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A F o r m a l  A p p r o a c h  to Stochast ic  Stabil ity 

Salomon Bochner* 

The characteristic function of a stable probability distribution has a very 
specific structure. It is the purpose of the present paper to show that the stability 
requirement, if stated for characteristic functions, is so strong that distinctive 
features of this structure can be obtained without using the positive-definiteness 
of the characteristic function at all, or by using it only minimally. 

I. Statements 

A standard characteristic function q~(~), that is a Fourier Transform 

e  dF(x), df>=O, d f = l  (1) 
- - o 0  - - o O  

of a probability distribution in ( -  oo, oo), is usually envisaged on the entire line 

- oo <c~< oo, (2) 
but, due to 

r - (3) 

it is determined by its values on the closed half-line 

0<c~< oo. (4) 

It will suit our purposes to envisage all our functions q~(c0, whether they will be 
characteristic functions or not, primarily on this half-line (4), and only secondarily 
on the entire line (2); and whenever their occurrence on the entire line will be 
required by the context, it will be taken for granted that they have been extended 
from the half-line (4) to the entire line (2) by means of (3). The reader is asked to 
keep this constantly in mind. 

We are now attaching the concept of stability directly to functions in the half- 
line (4) in the following way. 

Definition 1. We call a function ~0(~) stable if 

1. it is complex-valued and continuous in (4) 

2. ~o(O)= 1, (5) 

3. [r (~)l < 1, (6) 

and, what is decisive, 

4. corresponding to every integer n, n = 1, 2 . . . .  , there is a positive real number 
c,, and a real number ~,, 

c ,>0 ,  - o o < 7 , < o o  (7) 
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such that 
~p(a)" = ~0(c, e). e i '"~, n = 1, 2, .... (8) 

We emphasize that this definition does not stipulate at all that ~o(~) shall be 
positive-definite, in the sense that 

N 

E ~O(~m--~n) Zrn-Zn~O' N = 3 , 4 , . . . .  ( 9 )  
t~l, n = 1 

that is that ~o(~) shall be a Fourier Transform (1). If q~(~) happens to be such a 
transform, then it is stable in the sense of Definition 1, if and only of the corre- 
sponding distribution F(x) is stable in the familiar stochastic meaning of the term, 
see Gnedenko-Kolmogorov [1], Chapter 7. We also observe that in (9) we do not 
begin with N = 2 but only with N = 3, because condition (9) for N = 2 is equivalent 
with the pair of properties ~0(-~)=~o(~), I~0(a)l <~0(0), which however we have 
stipulated as basic properties of our functions in general, without reference to 
positive-definiteness as such. 

Now, without stipulating (9) at all, the following structure theorem holds. 

Theorem 1. Any stable function ~o(~) has the following two properties 

(1) It is different from O for all ~, so that 

~o(~) -- e -  ~'(=), (10) 

where t~(~) is a continuous complex-valued function in O< ~ < oo which is uniquely 
determined by the requirement 0(0)=0.  

(2) Either ~(~) is "degenerate", in the sense that 

~(~)=i  C~, - o o < C < o o ,  (11) 

or there exists an exponent p, 

0 < p < ~  
such that 

c ,=n l/v, n= 1, 2, ... 
and 

where 

and 

~(ot)=(A+iB)o~P+iC~, for 0 < p < l ,  l < p < ~  

~ ( ~ ) = ( A + i B l o g ~ ) ~ + i C ~  for p = l  

A>0 ,  - ~ < B < o v ,  - ~ < C < ~  

(12) 

(13) 

(14) 

05) 

(16) 

A + iB=#O. (17) 

Conversely, a function q~(~) having properties (1) and (2) is stable (in the sense 
of our Definition 1). 

The converse is very easy, and we leave its verification to the reader. 
With regard to "degeneracy" we wish to make the following remarks. Firstly, 

relation (11) also subsumes the case ~(~)=0, namely for C=0.  Secondly, if we 
would forgo the requirement (17), that is if we would allow A=0 ,  B - 0  in (14) 
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and (15), then the degenerate functions would fall under (14) and (15) for all p in (12). 
And thirdly, if ~o(c0 is a characteristic function then the "degenerate" case corre- 
sponds to the Bernoulli case of a distribution F(x) which is concentrated in one 
point only. 

Turning now to the substance of Theorem 1 we note as follows. 
In the stochastic case, that is, if q~(c0 satisfies the positivity requirement (9) 

for all N, then the quantities p, A, B, which occur in Theorem 1, are subject to the 
following limitations 0 < p < 2 ,  (18) 

IBI~A.  t a n 2 P ,  for O < p < l ,  1 < p < 2 ,  (19) 

2 
I BI _-< A - - ,  for p = 1, (20) 

7~ 

in which the bounds 
7z P ,  __2 (21) tan ~- rc 

cannot be replaced by smaller ones, see, for instance Gnedenko-Kolmogorov [1], 
p. 164. 

It would be too much to expect that these limitations, with the precise bounds 
(21), can be obtained without the use of the Fourier representation (1) itself, that 
is without using, indirectly, the positivity requirement (9) in its entirety, that is 
for all N. But we are going to show that a "minimal" part of requirement (9) 
suffices to secure the limitation (18) for p precisely, and the limitations (19) and (20) 
imprecisely, that is with bounds larger than (21). And even this imprecision will be 
relatively "harmless" inasmuch as it will not occur in the interesting case p=2 .  
In this case our bound will also be 0 as it is in the stochastic relation (19). This 
will be stated expressly in Theorem 2 which will be formulated after the intro- 
duction of a prerequisite definition. 

Definition 2. A function q~(~) is minimally positive-definite if it satisfies the 
inequality 

3 

Z ~P(C~"--~")Zm~ >0 (22) 
m, tl= 1 

for all triples of points 

cq=0,  c~2 = c~ , c% = 2c~, 0<c~< oe. (23) 

That is, we require (9) only for N = 3, and only for the triples (23). 

Theorem 2. I f  a stable function q~(c 0 is minimally positive-definite, then the 
exponent p of Theorem 1 lies in the segment (18), and the constants A and B of 
Theorem 1 are subject to a limitation 

IBI<MpA, 0 < p < 2  (24) 
where 

Mp-11-22-p1~-  for 0 < p < l ,  l < p < 2  (25) 
l l - 2 a - p  I 
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and 1 
M1 - (26) 

log 2 

For  p = 2, M v = 0, and the consequence of this is worth stating, for once, for our 
functions ~o(~) as given on the entire line - oo < ~ < ~ by means of (3). 

Corollary to Theorem 2. I f  a function 

is minimally positive-definite then B = 0  for whatever A. For all other p in (18) we 
can only state that B = 0 / f A  =0. 

Before turning to the proof of Theorems 1 and 2 in the next two sections we 
will terminate this section with a contribution, a rather secondary one, to the 
analysis which, in the fully stochastic case brings about the sharp necessary and 
sufficient conditions (19) and (20). This analysis hinges (see for instance Gnedenko- 
Kolmogorov [1], w 34) on the actual computation of the integral 

oo 

Iv(a)= ~(l+io~2(x)_ei~x ) dx 0 < p < 2 ,  (28) 
X 1 + P  ' 

0 

in which 2(x) is any real-valued measurable function in 0 <  x < ~ for which 

12(x)[ < M <  oo, 0 < x < o o ,  

2(x)=x+O(x2), at x = 0 ;  

the value of the integral for 0 < ~ < oo being 

Iv(e)-  F(1-p)  aPe-~P+iCvc~, 0 < p < l ,  l < p < 2 ,  (29) 
P 

Ip(~) = ~ + i  logc~ +iClcq p = l  (30) 

where C v is a real-valued constant whose value depends on the choice of the 
auxiliary function 2(x). 

Now, we are going to give our own computation of Iv(cO, for 0 < e < oo, which 
is more systematic and polished than known ones. We introduce the open complex 
half-plane 

z = a - i c q  0 < a <  oo, - oo <c~< oo, (31) 

and in it the function 
~, dx (32) r  i ( 1 - z 2 ( x ) - e - ) x ~ - # v .  

o 

This integral is boundedly convergent in the neighborhood of every point of (31), 
so that ~(z) is holomorphic, and it can be easily seen that for all points of 0 < a < ~ ,  
we have Ip(Ct) = lim ~(a - i c O, tr+O, (33) 

where Ip(O) = O. 
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By Vitali, we can differentiate (32) under  the integral  arbi t rar i ly  often. In 

part icular ,  oo 

~ " ( z ) =  - j e-ZXxl -Vdx  
0 

= - F(2 - p) z v -  z, 

where z p-  2 =  e(V 2)logz and log z is de termined uniquely in (31) by the convent ion 
that  it shall be real for real z. Therefore  

~ ( z ) - F ( 1 - P ) z P - C z + E ,  0 < p <  1, 1 < p < 2 ,  
P 

�9 ( z ) = - z l o g z - C z + E ,  p = l .  

Now,  C is real because ~(z) is real for posit ive real z, and E = 0  because ~b(z) tends 
to 0, as z tends to 0 along the posit ive real axis. But for z -- - i c~, e > 0, 

zV=(_i~)p=czp e '~P 

whence the formulas  (29) and (30). 

II. Proof of Theorem 1 

If con t ra ry  to our  assert ion there are points  in 0 < c~ < oo where q)(~)=0 then 
consider the set S of  all such points. Since relat ion (8) implies 

Igo(~)l" = Iq~(c, ~)1, n = 1, 2 , . . .  

and hence, also 
n 

=1~(~)1,  n = 1 , 2 , . . . ,  

it follows that  c , S ~ S  and --1 S ~ S .  But, ~(~) being continuous,  S is closed. There-  
fore c, = 1, so that  c, 

ko(~)l= I~o(~)1", n =  1 , . . . .  

Lett ing n ~ oo it follows that  Icp(c0l assumes values 1 and 0 and no others, which is 
incompat ib le  with continuity.  

Thus  we have a representa t ion  (10). The exponent  4'(c 0 is a cont inuous  complex-  
valued function in (4) with the proper t ies  

4'(0)=0, Re 4'(~)>0, (34) 

n 4'(c0 = 4' (c, c0 + i ~,. ~, (35) 

and f rom these we have to deduce par t  (2) of T h e o r e m  1. 
Step 1. F r o m  (35) we obta in  

m i n  c m 
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so that 
n O(a)=nO(~-~)-inTm~ 
m mc,, 

\ C m / C m m c m 

Thus for every positive rational number  r we have 

r ~ (~) = ~ (c (r) ~) + i ? (r) ~ (36) 

where c(r)> 0 and ?(r) is real. 

Step 2. Barring (11), these numbers c (r), ~ (r) are unique. 

In general, given an identity 

~(c' ~)=i3/~=~h(c" ~)+i~/' a (37) 

for positive c', c", and real ?/, 3/', then, barring (11), c' =c" ,  and thus also f =?" .  

In fact, (37) implies 

c" ~/' -- ~/ 
- - - -  I~ C r 

where q -  c' ' 

F rom (38) we obtain 
O(qma)- O(q "+1 ~)= i5 qmo~, 

and summation over m leads to 
_ q~ 

- q  

i6 
Letting n ~ ~ ,  we obtain, by (34), O(e)= 1 - q  ~' and this is (11). 

Step 3. If 0(~) is non-degenerate, then for bounded {r} the {c(r)} are bounded. 

Otherwise there would exist a sequence {i',} such that 

Now, (36) would lead to 

~h(e ) -  0(q e) = i5  e (38) 

- - .  Now, assume for instance c"<c', so that 0 < q < l .  

r, < ~ < ~ ,  c (r,) ~ ~ .  (39) 

r,O ( c~) )=O(oO + i C, e (40) 

where 
?" (41) 

c ,  = c ( r . )  " 

But, by (39) and (34) the left side in (40) is convergent, namely to 0, therefore C, 
must be convergent, to a constant  C o . Thus (40) leads to 0(c~) = - i Co a, with is (11). 

Step 4. Barring (ll) ,  if a positive real number  ~ is the limit of a sequence of 
rational numbers {r,}, then the corresponding c (r,) are convergent. 

In fact, by Step 3. the e(r,) are bounded, and if they would not converge, there 
would be two subsequences {r,~}, {r,~} of {r,} such that  

t __..). r II  c(r,,) c ,  c(rm)--, c" 
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with c ' #  c". The relation 
r, tp (~) = ~ (c, ~) + i ?, ~ (42) 

would then lead to two separate limit relations 

~ ( ~ )  = r  i~/(z, 

C 0(a) = 0( c'' a) + i ]," a. 
Now, apply Step 2. 

Step 5. For  a non-degenerate O(a), Step 4. extends relation (36) from all positive 
rational numbers to all positive real number r, the coefficients c(r) being strictly 
positive and uniquely determined. Furthermore,  c(r) is continuous for all positive 
real r. 

In fact, if {~,} and Co are positive real numbers with C, ~ Co, then there are 
positive rational numbers {r,} with 

1 
Ir , -~, l  < 1 - ,  Ic(r,)-e(~.)l<--, 

n n 

and the continuity of c(r) follows from preceding steps. 

Step 6. Barring (11), e (r) --, 0 as r $ 0, and e (r) --, oo as r --, oo. 

In fact, if r,$0, then e(r.) and y(r,) are bounded by Step 3. For  a subsequence 
{r,~} there exist limits 

c(r;.)-~c(+O), ~,(r')~ ~(+0). 
Now, (42) gives 

0(e(+0)~)+i~,(+0) ~=0, 

and if c ( + O) > 0 then this is relation (11). 

Similarly, if for r. ~ oo we had c (r.) ~ l < ~ then 

O ( a ) = l  0(c(r.)a) + i ],(r,) 
r .  r. 

would result in ~(~)= i C~ which is a relation (ll) .  

Gathering up all the information about c(r) we find that, barring (ll) ,  the 
function c(r)=/% O__<r<oo 
has an inverse 

r=z@, 0__</~< oo, 

so that  (36) can be put into the form 

Z(fl) @(a)=O(c~fl)+ib(fl) ~, [6(fl)=7(Z(fi))] (43) 

with which we will deal henceforth. 

For  a = l  we obtain i6(fl)=Z(fl)O(1)-O(fl), and substituting this back into 
(43) gives 

Z(fl) ~(~)= O(fla) + (Z(fl) ~(1) - O(fl)) c~. 

Next, if we interchange a, fi and subtract, so as to eliminate ~b(fl~), we are led to 

(z (/~)-/~) (~P (~)- ~p(1)~)= (z(~)- ~)(~,(/~)- 0(1)/~). (44) 
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Now, either 
0 ( e ) - 0 ( 1 ) e = 0 ,  for all c~ (45) 

or ,  

0 ( c o ) -  0(1) eo # 0, for some ~o. (46) 

Since, O ( 1 ) = A + i C  with A > 0  by (34), relation (45) falls under (15) with B=0 ,  
and we need only examine (46). But under (46), relation (44) becomes 

Z(fl)= DO(fl) + E fl, 
where 

D = Z(c%)- a~ E=1-D0(1) ,  
0(~o)-0(1)~o ' 

and we now have to separate the cases D = 0 and D 4: 0. 

If D=0 ,  then Z(fl)=fl for all fl, and (43) turns into 

(47) 

O(~ fl)= fl O(~)- i,~(fl)~. 

For e = 1, we obtain 0(fl) = fl 0(1) - i6 (fl); thus 

O(a fl)= fl O(~) + ~O (fl)-~ fl O(1), 

and this means that the function 

p(~)= -0 (1 )  
o~ 

satisfies the functional equation 

p (c~ fl)= p (cO + p (fl). 

Therefore 

o r  

p(o 0 = (R + i B) log c~, 

0(c0 = (R + i B) c~ log a + 0(1) c~ 
=(R + iB) c~ log c~+(A+i C) c~ 

(48) 

and Re 0(e)=c~(R log c~+A). Now, this can be > 0  for all positive c~ only if R = 0 ,  
and, by (48), 0(c0 falls again under (15). 

If D 4: 0, the insertion of (47) into (43) gives 

DO(fl) O(cO+ E fl O(oO=O(fle)+ ig)(fl)e. (49) 

Finding i6(fl) by putting c~--1, and reinserting into (49) leads to 

DO(fl) O(.)+ EflO(.)+ E.O(D--EO(1) ~fi=O("fl), 

and the function 
~(~/=o -~(~) +E (5o1 
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satisfies the functional equation 

The latter has, for cr >0, and exceptional solution 

o-(~) = 0  (51) 
and a general solution 

a(cr = cd = e ~l~ ~ (52) 

in which z is any fixed complex number whatsoever. The solution (51) leads to 

~(cr = (A + i C) 

which falls again under (15), but the solution (52) leads to 

~b(cc)=(A+iB)cc~+l +(P+iC)c~,  (A+iB):#O,  (53) 

which finally points towards (14). 

Replacing a by cr in (53) gives 

O ( or fl ) = fl ~ + l ( A + i B ) 0~ z + l  -}- fl  ( P -t-- i C)  o~ , 

and, by (43), we also have 

~b (cr fl) = Y(fl) (A + i B) cr z +1 + Z (fl) (P + i C) cr - i ~ (fl) cr 

where Z(fl) and 6(fi) are both real valued. Therefore z +  1 must be real valued, so 
that 

tp (c~)=(A+iB)cd '+(P+iC)~ (A+iB)~=O. 

where p is real valued, and )((fl)=flP. But we must also have ~,(c0,L0 for c~$0, so 
that 0 < p <  oc. For p =  1, this ~p(c~) is still of the form (15). But for p:~ 1 it assumes 
the form (14), except that we still have to establish P=0 .  This, however, follows 
from the fact that O(efl) is both 

flP(A + i B) aP + fl(P + i C) a 
and 

flP(A + i B) c~P + flP(n + i c )  ~ - i6 ( f l )  ~. 

The proof of Theorem 1 is finally completed. 

III. Proof  of  Theorem 2 

As heretofore, every function (p(~) will be subject, first of all, to (5), (6), and (3). 
If a square matrix, whether real or complex-valued is positive (semi-)definite 

then its determinant is non-negative. Thus, assumption (22) implies 

det [q)(a,, - c%)1 . . . .  1, 2, 3 >0 .  (54) 

We will evaluate this not only for the special triples (23), but, somewhat more 
generally, for triples 

~1 = 0 ,  G( 2 : 0r ~3 "~- ~Z @/~.  ( 5 5 )  

14 Z. Wahrscheinlichkeitstheorir verw. Geb., Bd. 31 
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If we put 

then (54) is 

and this is 

Therefore 

o r  

u = ~o(~), v = ~o(/~), w = q~(~ +/~)  

1 

v 1 

1 - u f i - v - ~ > w N - u v w - u v w .  

Iw-uvl  2 ~ ( 1 - u ~ )  ( 1 - v ~ )  

Iq~(~ + /3 ) -  q~(e) ~p (/~)l 2 < (1 -Iq~(00l 2) (1 -Icp (/3)12); 

compare Hewitt-Ross, [2], p. 255. 

For Theorem 2 we need (56) only for 

/~ = e, that is v = u, 

in which case (56) becomes 

Combining this with 

we obtain 

and by squaring 

Thus 

that is 

Iw-  uzt 2 < ( 1 -  [u12) 2. 

By (6), luL < 1, so that (58) leads to 

Lw-u2l < 1 - lu l  2. 

I w -  u21 >_-lul 2 - I w l  

[wl>Rlul 2 - 1 ,  

Iwl 2 > 4  lul 4 - 4  lul 2 + 1. 

(56) 

(57) 

(58) 

(59) 

1 -Lwl e _<__4 lul2 (1 - lu l  2) _<__4(1 -[u[2),  

1 -[q~(2 c0[ 2 ~4(1 -Lop (c0L2). (60) 

For characteristic functions this inequality was introduced and used in Gnedenko- 
Kolmogorov, [1], w 14. 

If in (60) we insert a function 

q~(oO=exp[-(A+iB)o~P-iCo~],  p>0 ,  A > 0  (61) 
we obtain 

1 - exp ( - 2 A 2 peP) =< 4 (1 - exp ( - 2 A aP)). 

Dividing both sides by aP and letting a $ 0 we obtain 

2A 2P=4 �9 2A, 

that is 2 p____ 4, or p = 2, which proves the first assertion of Theorem 2. 
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For  the further assertions of the theorem we must  use (59) itself, that  is 

I~o(2 ~)-~o (~)21 < 1 -Irp (~)12 . 

If rp(c0 is (61), this gives 

e -  2 A ~ l exp [ - (A + i B) (2 ~ - 2) aP] - 11 < 1 - e -  2 A~, 

(62) 

and if we divide by a p and let a I 0 we obtain 

[A + i B I  . 1 2 ~ - 2 [ < 2 A ,  
and hence 

B2(2 p - 2) 2 ~ A2(22p-  2p + 2). 

Now, if p 4:1, then 2 ~ -  2 + 0, and we obtain the inequali ty (24) with the factor (25). 
Fo r  p = 1 our  function r is 

and (62) leads to 

q~ (~) = exp [ - (A + i B log ~) a - i C c~] 

e-2Aa le-Z" 2 log 2 . , _  11 ~ 1 -- e - 2 A ~  . 

(63) 

If we divide by ~ and let ~ $ 0 we obtain 

IBI. 2 log 2 < 2 A 

which completes  the p roo f  of  Theorem 2. 

R e m a r k  1. The statement in the corol lary to T h e o r e m 2  that A = 0  implies 
B = 0 can be stated as follows. 

If a function q9 (~) = e iz(~), - ~ < c~ < ~ (64) 

Z(a) real,  ~( - c~) = - Z(c0 (65) 

is stable and minimally positive definite then it is degenerate,  that is, X(~)= Ca .  
Now, in this conclusion, stability can be dispensed with entirely, provided 

we make the positive definiteness of rp(a) a little more  than minimal,  in the sense 
that we stipulate (54) not only for the triples (23), but also for triples (55), that is, if 
we may apply (57) for general a, ft. In fact, (64), (65) imply 

]~p (~)l = Irp (fl)[ = 1, (66) 
so that, by (57), we have 

~o(~ +/~) = ~o(~) q~(/~). 

Thus ~p(~) is an almost periodic character  on the line, and, as such it is indeed a 
function of the form e i c ' .  

R e m a r k  2. We can even make  a s tatement  for any function q~(~) which satisfies 
the inequali ty (57) for general ~, fl, and which is such that Iq~(fl0)l = 1 for some 
part icular  flo 4: 0. 

We then obtain 
~o(~ +/~o) = ~o(~) ~o (/~o), 

14" 
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and if we put q)(fio)= eiC'~ then 

(j) ( ~)  = e i c ~ X (o:) 

where Z(e) is periodic with period flo. 
For characteristic functions this is a familiar fact, though usually stated some- 

what differently. See Lukacs [3], p. 25. 
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