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Application of Psendo-Boolean Programming to the
Theory of Graphs

By

P. L. Ivangscyu and 1. ROSENBERG

Abstract. The method of pseudo-Boolean programming (given in [§], [7] and briefly
described in §2 of this paper) is used for the systematic determination of the chromatic
number, of the number of internal stability, of the number of external stability and of the
kernels of a finite graph.

§ 1. Introduction

The aim of the present paper is to apply the method of pseudo-Boolean pro-
gramming (given in [4], [7], and briefly described in § 2 of this article) to the
solution of the following problems of the theory of graphs:

— determining the number of internal stability of a graph (§ 3),

— determining the number of external stability of a graph (§ 4),

~— determining the kernel of a graph (§ 5),

— determining the chromatic number of a graph (§ 6).

Throughout this paper by a graph we shall mean a finite one.

The same method of pseudo-Boolean programming was applied for finding the
minimal number of rows and columns of a matrix covering its zero elements in
the Hungarian method of solving transportation problems [3], [4], as well as to
the minimization of Boolean functions [6], a problem arising in switching algebra.

This manuscript was ready for print when KaareEp MAGHOUT’s very interesting
work [8] on the application of Boolean Algebra to the theory of graphs reached
to us; the approaches of that paper and of the present one are of different types.

By a graph G = (V, ¢) we shall mean a finite non-empty set V = {vy, ..., vs}
of elements called vertices, and a multivalued application ¢ of V into itself. An
ordered pair (v;, v;) of elements of V is called an edge if v; € pv;. We shall sup-
pose that for any i, v; & pv;.

We define for any graph ¢ = (V, p) a » X n matrix Cg = ((c5)) by setting

(1 if wreow
e 0 if ng.fgvi.

For any set M C V, the characteristic function yas (V) is defined by:
1 if neM
xM = i} = ¢
v =) { 0 if ngM.

Thus, any set M C V is characterised with an n-tuple (z¥, ..., #¥) of zeroes
and ones.
By | 4| we mean the power of the set 4.
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The concepts of the theory of graphs are defined accordingly to [1].
For the illustration of the methods given in this paper, we shall compute in
§§ 3, 4, 5 the basic numbers and in § 6 the kernels of the graph with

V = {v1,v2,v3, 4,95, 06}
and
ovi={va,ve}, ovz={v1,v6}, ovs={ve},
ova={vs,v6}, o0vs={vs,ve}, 0ve={v1,v2,03,74,V5}

(see Fig. 1).
The matrix ((cy)) of this graph is

(001 0 0 0 1)

V, % 10000 1

\ 00000 1

> Vs 0000T1 1

: 000101
¥ Y,

. 111110

Fig. 1 \ J

§ 2. Pseudo-Boolean programming *

Let Lz be the Boolean Algebra with two elements 0 and 1, its operations

(the disjunction) “U”, (the multiplication) “-” and (the negation) “—”’ being
defined by:

ul 01 -1 o1 a| 01

0| 01 0| 0 0 al 1 0.

1111 11 01

We see that
aJb=a-+b—ab, (1)
and
ad=1—a

where addition, subtraction and multiplication are ordinary arithmetical opera-
tions.

We put as usually 2l =2, 20 =F=1— 2.

The disjunction of more variables is defined by

iel ier
It I =0 we put | Jy: =0.
€0

A function F.L; >R

is called a pseudo-Boolean function; here L7 is the chartesian product

Lo X Lo X ... X La,

T
while R is the field of real numbers.

* For proofs and details see [5] and [7].
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We have
F(ﬁl,wz,...,.’L’n)leF(l,xg,...,aﬁ‘n) —{—92117'(0,702, ,xn)
= F(l,ze,....2n) + (1 — ) F{0, 22, ..., %) 2)

=x1[F(l,22,...,%0) — F(0, %2, ..., %) - F(O, 22, ..., Zy).
Let us denote

g1(x2, ..., zn) =F(L,xe,....,20) — F (0, 22, ..., 23)
kl(xg,...,xn):F(O,xg,...,xn);

g1 and hy are pseudo-Boolean functions of g, @3, ..., #;. Thus, we have the
following decomposition:

F=x1g1+ 0. (3)

By induction it follows that any pseudo-Boolean function may be written as
a polynomial with real coefficients, linear in each variable.

The following procedure is given for the minimization of a pseudo-Boolean
function F. Let us put F1 = F(x1,...,%a).

If Fi(es, 2541, ..., %,) is defined (1 < ¢ < n) we have:

Fy(xi, i1, ... Tn) = @i (i1, -0, Tn) + Be (241, ..., 20) .
Let us denote
M= {(as+1, ..., an) € L7 | gi (i1, .-, 0tn) < O},

Ne={(Bis1, ..., Bn) €L gi(Bis1, ..., Bn) = 0}.
We put

m= U a.erow o S, .

[T an) €My Brvrye.., Br)eN:
where w; is an arbitrary parameter in Ls.
Let ] be the expression of z; obtained by taking u; — 0 and replacing the
operation “U” with aid of formula (1).
We put Fip1 (@1, ..., a) = Fi(@], i1, ..., z4) and continue the above
procedure until we get
Fp=2angn -+ hn.
We put now
1 if the constant ¢, << 0
Zy =1 0 if the constant ¢, >0 (4.n.)
u, if the constant g, =0.

Introducing the values of x, given by (4.n.) in (4.n—1) we obtain x, ;;
introducing these values of #, and z,—; in (4.n—2) we obtain x,_s, etc. In this
way, we obtain

X = 25 (Ug, Wig1, .o, Up) (t=1,...,n) 5)
where w1, ..., %, are arbitrary parameters in Ls.
It is proved that for each system of values of the parameters uy, us, ..., 4y

the system (5) yields a minimum of F;, and conversely any minimum of F; can
be obtained in this way.
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Note. The computation of x1, xa, ..., x, may be carried out in an order
different from the above, if this seems to be more convenient.

Examples of application of the above procedure of minimizing a pseudo-
Boolean function will be given in the following paragraphs.

§ 3. The number of internal stability
A set RC V is called an internally stable set if o ENR =0, i.e. if

vieR, Cij=1=>1}j¢.R.

Let R be the family of all internally stable sets of a graph G; by the number of
internal stability of G we mean

«(@) = max | R|.
Re®R

Let us denote with Pgy the problem of determining the nwmber of internal
stability of a graph.

Denoting with yg(v;) = 2; (¢ = 1, ..., n) the values of the characteristic func-
tion of a set R, we can easily prove the following

Lemma 1. B is an internally stable set of G if and only if

k3

n
Z Zci,-wiacj =0.

i=14=1

As

| B] = in

we see that problem 3.1. is equivalent with
Problem 3.2. Find values z;€ Ly (i =1, ..., n), subject to

n

n
z Zcijxixf =0 (6)
i=1j=1

and so that

Sa )
k=1

would be minimal.
Now, let us consider

Problem 3.3. Minimize the expression

Z(n—i—l)ﬁ icijzixj—iwk. (8)
k=1

i=17=1
with x;eLs (1 =1,...,n).
Any set (23,...,2%) with a? € Ly subject to (6) and minimizing (7), also
minimizes (8). Indeed, if

n+1)z Zczjm,x,~2xk< n—[—l)z ZCU‘”‘” _ng

i=1j=1 t=1 j=1
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then
3 n " n
m+1)> Deyra <y ap—
i=1j7=1 k=1 E=1
and as
3 n
Zxk—-—Zac2<n,
F=1 r=1
it means that,
n n
Z Zci,-xisz().
i=17=1
Therefore,
n n
Z Zci,-xiszo
=1 j=1
and

n n
— 226 < — 2,4},
E=1 r=1

thus contradicting the definition of (2, ..., z0).
Conversely if the set (%, ..., x:) minimizes (8) then it is subject to (6). If
not,
n n
Z Zcuw}" x;k =1
i=1j=1
and E(x7,...,2)) = 1, contradicting E(0,...,0) =0<1 < E(z},...,2)).
Thus problem 3.3. is equivalent with problem 3.2.

From the above lemma we have

Theorem I. For any (22, ..., 20) minimizing

n n n
E=(n+ l)z ZCijxixj—Zxk
i=1j=1 k=1
and for
RO = {v;|wieV,a? =1},
we have

(@) = al = | R,

t=1

and any maximal internally stable set may be oblained in this way.
Thus, the problem of determining the number of internal stability of a graph
is reduced to one of pseudo-Boolean programming.

Example. In our example »n =6, n 4 1 =7 and

E=7Q2uwixs + 2x176 + 2%2w¢ + 22305 - Zagxs + 2aa26 + 22528) —
— XL — X2 — T3 — X4 — Xy — 63
g1 = 1412 + 14:135 —1
and
21 = Tog = 1 — 22 — X6 -+ T274. 9.1)
Es = 13x3xw¢ + 1dagxe -+ ldzg25 -+ 1d2g0¢ + a5 — 23 — 24 — 25 — 1
g2 = 13x¢
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and
Zo = ug - Tg, (9.2)
i —0. (9.2%)
E3 = — 23 + 14dagwe + 1dwaws + ldxgng + 1dzs06 — 24 — 25 — 13
gs = —1 + ldzg
and
23 =12 =1— 6. (9.3)
Ey= — 24+ Mdxgns + 1dxgmwe + Mas26 — x5 + 26 — 2
ga= —1+4 1dxs5 + 1424
and
Xq4 = 5% = 1 — x5 — g - T52¢. (9.4)
Es = 13x5x¢ + 226 — 3 ;
g5 — 13:1:6
and
L5 = U5, (9.5)
2 =0, - (9.3%)
E6 = 2%‘6 —3 H
g =2
and
zg = 0. (9.6)

From (9.6), (9.5), (9.4), (9.3), (9.2), (9.1) we have

¥ =1z, Za=1u2, ¥3=1, Xg=7us, ¥5=us, &;=70.
Hence
«(G) = 3

and its maximal internally stable sets are

By = {v1,vs, 04}, RBa={v1, 03,05},
.R3 = {1&,213,04}, R4 = {02,03,05}.

§ 4. The number of external stability
A set SC V is called an externally stable set, if for any s¢ 8, ps N S + 0,
i.e. if
veS=Jv;eS, ey=1.
Let © be the family of all externally stable sets of a graph ¢; by the number of
external stability of @ we mean

B(G) = min | 8.
SeB
Denoting with ys(v;) = ; (¢ = 1, ..., n) the values of the characteristic func-

tion of a set S, we can easily prove the following
Lemma 2. S is an externally stable set of G if and only if

n 7 ,
2 [T —cia)=0 (10)
i=1 j=1
where
cig = iy + o1,
o] being the Kronecker symbol.
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An analogous reasoning as that of the previous paragraph proves
Theorem II. For any (2, ..., 20) minimizing

= (n+ l)z 1_[ (1 — ;) + > ag (11)
k=1

i=14j=
and for
80 = {v;|v;e V, & =1}.
we have
n
i=1

and any minimal externally stable set may be obtained in this way.

Thus the problem of determing the number of external stability of a graph is
reduced to one of pseudo-Boolean programming.

Note. In the computation of the minimum, it seems convenient to replace
&; with y;.

Example.

Hy =7Q2y1y2y6 + y3ye -+ 2y2ysYe + Y1Y2Y3Ya¥ys¥Ye) —
—Yi—Y2—Ys—Ys—ys —ys + 6;
91 = yaye + Ty2ysyaysye — 1

and
n=1—yays. (12.1)
Hy =Tysys + 14yay596 + Y296 — Y2 —y3 — Yo — ¥5 — s + 5;
gg=—1+4ys
and
Y2 = Y6 - %2¥s, (12.2)
ys =1 —ys. (12.2%)
Hs = Tysye + 14yaysys —ys —ya — ys + 4;
gs="Tye— 1
and
Y3 = Ys. (12.3)
Hy=14ysysys — ya —ys + 6 + 3;
= ldysys — 1
and
ya=1—ys5ys. (12.4)
Hs = ysye — ys + ye + 2;
g5 =—14ys
and
Y5 = Yo -+ Usye, (12.5)
y5 =1 ys. (12.5)
Hg=2y¢+1;
g6 =2,
and
y6=0. (12.6)

From (12.6), (12.5), (12.4), (12.3), (12.2), (12.1) we find y6 = 0, y5 — ya = y3 = ya=1y1 =1
or, xlwxz—x3”‘.’ll4215=0, zg = 1. Thus,

Bey=1
and its only minimal externally stable set is §; = {wg}.

Z. Wahrscheinlichkeitstheorie, Bd. 3 12
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§ 5. The kernel of a graph

A set T C V which is both internally and externally stable is called a kernel
of the graph. It is shown that a necessary and sufficient condition for 7' to be
a kernel is that

y7(v) = 1 — max yr(v)

V;EOV:
where, yr is the characteristic function of T ([1], theorem 3, chapter 5). As
usually, we put x; = yr(v;) and y; = &;. We have
Xy = 1 — max Cij X
i
or,
n
yi=maxec zy = Jeyzy; (=1,...,n). (13)
i=1

If « and B are elements of Ly then « = f§ is equivalent with

«B+ap=0.

Thus, from {13) we have,

y1Uc”x]—{—x,Uc”zj—O (t=1,...,n)
i=1 j=1
or,

yn(l—c”:vy)-}-Uc”xzxj 0 (=1,...,n).
i=1

j=1
As ¢yzi; =0 (1,7 =1,...,n) we may putb
]._-[(].—‘Czjxj —{—Zcﬁxlxj—o (¢=1,...,n).
j=1 j=1

Since the left-hand part of the above expression is non-negative for any 4, the
condition may be written in the following form:

n n n n
J=YH][A—cyz) +,  Deywia=0. (14)

i=1 j=1 i=1j=1
As J(#1, ..., 2y) = O for any (x1, ..., %) € L3 it is obvious that for finding

those x1, ..., &y which fulfill the condition (14) we have to minimize the pseudo-
Boolean function J: if Jyin = J (22, ..., 25) > 0 then the graph has no kernel;
if Jmin=J (2),...,20) = 0 then the graph has the kernel

T = {vi|vgeV,a} =1}

and any kernel can be obtained in this way.

We have thus proved

Theorem III. The graph G = (V, o) has a kernel if and only if the minimum of
the pseudo-Boolean function

@ﬁ(l — cijx;) + Z chxzxj (15)

1 j=1 i=1 j=1

J =
i

I M:
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is zero. In this case, if Jmin = J (@7, ..., 20) = O then T = {vi|vi eV, a? = 1} s
a kernel and any kernel may be obiained in this way.
Note. The same problem may be solved by computing the solutions of the

Boolean equation
n

n n n
jiﬂ(éﬁu@-) UU Ucijx,-xj =40. (16)
=1 j=1 t=1 j=1

This can be carried out in various ways; see for instance [9].
Example. We have

J1=2¢1y296 + y3ys - 2yaysye + y1y2ysyaysye + 2(1 — ) (1 —y2) +
+2(1—y) (1 —ye) + 20 —y2) (1 —ye) + 2(L —y3) 1 — ye) +
+ 2(1 —ya) (1 —gs5) + 2(1 —ya) (1 —ye) + 2(1 — y5) (1 — e)
=14 —~4y —4ys —2y3—4ys —4ys — 10y + 2y192 + 29196 + 2y2y6 +-
+ 3ysys + 2yays + 2yays + 2ysye + 2y1y296 + 2yaysye + Y1 y2YsYaysYe;
g1=—4+2y2+ 2ye + 2y296 + Y2¥3Y4¥5Ys

and
y1=1—yaye. (17.1)
Joe=10 —2ys —2y3 — 4ys — 4ys — 8ye + 2y2ys + 3yays +-
+ 294ys + 2yaye + 2Ys5ye + 2yaysYs;
g2 = 2y — 2
and
Yo = Yo -+ uays, (17.2)
Yz =1—ys. (17.24)
J3 =8 —2ys —4ys—4ys —6ys + 3ysys + 2yays + 2yays +-
+ 2ysye + 2yaysye;
gs=—2-+3ys
and
Y3 = ¥s- (17.3)
Jy=6—4ys—4ys —4ys + 2yays + 2yays + 29596 + 2yaysve;
ga=—442ys 4+ 2ys + 29598
and
ya=1—1ysye. (17.4)
J5=2—2y5 — 296 + 2ys5ye;
gs = — 24 2ys
and
Ys = Y6 + usYs, (17.5)
y5=1—uys. (17.5%)

Now, Jg =0, g¢ = 0 and hence

Ye = Ug - (17.6)
From (17.6), (17.5), (17.4), (17.3), (17.2), (17.1) we find

1 =1—1y1 = ugus

w2 =1—ys = ug — usug = uz%g

23 =1-—y3 = ug

(18)
g =1 —ys= usug

x5 =1—1y5 = ug — usug = usug
x6=1——y5=ﬂe

12%
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For the various values of the parameters us, us and us we find the kernels

Ty = {v1, v3, va},
To = {v1, v3, v5},
T3 = {vg, v3, va},
Ty = {v2,v3, v5},
T5 = {ve}.

Note. It is proved (theorem 5 of chapter V of [I]) that if each subgraph of
a graph has a kernel then the graph has a function of GRUNDY. It may be de-
termined then with a procedure based on pseudo-Boolean programming.

§ 6. The chromatie number

Given a finite graph G = (V, ¢) by a chromatic decomposition of it we mean

a family of disjoint internally stable subsets M, Mo, ..., My of V so that
k

My = V. The chromatic decomposition with the smallest number y(G) of
B=1
subsets is called a minimal chromatic decomposition and y (&) is called the chromatic
number of the graph.

An internally stable set M of G = (V, p) is called superior if for any internally
stable set N of G, M C N implies M = N.

Let y; be the minimal number of internally stable (not obviously disjoint) sets
covering V. Let y2 be the minimal number of superior internally stable sets
covering V.

Lemma 3. y = y1.
Proof. Let My, ..., M, be internally stable subsets of V, covering it and let
us put

P1=M1:
Py =My — M,
REURRE
Py=M;—\JM;, (19)
i=1
e ;1;1. .

i1
If P;=0, then M; C\ JM; and the family My, ..., My, Mis1,..., M,,
i=1
would be a covering of V with only p; — 1 internally stable subsets, in contra-
diction with the definition of y;. Therefore P;+¢ (i =1, ..., y1). Thus, we
have obtained a covering of ¥ with y; disjoint internally stable subsets of it.
Hence y < 1.
As the converse relation does obviously hold, the lemma is proved.
Lemma 4. y; = y2.
Any internally stable set can be imbedded in a superior internally stable one.

Hence, for any family M, ..., M, of internally stable sets covering ¥, there
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exists a family Ny, ..., Ny of superior internally stable sets covering V with
k < y1. Thus we see that y3 < y1. As the converse relation does obviously hold,
the lemma is proved.

Theorem IV. The chromatic number y of a graph G = (V, 9) is equal fo the
minimal number of superior internally stable sets covering V.

Let M ={M, ..., M,} be the family of all superior internally stable sets
of @; they may be determined (see lemma 1) by minimizing the expression

n n
W:Z Zci,-xz-x,-.

t=1 j=1

Let us put diy = 1 if the vertex v; belongs to the superior internally stable
set M; and di; = 0 in the other case. For any subfamily %’ of 9% we shall denote
with z; the values of the characteristic function yg, (Mj;).

Lemma 5. MM’ is a covering of V if and only if

1 Mg

q
1_[ (dij + diy&) = 0. (20)

Proof. The vertex v; be]ongs to an element of I’ if and only if

q
Udiyz =1 (21)
j=1
i.e.
q —
[J@guz)=0. (22)
j=1

That means that Ik’ is a covering of V if and only if for any i, we have

q
ﬂ (dig 1 dig ) = 0 (23)

or

|| Mg

q
l—[ (dig + dig %) =0 (24)

q.e.d.

An absolutely analogous reasoning with that of the previous paragraph shows
that we have

Theorem V. The chromatic nuwmber v of a graph G = (V, p) ts equal to the
minimum of the pseudo- Boolean expression

n q q
Z ]_[ (dig + dig &) + 2 %55 (25)
=1 = i=1

and a minimal chromatic decomposition Py, ..., P, of G may be obtained from that

family of superior internally stable subsets M; of V for which x; = 1, by formulas (19).

Simplification 1. If there exists a vertex v; of &, covered only by a single
superior internally stable set M;, then obviously #; = 1 and we can examine
only the subgraph generated by the vertices V — Mj.
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Simplification 2. If there exist vertices v;, and v;, so that for any superior
internally stable set M;
v, €My =v,eM;,

then we can simplify the problem by examining only the subgraph generated by
V— {Uiz}‘

Repeat simplifications 1 and 2 as many times as possible.
Note. It seems convinient to work with the unknowns y; = 1 — ;.
Example. To determine all the internally stable sets let us minimize:

W1 = 2(z1%2 + 2126 + T2 + 23%6 - X425 + w46 + X526)
g1 = 2(x2 + %),

x1 = w2, (26.1)

2t =0. (26.1+)
Wo = 2(xaxe -+ 2326 + xax5 + ®a26 + 2526) ,

g2 = 2,

T9 = U2%g, (26.2)

x5 =0, (26.2+)
W3 = 2(x3x6 -+ 245 4 246 + ¥5%6)

gs = 2xs,

X3 =— Uz 5:6 ’ (26.3)

@t = 0. (26.3+)

Wy = 2(zq25 + waxe + 5%s)
ga = 2(x5 + w6)»

T4 = ULT5T 6, (26.4)

xzz = 0. (26.4)
W5 = 2x5x¢

g5 = 2

x5 = U5, . (26.5)

3 = 0. (26.5%)
We=0

g6 =0,

X = Us . (26.6)

We have thus
X1 = U1 ?7:2 Ug

X2 = UgUp

%3 = uzlg (27)
T4 = UsU5Ug

X5 = ’u,aﬁe

Tg = Ug

and this gives us all the internally stable sets of the graph. It is easy to verify that the superior
ones one:

My = {v1,v3, va},

My = {v1, vs, 5},

M3 = {va, v3, va},

My = {va, v3, v5},

M5 = {116}.
As vg is contained only in M5 we can confine ourselves (simplification 1) to the subgraph
generated by {vi, va, v3, vs, vs}.
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As w3 is contained in all M;’s we may confine ourselves (simplification 3) to the sub-
graph generated by {v1, vs, v4, ¥5} and its superior internally stable sets

Mi = {U]_,'U4},

Mé = {vl5 ’05},
My = {va, v4},

M;:{?Jz,’vs}.
The matrix ((dy)) is
1 1 00
00 1 1
1 01 0O
01 01
and
Ky =5(y1ye T ysya+y1ys + 9294 +4—y1—Y2—Ys—Ya
g1 =05y - 5ys — 1
and _
Y1 = Y273- (28.1)
Ko = 5y2ys —yays + Sysys —ya + 3,
g2 =5ys—ys
and
Y2 = Y3§a U u2ys¥ya, (28.2)
Y3 = ys — Y3¥Ya. (28.2%)
Kg=—ys+ 6ysys—ya-+3
ga=—1-+ 6y,
and _
Y3 = Ya. (28.3)
K,=2
ga=0
and
Ya = ug. (28.4)

Hence o of the simplified problems is 2; ¢ will be equal to )" plus one (corresponding to
the eliminated set Ms), i.e.

y =3. (29)
The coverings of ¥ with superior internally stable subsets of it may be obtained by giving
various values to the parameters.
The solution of (28.1), (28.2), (28.3), (28.4) being (u4, %4, U4, %s) We obtain the coverings
{M{, My} and {M3, M3}. Thus the coverings of the initial problem will be:
{M1, My, M5} (30)
and
{M2, M3, M5} . (31

Applying formulas (19) in various orders we obtain the minimal chromatic decompositions:

P = {v1, v3, va}

Ph = {12, v5} } (32)

P} = {ve}

P = {03, v3, v5}

Py = {v1, v4} } (33)
P§ = {ve}
P = {v1, v, v5}
P = {va, va} } (34)
P = (o}

PV = {vg, v3, v4}

PI¥ = {01, 05} } (35)
P57 = {vs}
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Note. The above method of determining the minimal chromatic decomposi-
tions of a graph combined with the method given in theorem 4 of chapter 4
of [1] permits us to determine a function of GRUNDY on G.

Cunix recently defined in a paper to appear in “Problemy Kybernetiki” the
number of completeness of a graph @ as being the minimal number of complete
subgraphs of G containing all its vertices and edges. This problem may also be
treated by pseudo-Boolean programming.
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