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Summary. Let Jd denote the class of infinite product probability measures # 
= # l x y 2 x - . .  defined on an infinite product of replications of a given 
measurable space (S~', sJ), and let Yd denote the subset o f / ~  for which #(A) 
= 0  or 1 for each permutation invariant event A. Previous works by Hewitt 
and Savage, Horn and Schach, Blum and Pathak, and Sendler (referenced in 
the paper) discuss very restrictive sufficient conditions under which a given 
member # of/d~ belongs to ~ .  In the present paper, the class ~ is shown to 
possess several closure properties. E.g., if #cA" and #0 ~ # ,  for some n >  1, 
then #o x #1 x #2 x ... ~ q .  While the current results do not permit a complete 
characterization of ~ ,  they demonstrate conclusively that 24d is a much 
larger subset o f / d  than previous results indicated. The interesting special 
case s = {0, 1} is discussed in detail. 

1. Introduction 

The zero-one law described by Hewitt and Savage'(1955) asserts that an infinite 
product probability measure assigns the value zero or one to each (permutation) 
invariant event when the component probability measures of the infinite pro- 
duct are identical. This contrasts with Kolmogorov's zero-one law which makes 
the same claim for each tail event (a special kind of invariant event) with no 
restrictions upon the components. The gap between these two laws was slightly 
bridged when Horn and Schach (1970) showed that the assertion for invariant 
events held when each component occurred infinitely often in the infinite 
product. Blum and Pathak (1972) refined their argument and showed that it was 
sufficient that each component be a limit point of the sequence of components 
under the total variation norm. The intent of the present author's investigation 
was to discover whether the Blum-Pathak result leaves much room for improve- 
ment. In this regard, Sendler (1975) has pointed out that the zero-one law holds 
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for invariant events when each component of the infinite product probability 
measure is degenerate, i.e., when each component assigns probability one to a 
single point. Thus, there is at least some room for improvement of the Blum- 
Pathak result. The main conclusion to be drawn from the present paper is that 
substantial improvements are possible. It should be mentioned that a zero-one 
law for invariant events does not hold without some restrictions upon the 
components. The reader can convince himself of this with very simple counter- 
examples of his own making, or refer to any of several counter-examples given 
below. 

Consider the infinite product measurable space (~r ~, d ~176 which is generated 
by a fixed measurable space (2~, d )  replicated a countably infinite number of 
times. Associated with each point x = ( x l , x  2 . . . ) e~  ~176 is the orbit o(x) consisting 
of all points y = ( y l , y 2 , . . . ) e f  ~ which can be obtained by permuting a finite 
number of the components of x. An event A ~ d  ~ is said to be (permutation) 
invariant if o(A) = A. 

Let Jg denote the collection of all infinite product probability measures # = #1 
x #2 x ... whose components are probability measures on (X, d ) .  Further, let 

denote the collection of all probability measures # ~ / ~  which possess the 
"Hewitt-Savage zero-one property":  #(A)=0 or 1 for every invariant event 
A s d  ~176 We shall demonstrate that ~ possesses certain closure properties, some 
of which lead to the general conclusion that there are many members of 
whose membership can not be established by applying Blum and Pathak's 
results. 

The simplest closure result is the following: 

Closure Property 1. I f  # ~ f  and v~Jg is absolutely continuous with respect to #, 
then ve i l .  

Proof This is immediate. 
A set of necessary and sufficient conditions for v ~ #  has been given by 

Kakutani: Let # = # a x # 2 x  ... and v = v l x v 2 x . . . .  In order that v ~ #  it is 

necessary and sufficient that (i) v , ~ # ,  for n > l ,  and (ii) 1~ ~ 1/dvJd#,d#,  >0. 
(See, for instance, Neveu (1975), p. 44.) ,= 1 

Example l. Suppose W is the real line and each #, is the "standard" normal 
distribution, whose mean is zero and whose variance is one. Further, suppose v n 
is the normal distribution whose mean is ~, and whose variance is one. Then, by 

applying (ii), it easily follows that v 4 #  (in fact v =-#)iff ~, (c~,)2 < oo. For  such v, 
n = l  

it follows from the classical Hewitt-Savage zero-one law and closure property 1 
that v ~ .  Suppose, instead, that ~ , = n  and A=IR+,  the set of points x 
=(Xl,X 2 . . . .  ) all of whose components are positive. Then, by the Borel-Cantelli 
lemma, v ( { x e ~ :  x , < 0  infinitely often})=0 and, hence, v(A)~(0,1). Con- 
sequently, vq~ .  

All of the closure properties discussed herein are "structure free" in the sense 
that each is described without an explicit reference to the structure of the 
measurable space (~, d ) .  This suggests that the Hewitt-Savage zero-one proper- 
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ty is similarly structure free. A recent result by Aldous and Pitman (1977) points 
in the opposite direction. They find a condition for/~ to belong to W which is 
necessary and sufficient when X is finite, but not otherwise. We will describe this 
condition in Section 3. 

2. Other Closure Properties 

Hewitt and Savage (1955) describe a proof  of their zero-one law, due to Halmos, 

which is appropriate for doubly infinite product measures i f= /~ #,. This 
n~ --oo 

suggests the following question: Is the Hewitt-Savage zero-one property order 
independent? For  instance, if #=if1 x #2 x ..- e~,, does it follow that/~' =#2 • #1 
x #3 x #4 x -.. and if" =#2 x #1 x #4 x if3 x #6 x #s x -.. are members of .#f? The 

answer is in the affirmative. Quite obviously # ' ~ J f  because it can be obtained 
from # through a finite permutat ion of the indices of #. The following result 
asserts that #"eJ"/f as well: 

Closure Property 2. I f  I~:Yf and v ~ J /  is obtainable from kt by a finite or infinite 
permuting of the components in #, then ve~f.. 

Proof If A is an invariant set, then v(A)=#(TA), where T is some permutat ion 
operator on X ~. Since # ~ ,  it suffices to show that o(TA)= TA. This reduces to 
checking that T -  ~ ST  is a finite permutat ion whenever S is a finite permutation. 

Closure Property 3. I f  l~EW and v ~ , ,  then # x v ~ .  

Remark. The expression "~ x v" will be taken to mean any arrangement 7=z~ 
x z 2 x ... of the combined components of # and v. Closure property 2 provides a 

strong justification for this convenient abuse of notation. 

Proof For  the sake of definiteness, the arrangement z = # l  x v 1 x~2 x v 2 x ' ' '  

will be used. For  each point x = ( x  1, x 2, . . . ) ~ ' ~ ,  define Y=(Yl,  Y2, ...) and 
z=(z l ,  z 2 . . . .  ) by means of the identity x=(y l ,  zl,  Y2, z2 . . . .  ). Let A be a 
fixed but arbitrary invariant event, and let A z denote the section of A defined by 
{ysY(~176 =(y~, z~, Y2, ...)cA}, zeY'~ Applying Fubini's theorem, one has 

z(A)= ~ #(A=)v(dz). (1) 

Since A is an invariant event, each set A z is an invariant event as well. 
Consequently, #(A=)=0 or 1 for each ze2r ~. Moreover, A z is unaltered by finite 
permutations of the components in z. Thus E = { z :  #(Az)=l}  is an invariant 
event. Hence, v(E)=0 or 1. In the first case, it follows from (1) that z(A)=0, and, 
in the second case, that 7(A)= 1. Therefore z= f f  x v~3~. 

The proof  of the next closure property is similar to the last, but is more 
complicated. 

Closure Property 4. I f  ff~d/f and v is a probability measure on ( f ,  ~4) that is 
absolutely continuous with respect to one of the components of #, then 7=v 
x #~Yf. 
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Proof  Because of closure property 2, it will be assumed, without loss of 
generality, that v ~#1.  Furthermore, it will be assumed that v=#1.  For, then, the 
general case v ~ # l  will follow from this special case by means of closure 
property 1. For  any event Aes~ '~ Fubini's theorem yields 

z(A) = ~ #(A,) #1 (dz), (2) 
s 

where A~ is the section {Y=(Y l ,Y2  . . . .  )~2Y~ (z, y l , y 2 , . . . ) ~ A } , z ~ f .  Applying 
Fubini's theorem again, one obtains 

#(A~)=~p(1)(A,,y~)#l(dyl) ,  z ~ f ,  (3) 
s 

where # ( 1 ) = # 2 x # 3 x . . .  and Az, yl is the section {(Y2,Y3,...) eSy| 
(21, Y2 . . . .  )EA~}. Suppose A is any invariant event. Then each A, is an invariant 
event, and #(A,)=0 or 1. It follows from (2) that v(A)=#I(E ), where E =  {z~Y(: 

#(Az) = 1}. 
It will now be shown that # I (E)=0  or 1, from which it will follow that z e ~ .  

Let U denote the complement of E (relative to 2Y). From (3), it follows that 

r  #1 • ~l(d(z, Yl))-- S #(A.) #z(dz) = 0. 
E c x s E c 

Thus 

#(1)(Az,y~)=0 on ECxE a.e. ( # i x # 0 .  

Similarly, one can show that 

#(1)(Az,y~)=I on E x U  a.e. (#1x#1). 

But, since A is an invariant event, A,,y 1 =Ayl, z 

(4) 

(5) 

for each z and Yl, in 2Y. This 
leads to an incompatibility of (4) and (5) unless #1(E)#I(E0 =0, i.e., unless #I(E) 
=0  or 1. 

Closure property 4 provides a condition under which membership is pre- 
served when a component probability measure is added to a member of ~ .  
Some such condition is necessary as the next example demonstrates. 

Example2.  Suppose 5Y={0, 1} and d is the power set of ~.  Let #,({0})= 1 for 
n >  1. Then #=#1  x # 2  X �9 " E ~ .  Suppose v({0})=v({1}) = 1/2 and z = v  x #. Let A 
denote the invariant event o((1, 0, 0 .. . .  )) (the orbit of (1, 0, 0, ...)). Obviously, -c(A) 
= 1/2 and, consequently, z r  

Closure property 4 can be used repeatedly to add any finite number of 
components to a probability measure # in ~ without removing it from ~ .  This 
fact is stated precisely with the appropriate assumptions as follows: 

Closure Property 4'. I f  # ~ 2 g  and v = v 1 x ... x v, is a product probability measure 
on (Y(", d " )  ( for  some f ini te  n >= 1) each component of  which is absolutely con- 
tinuous with respect to some component o f  #, then v x #esf .  (Here, (SY", d " )  is the 
measurable space generated by n replicates of (~, d) . )  
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This result can be extended to include probabil i ty measures v containing a 
countably  infinite number  of components .  One simply must  combine  closure 
properties 4' and 5 (the latter given below). 

Before we state closure proper ty  5, we must  in t roduce some new nota t ion  
and a convention. For  two probabi l i ty  measures # = # i  x #z x ... and v = v  1 x v 2 
x ... in JC{, we shall write # ~ v if every componen t  of # is a componen t  of  v with 

the frequencies of the repetitions in v as great as those in #. Expressed 
alternatively, # can be produced from v by (possibly) deleting some of  the 
components  of v and rearranging those which remain. If  #__ v and v c_ #, then g 
can be produced from v by permuting the components  of  v. Then closure 
proper ty  2 says that  #E~f  ~ iff v ~ .  Since membership  or nonmembersh ip  in 2/f 
is our sole focus of attention, there is no ha rm done by treating # and v as 
equivalent. With  this convention,  #__v and v _ c # ~ # = v .  N o w  suppose #(i)~o/g 
and #(1)__ v for some vEJg, ieI. If  # is the smallest such member  v of  ~ ,  i e ,  if # 
is such a v and # _  v for every such v, then we shall write # = U #(1). it is easily 

i = I  

seen that  such a # always exists when I is nonempty  and countable,  and that  it is 
unique up to an equivalence. 

Closure Proper ty  5. I f  #(') ~ 2/f and #( , )~#( ,+1) for  n > O, then #= ~ #(') ~ 2/f. 
n > O  

Proof The essence of  the general a rgument  can be seen in the p roof  of  the 
following special case: Let # ( ~  x v 2 x .-. and, for n >  1, #(")=v~ x z~ x v 2 
x z 2 x ... x v, x 7, x v,+~ x v.+ 2 x ---, where the h 's  and zi's are probabi l i ty  mea- 

sures on (X, d ) .  Then # = /~ (v, x z,). Let A be any invariant  event. For  each 

n >0 ,  Fubini 's  theorem yields 

# ( A ) =  ~ ,,(")(A ~ ~( "ck(d(z,,+l z,+2 . . . .  )), (6) F" \ Z n + l , Z n + 2 , . . . ]  
~ k = n + l  

where each section 

A . . . . . . . . . . . . .  ={(Yl ,Zl , . . . ,Y , , z , ,Y ,+1,Y,+z , . . . )  ~X~:  (Yl ,z l ,Yz ,Z2, . . . )~A} 

is always an invariant  event. 

Let  En~- {(zn+ I, 7.,+ 2, ...)ff~'~: u(n)(A ...)=1}, n_>O. On E~ (the u- \ ~ Z n + l ~ Z n + 2 ,  

complement  of  E,  relative to X~176 

. . . . . . . . .  ) =  . . . . .  z . ) ) ,  
~fn k =  1 

where z=(z l ,  z 2 . . . .  ). Thus, ~ v(A=)z(dz)=O, n>O, where r = v l x z 2 •  
Y'~ x E~ 

Similarly, ~ (1-v(A~))  7(dz)=0 ,  n > 0 .  Hence, for n > 0 ,  
X n x E~  

v(A~) = 0  on X" x ECa.e.~ 

= 1  on X" x Ena.e. 7. 
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Therefore z(E o A(~'n x E,))= 0 for n > 0. This says that E0 is z-tail-approximable. 
(See Blum and Pathak (1972) for the meaning of tail approximability.) Thus Eo 
is z-equivalent to a tail event and, hence, z(E0)=0 or 1. Then for the case n = 0  in 
(6), 

#(A)= ~ v(A~)z(dz)=z(Eo)=O or 1. 
Eo 

3. An Application 

We are now in a position to say much more about independent Bernoulli 
random variables than earlier descriptions of the Hewitt-Savage zero-one prop- 
erty permitted. The study of such random variables is equivalent to the study of 
probability measures # = / q  x P2 x - . . e ~ / w h e n  W = {0, 1} and sg is its power set. 
Clearly the membership or nonmembership of/~ in ~ depends completely upon 
the sequence of parameters 

pn =#,({1}), n > l .  

We shall demonstrate the following: I f  {p,} possesses a limit point pc(0, 1), then 

Proof Let v=v 1 x v2 • , - -eJd be such that p=vn({1}) for all n. By the classical 
Hewitt-Savage zero-one law, v e ~ .  Now, by assumption, some subsequence p,, 
of Pn converges to p. There exists a further subsequence p,- which converges to p 
so rapidly that the corresponding product probability z = z  1 x z2 x .-. consisting 
of components #,,, taken from #, is absolutely continuous with respect to v. (It is 
sufficient that ~ ( p - p - ) 2  < oo. This follows from Kakutani's theorem, referred to 

previously.) According to closure property 1, z e ~ .  In turn, it follows from 
closure properties 4' and 5 that # e ~ .  

The following is a partial converse: I f  0 <  ~ min(p,, 1 - p , ) <  0% then #q~.  

Proof If ~ min(p~,(1-p,))<oo, then it follow from the Borel-Cantelli lemma 
n = l  

that # has a countable support. Specifically, every point x=(x~,x2 . . . .  ) in the 
support is such that for some large N, depending on the point, and every n > N, 
x, = 0  if p~ < 1/2, and x, = 1 if p, > 1/2. Let x be a point in the support and A 

=o(x) (the orbit of x). A point y e s  r~176 belongs to A iffthe sum ~ (y,-x~) has a 
n = l  c o  

finite number of nonzero terms and equals zero. If ~ min(pn,(1-p,) )>0,  there 

exists an index m for which Pm is neither zero nor one. In such a case, the point y 
=(x l ,x2  .. . .  ,X,~_I,(1--Xm),Xm+I,Xm+2,...) must be in the support of # but 
outside the set A. Then 0 </~({x})__<#(A)_< 1-#({y})  < 1. Thus, # r  

Our results do not determine whether/~ belongs to # f  when, for instance, p, 
= 1/n, n > 1. By using an approach that is very different from ours, Aldous and 



Some Extensions of the Hewitt-Savage Zero-One Law 173 

Pitman (1977) 1 have recently settled the membership issue for every sequence 
{p,}. When Y" is finite, they have shown that # ~ ,  if and only if, the sum 

oO 

min(/~n(A), #,(At)) is 0 or oo for each set A E d .  Thus, in the present context, 
cO n = l  

/ ~ C  if, and only if, ~ min(p,, 1 -p , )  is 0 or oQ. 
n = l  

4. Conclusions 

We view the collection of results in this paper as a modest beginning. There 
remain many other issues that need to be settled before a very clear picture of 
2(r can emerge. For instance, it is (implicitly) suggested by all previous papers 
concerned with the Hewitt-Savage zero-one law that the following should be 
true: If/~=#1 x #2 x . . .~Y, then #1 =/~2 x/~3 x . . - ~ .  We have no idea whether 
this is true. Nor do we know whether the conditions /t(~)~,, i=1,2,  imply 

2 

U #(~)~H. In spite of the many unanswered questions, our results demonstrate 
i = 1  

conclusively that the Hewitt-Savage zero-one property holds much more widely 

than other literature 2 on the subject has suggested. 
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