_L k. In view of (5.9), 
this in turn implies that for v=Lk+ 1, 

[~vlN Cv-~(loglogv) ~ at co, 

and therefore Iflv-/3l<~ at co by (5.10). Proceeding inductively in this way, we 
then obtain that at co, for j = 1, 2, ..., 

]f l . - /~[<6 for L<_n<_Lk+j 
~]N,J<Cn-r ~ for n = L k + j + l ,  by (5.9), 

~ l f l . - / ~ l < 6  for n=Lk+j+l, by(5.10). 

Thus, the above inductive argument shows that [fl,-]?l<c~ at co for all n>L. 
Since 6 is arbitrary, we have established (5.7). Hence fl ,~/~ a.s. and b,--,fl a.s. 

Since b,--+/? a.s., we obtain by Theorem 4 of [9] that 

(5.13) ]x,[ ~n-~( log logn)  ~ a.s. 

Since ~ (xz-~,)2>> log n a.s., (5.4) and (5.13) imply that 
1 

(5.14) ju,[ ~(log log n)}/(n ~ log n) a.s. 

By (5.3) and (5.14), b , -  b', = o((n log log n)- } [e,]) a.s. Hence, by Theorem 4(iv) of 
[10], (1.7)-(1.9) still hold. | 

6. Removal of the Assumption of Known Prior Bounds on/~ 
and Proof of Theorem 3 

The proof of Theorem 3 makes use of Corollaries 2 and 3 to show that the 
following two properties hold for the stochastic approximation scheme {xi} of 
Theorem 3 : As m ~ 0% 

and 
m 

( 6 . 2 )  ~ ( X  i - -  0)  2 --~ CO a . s .  
1 
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Since x~ is ~ _  ~-measurable, (6.2) and Lemma l(ii) imply that 

(6.3) {~(x~-O)~} / {~ (x~-O)Z}~O a.s. 

Moreover, in view of (1.2) and (6.1), 

(6.4) { ~ (xi-  O) M (xi) } / { ~ (x i - O)2 } -~ fl 

From (l.I), (6.3), and (6.4), it follows that 

(6.5) a.s. 

a . s .  

re(n) 

2 (Xi -- X,)2 -* oO and fl* -~ fl 
i 

Proof. By (1.16) and (6.1), 

(6.6) m(n)(x,-O)~O a.s., 

and therefore 
re(n) re(n) 

(6.7) 2 (x , -x , )  2= 2 (xi-O)2+~ a.s. 
I 1 

/ r l  

Since M(x,,)~O a.s. and m -1 ~ t~1 ~Ele lJ  a.s., (6.6) implies that 
1 

re(n) m( . )  

(6.8) I x , -  O[ ~ IY~I < I x , -  O[ 2 (IM(x~)l + levi) ~ 0 a.s. 
1 1 

By (6.2), (6.5), (6.7), and (6:8), it follows that 

re(n) ra(n) 

Z o) y,- o) Z 
1 (6.9) fl*=-~ ,~ (,) - -  --, fl a.s. II 

% -  0) 5 +o(1) 
I 

a , s .  

Now in ignorance of 0, if we replace 0 in (6.5) by some random variable which 
is very close to 0 relative to {x 1, ..., x,,}, it is plausible that (6.5) may still hold. 
This suggests that at stage n we replace 0 in (6.5) by x, and set m=m(n), where 
{re(n)} is a sequence of positive integers such that m(n)--*oe and m(n)=o(n). 
This is the rationale behind the "preliminary estimator" fl* defined in (1.19). 
Moreover, (6.1) suggests that if re(n) is chosen so that (1.16) holds, then fl*-~fl 
a.s., as is shown in the following 

Lemma 6. Let M(x), fi, O; 81, 82, ... ; q~o, ~1 .. . .  be the same as in Theorem 1. 
Let {f(n)} be a nondeereasing sequence of positive constants satisfying (3.14), and 
let {re(n)} be a sequence of positive integers satisfying (1.16). Let {x,} be a 
sequence of random variables such that (6.1) and (6.2) hold and x, is ~,-1- 
measurable for all n> l. Define y, by (1.1) and fi* by (1.19). Then 
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Proof of Theorem 3. We first show that b, as defined in (1.I8) satisfies the 
assumptions of Corollaries 2 and 3. In view of (1.17), 13" is ~,_l-measurable. 
Moreover, x, is ~,_~-measurable and b, is ~,-measurable. For every n >  1, if 
re(n) 

~, (xi-Ym(,)) 2 =0, set b',=c and u ,=0,  otherwise let 
1 

(x~- y~+(x.-~.) M(x.) 
(6.I0) b',=(g(n)) -~ vdfl* v - - - -  AD13*Aj'(n) , 

1 
/ ,  

, 

Then b, and u, are ~,_ ~-measurable, u, < oe, and by the same argument as 
1 

in (5.3), Ib~-b'~l<2u,[e,l. Clearly {f(n)} satisfies (3.14). Therefore the assump- 
tions of Corollaries 2 and 3 are satisfied. By Corollaries 2 and 3, (6.1) and (6.2) 
hold. Hence by Lemma 6, 13, 4_,13 a.s. 

Since fl*--,fl a.s., (1.i8) and (6.10) imply that with probability 1 

(6.11) (c A �89 v 2D13), 

(c A �89 v 2D13) 

for all large n, so the assumptions of Corollaries 1 and 4 are satisfied. We can 
then apply Theorem 8 and repeat the argument used in the proof of Theorem 2 
to show that fln~fi a.s. and that (1.7)-(1.9) still hold. | 

By making use of Lemma 6 together with Theorems 1 and 5, we also 
obtain the following 

Corollary 5. Suppose that in Theorem 3 we replace b, in (1.18) by 

re(n) 

(6.12) b,,=(g(n)) -1 v (/3" Af(n)) !f ~ (xi--X,)2>O, 
1 

= c otherwise. 

Then 13" 413 a.s. and (1.7)-(1.9) hold. I f  M(x) also satisfies (1.21), then 

2 (6,13) (log re(n)) ~ (13" -/3) ...... , N (0, fl ). 

Proof Note that b, in (6.12) is ~,_l-measurable. Theretbre by Corollary 2 
(with b,=b',, and u ,=0)  and Theorem 10, (6.1) and (6.2) hold. Hence by Lemma 
6, 13, 13 a.s., and therefore b,,~13 a.s. This then implies (1.7)-(1.9) by Theo- 
rem 1. 

Now assume that M(x) also satisfies (1.21). By (1.21), (6.7), and (6.9), with 
probability I, 



358 T.L. Lai and H. Robbins 

(re(n) re(n) 

~*.-~=~ Z O(Ix,-Ol;+') + ~. (x,-o)~, 
t 1 1 

__(Xn__o)m~l )yi ] ](m(n) +o(1)} 
re(n) 
y~ (x,- o) ~ 

~_O{m(n) 1 )..j re(n) 1 
\ ~ (x~-O)' ? (xi-O) 2 +o(1) 

by (1.8) and (6.8). Hence (6.13) follows from (1.9) and Theorem 50). I 

Remark. Since (log n) -1 =o((logm(n)) -1) by (1.16), although b n in Corollary 5 is 
a strongly consistent estimator of fl, comparison of (6.13) with (1.23) shows that 
it is asymptotically much less efficient than its refinement in Theorem 3. 

7. Asymptotic Efficiency of ft. in Stochastic Designs 
and Proof of Theorem 4 

For the linear model y ,=a+f lx ,+en  with i.i.d, normal errors e,, the asymp- 
totic efficiency of the least squares estimate ft, of fl in the stochastic approxi- 
mation schemes of Theorems 2 and 3 follows from the more general 

Lemma 7. Let e, el, ..., be i.i.d, normal N(O, a a) random variables. Let {x,} be a 
sequence of random variables satisfying (2.1), and assume that (2.3)-(2.6) hold for 
some constants A,  > 0 and O. Let 

(7.1) yi=a+flx i+ei ,  i=1,  2, ..., 

where ~, fl are unknown parameters. Suppose that the distribution of xj  does not 
depend on fl and that for n>2 the conditional distribution of x,  given xl ,  

n 
Yl . . . .  , x , - i ,  Y,-1 does not depend on ft. Define ft, by (1.10) if ~(x~-~ , )2>O,  

1 
and set ft. equal to some constant b otherwise. Then fin is an asymptotically 
efficient estimator of fl in the sense that given any r > 0 and fl, 

(7.2) " ~ : hm sup Pp [A n ITs-  fl[ < r] < lim P~ [A~ If  i n -  fi[ < r] n~oo n~oo 

for any other estimator Tn= T~(xl, Ya, ..., x, ,  Y,) such that if {0,} is a sequence of 
constants satisfying [0,[ ~ A~ *~ then 

(7.3) lim {P~+o.[a~, [ Tn- fll <r] - P~[A~ [ T,,- fi[ <r]} =0. 
n~oo 

Proof. We first assume that 0 and h=~+fiO are both known so that we can 
reparametrize the model as 

(7.4) y, = h + fi(x~- O) + e i. 
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Moreover, since the distribution of x 1 and the conditional distribution of x, 
given xl,  y,  . . . . .  x ,_ l ,  Y,-1 do not depend on fi and since given xi the 
conditional distribution of Yi is N(h+fl(xi-O),  a2), the joint density f ,  of xl, 
Yl, .-., x,, y, with respect to some a-finite measure #, is of the form 

(7.5) f .(xD Y l, "" , x., y. lfl) 
=(2/zrr2) -n/2 gn(X1, 21, " ' ,  Xn-1, Yn-1,  Xn) 

�9 e x p { - ~  (Yi-h-fl(xi-O))2/(2~2)},  

where g, does not depend on g. We shall also assume that a, g,, and #, are 
known so that fl is the only unknown parameter in the model (7.4)-(7.5). 

Consider the estimator 

(7.6) z.= (x i -O)(yi -h)  (xi-O) 2 if ~ (x i -  0)2t~ 0, 
1 

= b otherwise. 

We note that z .=f i+ (xi--O) g i (xi--O) z in the event (xi-O)2>O . 

Therefore by Theorem 5(i), for all r > 0, 

(7.7) Pe[A. Iz.-31 <r] ---~(2/ra2) -~  i exp { - - l ( x / O ' ) 2 }  d x  

- r  

uniformly in f i t ( -  oo, c~). 

Since the function 
d+rA  - 1/2 

0(d)= S" f . ( x l , Y l , ' " , x . , Y ,  lfl)dfl 
d--rA~. I/2 

d+rAT, ~/2 

=gn(Xl, '" ,Yn-l ,Xn) 
d - r A f t  1/2 

-exp - [y i -h -~(x i -O)]2 / (2a  z) dg 

has its maximum at d = z,, z, is the maximum probability estimator of/~ with 
respect to the interval ( - r , r )  (cf. [13]). Therefore in view of the uniform 
convergence in (7.7), it follows from a theorem of Weiss and Wolfowitz (cf. 
Theorem 3.1 of [13]) that 

(7.8) lim sup Pp [A~JT, - ~[ < r] =< lim P~ [A~ Iz,-//1 < r] 

for any other estimator T,= T,(xl, yl . . . . .  x,, y,) such that (7.3) holds for all 
sequences {0,} satisfying [O,[~A; ~. 

Now we drop the assumption that 0, h, a, g, are known and consider the 
estimator ft,. By Theorem 5(ii), for any fixed 0, h, a, g,, (7.7) still holds with z, 
replaced by fiN. Hence the desired conclusion follows. | 
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Proof of Theorem 4. For the stochastic approximation scheme {x,} of Theorem 
n 

2 or of Theorem 3, since ~(xi-O)Z~(o2/B2)logn a.s. and Ix.-Ol~n -~ 

�9 (loglogn) ~ a.s. by Theorems 2 and 3, the assumptions (2.3)-(2.6) and (2.9) of 
Theorem 5 are satisfied with A,=(o2/~ 2) log n. Hence the asymptotic normality 
of ft, in (1.22) follows from Theorem 5. Moreover, in view of (1.6) with 
b,=b,(xl ,Yl ,  ..., x,, Y.), the conditional distribution of x~+l given 
x 1, yl, ..., x,, y, is degenerate at the point x,-y, /(nb.)  and does not depend on 
ft. Therefore Lemma 7 is applicable and gives the asymptotic efficiency of ft, in 
the linear case M(x)=fl(x-O) with normal errors e, i. I 
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