Application of Pseudo-Boolean Programming to the Theory of Graphs

By

P. L. IVANESCU and I. ROSENBERG

Abstract. The method of pseudo-Boolean programming (given in [5], [7] and briefly described in § 2 of this paper) is used for the systematic determination of the chromatic number, of the number of internal stability, of the number of external stability and of the kernels of a finite graph.

§ 1. Introduction

The aim of the present paper is to apply the method of pseudo-Boolean programming (given in [5], [7], and briefly described in § 2 of this article) to the solution of the following problems of the theory of graphs:

- determining the number of internal stability of a graph (§ 3),
- determining the number of external stability of a graph (§ 4),
- determining the kernel of a graph (§ 5),
- determining the chromatic number of a graph (§ 6).

Throughout this paper by a graph we shall mean a finite one.

The same method of pseudo-Boolean programming was applied for finding the minimal number of rows and columns of a matrix covering its zero elements in the Hungarian method of solving transportation problems [3], [4], as well as to the minimization of Boolean functions [6], a problem arising in switching algebra.

This manuscript was ready for print when Khaled Maghout's very interesting work [8] on the application of Boolean Algebra to the theory of graphs reached to us; the approaches of that paper and of the present one are of different types.

By a graph $G = (V, \varrho)$ we shall mean a finite non-empty set $V = \{v_1, \ldots, v_n\}$ of elements called vertices, and a multivalued application ϱ of V into itself. An ordered pair (v_i, v_j) of elements of V is called an edge if $v_j \in \varrho v_i$. We shall suppose that for any i, $v_i \notin \varrho v_i$.

We define for any graph $G = (V, \varrho)$ a $n \times n$ matrix $C_G = ((c_{ij}))$ by setting

$$c_{ij} = \left\{ egin{array}{ll} 1 & ext{if} & v_j \in arrho\, v_i \ 0 & ext{if} & v_j
otin arrho\, v_i. \end{array}
ight.$$

For any set $M \subseteq V$, the characteristic function $\chi_M(V)$ is defined by:

$$x_i^M = \chi_M(v_i) = \left\{ egin{array}{ll} 1 & ext{if} & v_i \in M \ 0 & ext{if} & v_i \notin M \end{array}
ight.$$

Thus, any set $M \subseteq V$ is characterised with an *n*-tuple (x_1^M, \ldots, x_n^M) of zeroes and ones.

By |A| we mean the power of the set A.

The concepts of the theory of graphs are defined accordingly to [1].

For the illustration of the methods given in this paper, we shall compute in §§ 3, 4, 5 the basic numbers and in § 6 the kernels of the graph with

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

and

$$\begin{split} \varrho\,v_1 &= \{v_2,v_6\}\,, \quad \varrho\,v_2 = \{v_1,v_6\}\,, \quad \varrho\,v_3 = \{v_6\}\,, \\ \varrho\,v_4 &= \{v_5,v_6\}\,, \quad \varrho\,v_5 = \{v_4,v_6\}\,, \quad \varrho\,v_6 = \{v_1,v_2,v_3,v_4,v_5\} \end{split}$$

(see Fig. 1).

The matrix $((c_{ij}))$ of this graph is

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

§ 2. Pseudo-Boolean programming *

Let L_2 be the Boolean Algebra with two elements 0 and 1, its operations (the disjunction) "∪", (the multiplication) "·" and (the negation) "-" being defined by:

$$\begin{array}{c|cccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

$$\begin{array}{c|cccc} a & 0 & 1 \\ \hline \bar{a} & 1 & 0 \end{array}$$

We see that

$$a \cup b = a + b - ab, \tag{1}$$

and

$$\tilde{a} = 1 - a$$

where addition, subtraction and multiplication are ordinary arithmetical opera-

We put as usually $x^1 = x$, $x^0 = \bar{x} = 1 - x$.

The disjunction of more variables is defined by

The disjunction of more variables is defined by
$$\bigcup_{i\in I}y_i=0 \Longleftrightarrow \bigvee_{i\in I}(y_i=0)\,.$$
 If $I=\emptyset$ we put $\bigcup_{i\in\emptyset}y_i=0.$ A function $F:L_2^n\to R$

$$F:L_2^n\to R$$

is called a pseudo-Boolean function; here L_2^n is the chartesian product

$$\underbrace{L_2 \times L_2 \times \ldots \times L_2}_{n},$$

while R is the field of real numbers.

^{*} For proofs and details see [5] and [7].

We have

$$F(x_1, x_2, ..., x_n) = x_1 F(1, x_2, ..., x_n) + \tilde{x}_1 F(0, x_2, ..., x_n)$$

$$= x_1 F(1, x_2, ..., x_n) + (1 - x_1) F(0, x_2, ..., x_n)$$

$$= x_1 [F(1, x_2, ..., x_n) - F(0, x_2, ..., x_n)] + F(0, x_2, ..., x_n).$$
(2)

Let us denote

$$g_1(x_2,...,x_n) = F(1,x_2,...,x_n) - F(0,x_2,...,x_n)$$

 $h_1(x_2,...,x_n) = F(0,x_2,...,x_n);$

 g_1 and h_1 are pseudo-Boolean functions of $x_2, x_3, ..., x_n$. Thus, we have the following decomposition:

$$F = x_1 g_1 + h_1. (3)$$

By induction it follows that any pseudo-Boolean function may be written as a polynomial with real coefficients, linear in each variable.

The following procedure is given for the minimization of a pseudo-Boolean function F. Let us put $F_1 = F(x_1, ..., x_n)$.

If $F_i(x_i, x_{i+1}, ..., x_n)$ is defined $(1 \le i < n)$ we have:

$$F_i(x_i, x_{i+1}, \ldots, x_n) = x_i g_i(x_{i+1}, \ldots, x_n) + h_i(x_{i+1}, \ldots, x_n).$$

Let us denote

$$M_i = \{(\alpha_{i+1}, \ldots, \alpha_n) \in L_2^{n-i} | g_i(\alpha_{i+1}, \ldots, \alpha_n) < 0 \},$$

$$N_i = \{(\beta_{i+1}, \ldots, \beta_n) \in L_2^{n-i} | g_i(\beta_{i+1}, \ldots, \beta_n) = 0 \}.$$

We put

$$x_{i} = \bigcup_{(\alpha_{i+1}, \dots, \alpha_{n}) \in M_{i}} x_{i+1}^{\alpha_{i+1}} \dots x_{n}^{\alpha_{n}} \cup u_{i} \bigcup_{(\beta_{i+1}, \dots, \beta_{n}) \in N_{i}} x_{i+1}^{\beta_{i+1}} \dots x_{n}^{\beta_{n}},$$
(4.i.)

where u_i is an arbitrary parameter in L_2 .

Let x_i^+ be the expression of x_i obtained by taking $u_i = 0$ and replacing the operation " \cup " with aid of formula (1).

We put $F_{i+1}(x_{i+1}, ..., x_n) = F_i(x_i^+, x_{i+1}, ..., x_n)$ and continue the above procedure until we get

$$F_n = x_n g_n + h_n.$$

We put now

$$x_n = egin{cases} 1 & ext{if the constant} & g_n < 0 \ 0 & ext{if the constant} & g_n > 0 \ u_n & ext{if the constant} & g_n = 0 \,. \end{cases}$$

Introducing the values of x_n given by (4.n.) in (4.n-1) we obtain x_{n-1} ; introducing these values of x_n and x_{n-1} in (4.n-2) we obtain x_{n-2} , etc. In this way, we obtain

$$x_i = x_i(u_i, u_{i+1}, \dots, u_n)$$
 $(i = 1, \dots, n)$ (5)

where u_1, \ldots, u_n are arbitrary parameters in L_2 .

It is proved that for each system of values of the parameters u_1, u_2, \ldots, u_n the system (5) yields a minimum of F_1 , and conversely any minimum of F_1 can be obtained in this way.

Note. The computation of $x_1, x_2, ..., x_n$ may be carried out in an order different from the above, if this seems to be more convenient.

Examples of application of the above procedure of minimizing a pseudo-Boolean function will be given in the following paragraphs.

§ 3. The number of internal stability

A set $R \subseteq V$ is called an internally stable set if $\rho R \cap R = \emptyset$, i.e. if

$$v_i \in R$$
, $c_{ij} = 1 \Rightarrow v_j \notin R$.

Let \Re be the family of all internally stable sets of a graph G; by the number of internal stability of G we mean

$$\alpha(G) = \max_{R \in \Re} |R|.$$

Let us denote with P_{31} the problem of determining the number of internal stability of a graph.

Denoting with $\chi_R(v_i) = x_i$ (i = 1, ..., n) the values of the characteristic function of a set R, we can easily prove the following

Lemma 1. R is an internally stable set of G if and only if

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j = 0.$$

As

$$|R| = \sum_{i=1}^{n} x_i$$

we see that problem 3.1. is equivalent with

Problem 3.2. Find values $x_i \in L_2$ (i = 1, ..., n), subject to

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j = 0 \tag{6}$$

and so that

$$-\sum_{k=1}^{n} x_k \tag{7}$$

would be minimal.

Now, let us consider

Problem 3.3. Minimize the expression

$$E = (n+1)\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j - \sum_{k=1}^{n} x_k.$$
 (8)

with $x_i \in L_2 \ (i = 1, ..., n)$.

Any set (x_1^0, \ldots, x_n^0) with $x_i^0 \in L_2$ subject to (6) and minimizing (7), also minimizes (8). Indeed, if

$$(n+1)\sum_{i=1}^{n}\sum_{j=1}^{n}c_{ij}x_{i}x_{j}-\sum_{k=1}^{n}x_{k}<(n+1)\sum_{i=1}^{n}\sum_{j=1}^{n}c_{ij}x_{i}^{0}x_{j}^{0}-\sum_{k=1}^{n}x_{k}^{0}$$

then

$$(n+1)\sum_{i=1}^{n}\sum_{j=1}^{n}c_{ij}x_{i}x_{j} < \sum_{k=1}^{n}x_{k} - \sum_{k=1}^{n}x_{k}^{0}$$

and as

$$\sum_{k=1}^{n} x_k - \sum_{k=1}^{n} x_k^0 < n,$$

it means that,

$$\sum_{i=1}^{n} \sum_{i=1}^{n} c_{ij} x_i x_j = 0.$$

Therefore,

$$\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_i x_j = 0$$

and

$$-\sum_{k=1}^{n} x_k < -\sum_{k=1}^{n} x_k^0,$$

thus contradicting the definition of (x_1^0, \ldots, x_n^0) .

Conversely if the set (x_1^*, \ldots, x_n^*) minimizes (8) then it is subject to (6). If not,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{i}^{*} x_{j}^{*} \ge 1$$

and $E(x_1^*, ..., x_n^*) \ge 1$, contradicting $E(0, ..., 0) = 0 < 1 \le E(x_1^*, ..., x_n^*)$.

Thus problem 3.3. is equivalent with problem 3.2.

From the above lemma we have

Theorem I. For any (x_1^0, \ldots, x_n^0) minimizing

$$E = (n+1) \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j - \sum_{k=1}^{n} x_k$$

and for

$$R^0 = \{v_i | v_i \in V, x_i^0 = 1\},$$

we have

$$\alpha(G) = \sum_{i=1}^{n} x_i^0 = |R^0|,$$

and any maximal internally stable set may be obtained in this way.

Thus, the problem of determining the number of internal stability of a graph is reduced to one of pseudo-Boolean programming.

Example. In our example n = 6, n + 1 = 7 and

$$E = 7(2x_1x_2 + 2x_1x_6 + 2x_2x_6 + 2x_3x_6 + 2x_4x_5 + 2x_4x_6 + 2x_5x_6) - x_1 - x_2 - x_3 - x_4 - x_5 - x_6;$$

 $g_1 = 14x_2 + 14x_6 - 1$

and

$$x_1 = \bar{x}_2 \bar{x}_6 = 1 - x_2 - x_6 + x_2 x_6. \tag{9.1}$$

$$E_2=13\,x_2x_6+14\,x_3x_6+14\,x_4x_5+14\,x_4x_6+14\,x_5x_6-x_3-x_4-x_5-1\ ; \ g_2=13\,x_6$$

168

and

$$x_2 = u_2 \cdot \overline{x}_6, \tag{9.2}$$

$$x_2^+ = 0. (9.2^+)$$

 $E_3 = -x_3 + 14x_3x_6 + 14x_4x_5 + 14x_4x_6 + 14x_5x_6 - x_4 - x_5 - 1;$

$$g_3 = -1 + 14x_6$$

and

$$x_3 = \bar{x}_6 = 1 - x_6. \tag{9.3}$$

 $E_4 = -x_4 + 14x_4x_5 + 14x_4x_6 + 14x_5x_6 - x_5 + x_6 - 2;$

$$q_4 = -1 + 14x_5 + 14x_6$$

and

$$x_4 = \bar{x}_5 \bar{x}_6 = 1 - x_5 - x_6 + x_5 x_6. \tag{9.4}$$

$$E_5 = 13 x_5 x_6 + 2 x_6 - 3;$$

$$g_5 = 13 x_6$$

and

$$x_5 = u_5 \bar{x}_6,$$
 (9.5)

$$x_5^+ = 0$$
. (9.5+)

 $E_6 = 2x_6 - 3$;

$$g_6 = 2$$

and

$$x_6 = 0$$
. (9.6)

From (9.6), (9.5), (9.4), (9.3), (9.2), (9.1) we have

$$x_1 = \bar{u}_2$$
, $x_2 = u_2$, $x_3 = 1$, $x_4 = \bar{u}_5$, $x_5 = u_5$, $x_6 = 0$.

Hence

$$\alpha(G) = 3$$

and its maximal internally stable sets are

$$R_1 = \{v_1, v_3, v_4\}, \quad R_2 = \{v_1, v_3, v_5\},$$

 $R_3 = \{v_2, v_3, v_4\}, \quad R_4 = \{v_2, v_3, v_5\}.$

§ 4. The number of external stability

A set $S \subseteq V$ is called an externally stable set, if for any $s \notin S$, $\varrho s \cap S \neq \emptyset$, i.e. if

$$v_i \in S \Rightarrow (\exists) v_j \in S, \quad c_{ij} = 1.$$

Let \mathfrak{S} be the family of all externally stable sets of a graph G; by the number of external stability of G we mean

$$\beta(G) = \min_{S \in \mathfrak{S}} |S|.$$

Denoting with $\chi_S(v_i) = x_i$ (i = 1, ..., n) the values of the characteristic function of a set S, we can easily prove the following

Lemma 2. S is an externally stable set of G if and only if

$$\sum_{i=1}^{n} \prod_{j=1}^{n} (1 - c'_{ij} x_j) = 0$$
 (10)

where

$$c'_{ij} = c_{ij} + \delta^j_i$$

 δ_i^j being the Kronecker symbol.

100

An analogous reasoning as that of the previous paragraph proves

Theorem II. For any (x_1^0, \ldots, x_n^0) minimizing

$$H = (n+1)\sum_{i=1}^{n} \prod_{j=1}^{n} (1 - c'_{ij}x_j) + \sum_{k=1}^{n} x_k$$
 (11)

and for

$$S^0 = \{v_i \mid v_i \in V, x_i^0 = 1\}.$$

we have

$$\beta(G) = \sum_{i=1}^{n} x_i^0$$

and any minimal externally stable set may be obtained in this way.

Thus the problem of determing the number of external stability of a graph is reduced to one of pseudo-Boolean programming.

Note. In the computation of the minimum, it seems convenient to replace \bar{x}_i with y_i .

Example.

$$H_1 = 7(2y_1y_2y_6 + y_3y_6 + 2y_4y_5y_6 + y_1y_2y_3y_4y_5y_6) - y_1 - y_2 - y_3 - y_4 - y_5 - y_6 + 6;$$
 $g_1 = 14y_2y_6 + 7y_2y_3y_4y_5y_6 - 1$

and

$$y_1 = 1 - y_2 y_6. (12.1)$$

$$H_2 = 7y_3y_6 + 14y_4y_5y_6 + y_2y_6 - y_2 - y_3 - y_4 - y_5 - y_6 + 5;$$

 $q_2 = -1 + y_6$

and

$$y_2 = \bar{y}_6 + u_2 y_6, \tag{12.2}$$

$$y_2^+ = 1 - y_6$$
. (12.2+)

$$H_3 = 7 y_3 y_6 + 14 y_4 y_5 y_6 - y_3 - y_4 - y_5 + 4;$$

 $g_3 = 7 y_6 - 1$

and

$$y_3 = \bar{y}_6. \tag{12.3}$$

$$H_4=14\,y_4\,y_5\,y_6-y_4-y_5+y_6+3\,;$$

 $g_4 = 14 y_5 y_6 - 1$

and

$$y_4 = 1 - y_5 y_6. (12.4)$$

$$H_5 = y_5 y_6 - y_5 + y_6 + 2;$$

 $g_5 = -1 + y_6$

and

$$y_5 = \bar{y}_6 + u_5 y_6, \tag{12.5}$$

$$y_5^+ = 1 - y_6. (12.5^+)$$

 $H_6 = 2y_6 + 1$;

$$g_6=2$$
,

and

$$y_6 = 0$$
. (12.6)

From (12.6), (12.5), (12.4), (12.3), (12.2), (12.1) we find $y_6=0$, $y_5=y_4=y_3=y_2=y_1=1$ or, $x_1=x_2=x_3=x_4=x_5=0$, $x_6=1$. Thus,

$$\beta(G)=1$$

and its only minimal externally stable set is $S_1 = \{v_6\}$.

§ 5. The kernel of a graph

A set $T \subseteq V$ which is both internally and externally stable is called a kernel of the graph. It is shown that a necessary and sufficient condition for T to be a kernel is that

$$\chi_T(v_i) = 1 - \max_{v_i \in av_i} \chi_T(v_j)$$

where, χ_T is the characteristic function of T ([1], theorem 3, chapter 5). As usually, we put $x_i = \chi_T(v_i)$ and $y_i = \bar{x}_i$. We have

$$x_i = 1 - \max_j c_{ij} x_j$$

or,

$$y_i = \max c_{ij} x_j = \bigcup_{j=1}^n c_{ij} x_j \qquad (i = 1, ..., n).$$
 (13)

If α and β are elements of L_2 then $\alpha = \beta$ is equivalent with

$$\alpha \bar{\beta} + \bar{\alpha} \beta = 0$$
.

Thus, from (13) we have,

$$y_i \overline{\bigcup_{i=1}^n c_{ij} x_j} + x_i \bigcup_{i=1}^n c_{ij} x_j = 0$$
 $(i=1,\ldots,n)$

or,

$$y_i \prod_{j=1}^n (1 - c_{ij} x_j) + \bigcup_{j=1}^n c_{ij} x_i x_j = 0$$
 $(i = 1, ..., n)$.

As $c_{ij}x_ix_j \ge 0$ (i, j = 1, ..., n) we may put

$$\bar{x}_i \prod_{i=1}^n (1 - c_{ij} x_j) + \sum_{i=1}^n c_{ij} x_i x_j = 0$$
 $(i = 1, ..., n)$.

Since the left-hand part of the above expression is non-negative for any i, the condition may be written in the following form:

$$J = \sum_{i=1}^{n} \bar{x}_{i} \prod_{j=1}^{n} (1 - c_{ij} x_{j}) + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{i} x_{j} = 0.$$
 (14)

As $J(x_1, ..., x_n) \ge 0$ for any $(x_1, ..., x_n) \in L_2^n$ it is obvious that for finding those $x_1, ..., x_n$ which fulfill the condition (14) we have to minimize the pseudo-Boolean function J; if $J_{\min} = J(x_1^0, ..., x_n^0) > 0$ then the graph has no kernel; if $J_{\min} = J(x_1^0, ..., x_n^0) = 0$ then the graph has the kernel

$$T = \{v_k \, \big| \, v_k \in V, \, x_k^0 = 1\}$$

and any kernel can be obtained in this way.

We have thus proved

Theorem III. The graph $G = (V, \varrho)$ has a kernel if and only if the minimum of the pseudo-Boolean function

$$J = \sum_{i=1}^{n} \bar{x}_{i} \prod_{j=1}^{n} (1 - c_{ij} x_{j}) + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{i} x_{j}$$
 (15)

is zero. In this case, if $J_{\min} = J(x_1^0, \ldots, x_n^0) = 0$ then $T = \{v_i | v_i \in V, x_i^0 = 1\}$ is a kernel and any kernel may be obtained in this way.

Note. The same problem may be solved by computing the solutions of the Boolean equation

$$\bigcup_{i=1}^{n} \bar{x}_{i} \prod_{j=1}^{n} (\bar{c}_{ij} \cup \bar{x}_{j}) \cup \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} c_{ij} x_{i} x_{j} = 0.$$
 (16)

This can be carried out in various ways; see for instance [9].

Example. We have

$$J_1 = 2\,y_1\,y_2\,y_6 + y_3\,y_6 + 2\,y_4\,y_5\,y_6 + y_1\,y_2\,y_3\,y_4\,y_5\,y_6 + 2\,(1-y_1)\,(1-y_2) + \\ + 2\,(1-y_1)\,(1-y_6) + 2\,(1-y_2)\,(1-y_6) + 2\,(1-y_3)\,(1-y_6) + \\ + 2\,(1-y_4)\,(1-y_5) + 2\,(1-y_4)\,(1-y_6) + 2\,(1-y_5)\,(1-y_6) \\ = 14 - 4\,y_1 - 4\,y_2 - 2\,y_3 - 4\,y_4 - 4\,y_5 - 10\,y_6 + 2\,y_1\,y_2 + 2\,y_1\,y_6 + 2\,y_2\,y_6 + \\ + 3\,y_3\,y_6 + 2\,y_4\,y_5 + 2\,y_4\,y_6 + 2\,y_5\,y_6 + 2\,y_1\,y_2\,y_6 + 2\,y_4\,y_5\,y_6 + y_1\,y_2\,y_3\,y_4\,y_5\,y_6; \\ g_1 = -4 + 2\,y_2 + 2\,y_6 + 2\,y_2\,y_6 + y_2\,y_3\,y_4\,y_5\,y_6$$

and

$$y_1 = 1 - y_2 y_6.$$

$$J_2 = 10 - 2 y_2 - 2 y_3 - 4 y_4 - 4 y_5 - 8 y_6 + 2 y_2 y_6 + 3 y_3 y_6 +$$

$$(17.1)$$

$$+2y_4y_5+2y_4y_6+2y_5y_6+2y_4y_5y_6;$$

 $q_2=2y_6-2$

and

$$y_2 = \bar{y}_6 + u_2 y_6, \tag{17.2}$$

$$y_2^+ = 1 - y_6. (17.2^+)$$

$$J_3 = 8 - 2y_3 - 4y_4 - 4y_5 - 6y_6 + 3y_3y_6 + 2y_4y_5 + 2y_4y_6 + 2y_5y_6 + 2y_4y_5y_6;$$

$$q_3 = -2 + 3 y_6$$

and

$$y_3 = \bar{y}_6.$$
 (17.3)

$$J_4 = 6 - 4y_4 - 4y_5 - 4y_6 + 2y_4y_5 + 2y_4y_6 + 2y_5y_6 + 2y_4y_5y_6;$$

$$g_4 = -4 + 2y_5 + 2y_6 + 2y_5y_6$$

and

$$y_4 = 1 - y_5 y_6. ag{17.4}$$

$$J_5 = 2 - 2y_5 - 2y_6 + 2y_5y_6;$$

 $g_5 = -2 + 2y_6$

and

$$y_5 = \bar{y}_6 + u_5 y_6, \tag{17.5}$$

$$y_5^{+} = 1 - y_6. \tag{17.5+}$$

Now, $J_6 = 0$, $g_6 = 0$ and hence

$$y_6 = u_6$$
. (17.6)

From (17.6), (17.5), (17.4), (17.3), (17.2), (17.1) we find

$$x_{1} = 1 - y_{1} = u_{2}u_{6}$$

$$x_{2} = 1 - y_{2} = u_{6} - u_{2}u_{6} = \overline{u}_{2}u_{6}$$

$$x_{3} = 1 - y_{3} = u_{6}$$

$$x_{4} = 1 - y_{4} = u_{5}u_{6}$$

$$x_{5} = 1 - y_{5} = u_{6} - u_{5}u_{6} = \overline{u}_{5}u_{6}$$

$$x_{6} = 1 - y_{6} = \overline{u}_{6}$$

$$(18)$$

For the various values of the parameters u_2 , u_5 and u_6 we find the kernels

$$\begin{split} T_1 &= \{v_1, v_3, v_4\}, \\ T_2 &= \{v_1, v_3, v_5\}, \\ T_3 &= \{v_2, v_3, v_4\}, \\ T_4 &= \{v_2, v_3, v_5\}, \\ T_5 &= \{v_6\}. \end{split}$$

Note. It is proved (theorem 5 of chapter V of [1]) that if each subgraph of a graph has a kernel then the graph has a function of Grundy. It may be determined then with a procedure based on pseudo-Boolean programming.

§ 6. The chromatic number

Given a finite graph $G = (V, \varrho)$ by a chromatic decomposition of it we mean a family of disjoint internally stable subsets $M_1, M_2, ..., M_k$ of V so that $\bigcup_{k=1}^k M_k = V$. The chromatic decomposition with the smallest number $\gamma(G)$ of subsets is called a minimal chromatic decomposition and $\gamma(G)$ is called the *chromatic number* of the graph.

An internally stable set M of $G = (V, \varrho)$ is called superior if for any internally stable set N of G, $M \subseteq N$ implies M = N.

Let γ_1 be the minimal number of internally stable (not obviously disjoint) sets covering V. Let γ_2 be the minimal number of superior internally stable sets covering V.

Lemma 3. $\gamma = \gamma_1$.

Proof. Let $M_1, \ldots, M_{\gamma_1}$ be internally stable subsets of V, covering it and let us put

$$P_{1} = M_{1},$$

$$P_{2} = M_{2} - M_{1},$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$P_{i} = M_{i} - \bigcup_{j=1}^{i-1} M_{j},$$

$$\vdots \qquad \vdots$$

$$P_{\gamma_{1}} = M_{\gamma_{1}} - \bigcup_{j=1}^{\gamma_{1}-1} M_{j}.$$
(19)

If
$$P_i = \emptyset$$
, then $M_i \subseteq \bigcup_{i=1}^{i-1} M_i$ and the family $M_1, \ldots, M_{i-1}, M_{i+1}, \ldots, M_{\gamma_1}$

would be a covering of V with only $\gamma_1 - 1$ internally stable subsets, in contradiction with the definition of γ_1 . Therefore $P_i \neq \emptyset$ $(i = 1, ..., \gamma_1)$. Thus, we have obtained a covering of V with γ_1 disjoint internally stable subsets of it. Hence $\gamma \leq \gamma_1$.

As the converse relation does obviously hold, the lemma is proved.

Lemma 4. $\gamma_1 = \gamma_2$.

Any internally stable set can be imbedded in a superior internally stable one. Hence, for any family $M_1, \ldots, M_{\gamma_1}$ of internally stable sets covering V, there

exists a family N_1, \ldots, N_k of superior internally stable sets covering V with $k \leq \gamma_1$. Thus we see that $\gamma_2 \leq \gamma_1$. As the converse relation does obviously hold, the lemma is proved.

Theorem IV. The chromatic number γ of a graph $G = (V, \varrho)$ is equal to the minimal number of superior internally stable sets covering V.

Let $\mathfrak{M} = \{M_1, ..., M_q\}$ be the family of all superior internally stable sets of G; they may be determined (see lemma 1) by minimizing the expression

$$W = \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_i x_j.$$

Let us put $d_{ij} = 1$ if the vertex v_i belongs to the superior internally stable set M_j and $d_{ij} = 0$ in the other case. For any subfamily \mathfrak{M}' of \mathfrak{M} we shall denote with x_j the values of the characteristic function $\chi_{\mathfrak{M}'}(M_j)$.

Lemma 5. \mathfrak{M}' is a covering of V if and only if

$$\sum_{i=1}^{n} \prod_{j=1}^{q} (\bar{d}_{ij} + d_{ij}\bar{x}_j) = 0.$$
 (20)

Proof. The vertex v_i belongs to an element of \mathfrak{M}' if and only if

$$\bigcup_{j=1}^{q} d_{ij} x_j = 1 \tag{21}$$

i.e.

$$\prod_{i=1}^{q} (\overline{d}_{ij} \cup \overline{x}_j) = 0. \tag{22}$$

That means that \mathfrak{M}' is a covering of V if and only if for any i, we have

$$\prod_{j=1}^{q} (\bar{d}_{ij} + d_{ij}\bar{x}_j) = 0 \tag{23}$$

or

$$\sum_{i=1}^{n} \prod_{j=1}^{q} (\bar{d}_{ij} + d_{ij}\bar{x}_j) = 0$$
 (24)

q.e.d.

An absolutely analogous reasoning with that of the previous paragraph shows that we have

Theorem V. The chromatic number γ of a graph $G = (V, \varrho)$ is equal to the minimum of the pseudo-Boolean expression

$$K = (q+1)\sum_{i=1}^{n} \prod_{j=1}^{q} (\bar{d}_{ij} + d_{ij}\bar{x}_j) + \sum_{j=1}^{q} x_j;$$
 (25)

and a minimal chromatic decomposition P_1, \ldots, P_{γ} of G may be obtained from that family of superior internally stable subsets M_1 of V for which $x_1 = 1$, by formulas (19).

Simplification 1. If there exists a vertex v_i of G, covered only by a single superior internally stable set M_j , then obviously $x_j = 1$ and we can examine only the subgraph generated by the vertices $V - M_j$.

Simplification 2. If there exist vertices v_{i_1} and v_{i_2} so that for any superior internally stable set M_j

$$v_{i_1} \in M_j \Rightarrow v_{i_2} \in M_j$$
,

then we can simplify the problem by examining only the subgraph generated by $V - \{v_{i_s}\}.$

Repeat simplifications 1 and 2 as many times as possible.

Note. It seems convinient to work with the unknowns $y_i = 1 - x_i$.

Example. To determine all the internally stable sets let us minimize:

$$\begin{array}{c} W_1 = 2(x_1x_2 + x_1x_6 + x_2x_6 + x_3x_6 + x_4x_5 + x_4x_6 + x_5x_6) \\ g_1 = 2(x_2 + x_6), \\ x_1 = u_1\bar{x}_2\bar{x}_6, \\ x_1^+ = 0. \\ W_2 = 2(x_2x_6 + x_3x_6 + x_4x_5 + x_4x_6 + x_5x_6), \\ g_2 = 2x_6, \\ x_2 = u_2\bar{x}_6, \\ x_2^+ = 0. \\ W_3 = 2(x_3x_6 + x_4x_5 + x_4x_6 + x_5x_6) \\ g_3 = 2x_6, \\ x_3 = u_3\bar{x}_6, \\ x_3 = u_3\bar{x}_6, \\ x_3^+ = 0. \\ (26.2^+) \\ W_4 = 2(x_4x_5 + x_4x_6 + x_5x_6) \\ g_4 = 2(x_5 + x_6), \\ x_4 = u_4\bar{x}_5\bar{x}_6, \\ x_4^+ = 0. \\ W_5 = 2x_5x_6 \\ g_5 = 2x_6 \\ x_5 = u_5\bar{x}_6, \\ x_6^+ = 0. \\ W_6 = 0 \end{array} \qquad (26.5^+)$$

We have thus

$$\begin{array}{c}
x_{1} = u_{1} \overline{u}_{2} u_{6} \\
x_{2} = u_{2} \overline{u}_{6} \\
x_{3} = u_{3} \overline{u}_{6} \\
x_{4} = u_{4} \overline{u}_{5} \overline{u}_{6} \\
x_{5} = u_{5} \overline{u}_{6} \\
x_{6} = u_{6}
\end{array} (27)$$

(26.6)

and this gives us all the internally stable sets of the graph. It is easy to verify that the superior ones one:

 $x_6 = u_6$.

$$egin{aligned} M_1 &= \{v_1, v_3, v_4\}, \ M_2 &= \{v_1, v_3, v_5\}, \ M_3 &= \{v_2, v_3, v_4\}, \ M_4 &= \{v_2, v_3, v_5\}, \ M_5 &= \{v_6\}. \end{aligned}$$

As v_6 is contained only in M_5 we can confine ourselves (simplification 1) to the subgraph generated by $\{v_1, v_2, v_3, v_4, v_5\}$.

As v_3 is contained in all M_j 's we may confine ourselves (simplification 3) to the subgraph generated by $\{v_1, v_2, v_4, v_5\}$ and its superior internally stable sets

$$M'_1 = \{v_1, v_4\},$$

 $M'_2 = \{v_1, v_5\},$
 $M'_3 = \{v_2, v_4\},$
 $M'_4 = \{v_2, v_5\}.$

The matrix $((d_{ij}))$ is

$$\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)$$

and

$$K_1 = 5(y_1y_2 + y_3y_4 + y_1y_3 + y_2y_4) + 4 - y_1 - y_2 - y_3 - y_4$$

 $g_1 = 5y_2 + 5y_3 - 1$

and

$$y_1 = \bar{y}_2 \bar{y}_3.$$
 (28.1)

$$K_2 = 5 y_2 y_4 - y_2 y_3 + 5 y_3 y_4 - y_4 + 3,$$

 $g_2 = 5 y_4 - y_3$

and

$$y_2 = y_3 \bar{y}_4 \cup u_2 \bar{y}_3 \bar{y}_4, \tag{28.2}$$

$$y_2^+ = y_3 - y_3 y_4. (28.2^+)$$

$$K_3 = -y_3 + 6y_3y_4 - y_4 + 3$$

$$g_3 = -1 + 6y_4$$

and

$$y_3 = \bar{y}_4$$
. (28.3)

 $g_4 = 0$

and

$$y_4 = u_4$$
. (28.4)

Hence γ' of the simplified problems is 2; γ will be equal to γ' plus one (corresponding to the eliminated set M_5), i.e.

$$\gamma = 3. \tag{29}$$

The coverings of V with superior internally stable subsets of it may be obtained by giving various values to the parameters.

The solution of (28.1), (28.2), (28.3), (28.4) being $(u_4, \bar{u}_4, \bar{u}_4, u_4)$ we obtain the coverings $\{M'_1, M'_4\}$ and $\{M'_2, M'_3\}$. Thus the coverings of the initial problem will be:

$$\{M_1, M_4, M_5\}$$
 (30)

and

$$\{M_2, M_3, M_5\}.$$
 (31)

Applying formulas (19) in various orders we obtain the minimal chromatic decompositions:

$$P_{1}^{I} = \{v_{1}, v_{3}, v_{4}\}
 P_{2}^{I} = \{v_{2}, v_{5}\}
 P_{3}^{I} = \{v_{6}\}$$
(32)

$$P_{1}^{II} = \{v_{2}, v_{3}, v_{5}\}
 P_{2}^{II} = \{v_{1}, v_{4}\}
 P_{3}^{II} = \{v_{6}\}$$
(33)

$$P_1^{III} = \{v_1, v_3, v_5\}
P_2^{III} = \{v_2, v_4\}
P_3^{III} = \{v_6\}$$
(34)

$$\begin{array}{l}
P_{1}^{IT} = \{v_{2}, v_{3}, v_{4}\} \\
P_{2}^{IT} = \{v_{1}, v_{5}\} \\
P_{3}^{IT} = \{v_{6}\}
\end{array} \right\}$$
(35)

Note. The above method of determining the minimal chromatic decompositions of a graph combined with the method given in theorem 4 of chapter 4 of [1] permits us to determine a function of Grundy on G.

Čulik recently defined in a paper to appear in "Problemy Kybernetiki" the number of completeness of a graph G as being the minimal number of complete subgraphs of G containing all its vertices and edges. This problem may also be treated by pseudo-Boolean programming.

References

- [1] Berge, C.: Théorie des graphes et ses applications. Paris: Dunod 1958.
- [2] Fortet, R.: Applications de l'algèbre de Boole en recherche opérationnelle. Revue Française Rech. Opér. 4, n. 14, pp. 17—25 (1960).
- [3] IVANESCU, P. L., and S. RUDEANU: On Solving Transportation Problems with the Egerváry Method. I. (in Rumanian), Comunicările Acad. Republ. Popul. Romîne 11, n. 7, pp. 773—778 (1961).
- [4] On Solving Transportation Problems with the Egerváry Method. II. (in Rumanian), Studii si Cercetări Matematice 14, n. 1, pp. 59—67 (1963).
- [5] —, I. Rosenberg, and S. Rudeanu: Determination of the Minima of Pseudo-Boolean Functions (in Rumanian). Studii si Cercetări Matematice 14, n. 3, pp. 359—364 (1963).
- [6] — An Application of Discrete Linear Programming to the Minimization of Boolean Functions (in Russian). Rev. Math. Pures Appl. 8, n. 3, pp. 459—474 (1963).
- [7] — Problems of Pseudo-Boolean Programming. Proceedings of the Colloquium on Applications of Mathematics in Economics, Budapest, 18—22 June, 1963 (in print).
- [8] Maghout, K.: Applications de l'Algèbre de Boole à la Théorie des Graphes et aux Programmes Linéaires et Quadratiques. Cahiers Centre Etud. Rech. Opér. 5, n. 1—2, pp. 21—59 (1963).
- [9] RUDEANU, S.: Boolean Equations and their Applications to the Study of Bridge-Circuits. I. Bull. math. Soc. Sci. Math. Phys. Republ. Popul Romîne 3(51), n. 4, pp. 445—473 (1959).

Institutul de Matematică al Academiei RPR
Bucharest, Rumania
and
Visoke Učeny Technické
Brno, Czechoslovakia

(Received November 12, 1963)