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1. Introduction 

We shall point  out  how the electrostatic capaci ty  of  a compact  set in Eucl idean 
space governs the rate of  heat  flow from such a set to  a surrounding conduct ing 
medium. The answers will of  course be quite different in dimensions two and three. 
I n  bo th  cases, however,  we have to rely heavily on the careful probabilistic formu- 
lat ion of  classical diffusion theory  by  DooB [2] and HuNT [4]. A systematic  account  
of  these mat ters  will also be found in the book of  IT6 and McK]~A~ [5]. 

The  s tandard  Brownian mot ion  process in dimension s =- 2 or 3 will be denoted 
x(t) (=x( t ,  o)) for o) in the appropria te  probabi l i ty  space as defined in [5], Ch. 1 
and 7). Measurable sets (events) in this space have measure Px ['] when x (0) ~ x, 
and measurable functions (random variables) have expectat ion Ez[.] .  We shall 
always work with compact subsets A of  Eucl idean space R of  dimension s = 2 or 3. 
W h e n  s ---- 3 it will be assumed t h a t  the Newtonian capacity C(A) of A is positive, 
and when s ---- 2 t ha t  the logarithmic capacity of A is positive. I n  the lat ter  case, 
however,  we shall be concerned with the set funct ion K ( A ) =  - -y (A) ,  where 
y (A) ~ Robin's constant. Thus K (A) is the na tura l  logar i thm of the logari thmic 
capaci ty  of  A (see [8], Ch. V). 

For  such a set A we define 

TA = inf  [t] t > O, x ( t ) s A]  ~ c~. 

A point  x e A is called regular if 

Px[TA = 0] = 1 .  

I t  is known [4] t ha t  under  our assumptions concerning A 

/A (x, t) = Px [TA ~ t] > 0 for all t > 0 

and t h a t  ]d (x, t) is the unique solution of  the heat  conduction problem 

Of 1 A/  f o r t > O ,  x e R - - A  
Ot -- 2 

subject  to the initial condition 

[ (x, 0) ---- 0 for x e R - -  A 

and boundary  condition 

lim [ (x, t) = 1 for t > 0, y = regular point  e A .  
X---> y 

Thus ]A (x, t) m a y  be interpreted as the tempera ture  at  t ime t at  the point  x ~ R - -  A, 
and  we proceed to investigate the integral of  this temperature  over R - -  A, i. e. 
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the  total energy flow in time t from the set A into the surrounding medium R --  A .  
Le t  us call  i t  

(1.1) EA(t) = f P x [ T A  < t]dx = f /A(X, t ) dx .  
R - - A  R - - A  

The a sympto t i c  behav ior  of  EA (t) will be shown to depend  on the  capac i ty  of  the  
set  A.  I n  d imension s = 3 the  capac i ty  qui te  na tu r a l l y  de te rmines  the  pr inc ipa l  
te rm,  b u t  when s --~ 2 i t  enters  only  the  second t e rm  of  the  a sympto t i c  expans ion  
o fEA (t). 

Theorem 1. I n  dimension three 

EA (t) = t C (A) + 4 (2 Jr)-3/~ [C (A)] 2 tl/2 + o (W2), 

as t-->c~. When A is a sphere, o(t x/2) =- O, t > O*.  

Theorem 2. I n  dimension two, let A and B be two compact sets of positive (loga- 
ri thmic) capacity. Then 

2 ~ t  
EA(t) - -  EB(t) ~ ( 1 - ~ [ K ( A )  - -  K ( B ) ] ,  as t--->oo**. 

Alternatively (specializing to the case when B is the unit  disc) 

2 z t  2 ztt 
EA (t) = ~ -  + ~ [K (A) + 1 + y - -  In 2] + o (t ln-2 t) 

as t --> c~. Here y = .5772 . . .  is Euler'  s constant. 

R e m a r k  : There  are  m a n y  equiva len t  definit ions of  capac i ty  and  the  normal i -  
za t ion  is r a the r  a rb i t r a ry .  F o r  the  above  theorems to hold the  proper  normal iza t ion  
is t h a t  which gives Newton ian  capac i ty  2 z ~ to a sphere of  rad ius  Q and  logar i thmic  
capac i ty  ~2 to  a disc of  rad ius  ~(i. e. i f A  = [z I [z I < ~], then  K ( A )  = 2 In Q). 

2. Proof of theorem 1 

F o r  a r b i t r a r y  Be te l  sets B c R 

Px  [x (t) e B] = f p  (x, y, t) dy ,  
B 

where p is the  t rans i t ion  funct ion 

p(x ,  y, t) = (2 7~t) -s/2 e -[x-Yl=/2t,  

F u r t h e r m o r e  

(2.1) P ~ [ T A > t , x ( t ) ~ B ] = f q A ( x , y , t ) d y ,  
J~ 

x e R ,  

x ,  y e R ,  t > O .  

x ~ R , t > O ,  

* 1V[. KAO has investigated the asymptotic expansion of the Laplace transform of EA(t) 
(private communication). His expansion is valid under slight regularity conditions eoncering 
the set A (which must have positive volume [ A [). Formal term by term inversion yields the 
same terms of order t and tl/2 as in Theorem 1. The rest, which we denoted o (tl] 2) becomes 

1 1 / fe(dx)lx-- y le(dy)+o(1) .  0@/2 = ~ [ r  _ ] A ]  - -  

A A 

Here e (dx) is the equilibrium charge of the set A, to be defined below, in the proof of Theorem 1. 
** f (t) ~ g (t) means f (t) / g (t) --> 1 as t --> c o .  
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defines the density qA (x, y, t) which exists according to Hv~T ([4] section 4) and 
is a symmetric function of x and y. Note tha t  the symmetry  of qA which is not the 
trivial mat te r  it might  seem at first glance, is the key to the entire proof. 

To s tudy the asymptotic  behavior of E A (t) we use  (1.1) to write, for 0 < h < t, 

(2.2) EA(t) -- EA(t -- h) : S{Px[TA > t -- h] -- Px[TA > t]}dx. 

Using the strong Markov property of Brownian motion (see [4] section 2 ; it will be 
taken for granted from now on) the integrand on the right in (2.2) becomes 

(2.3) ~ ~ qA (x, u, t -- h)p (u, y, h) gu dy -- ] qA (X, y, t) dy.  
I ~ R  R 

The integrations are over R, since qA (x, y, t ) =  0 when x e A or y e A. The 
symmetry  of each of the densities p and qA in the space variables permits the 
transformation of (2.3) into 

(2.4) ~ ~p (y, u, h) qA (u, x, t -- h) du dy -- ] qA (y, x, t) dy.  
R R  R 

Now we substitute (2.4) into (2.2) and carry out the integration of x over R - -  A. 
Thus 

(2.5)  EA (t) - -  EA (t - -  h) 

= ] ]p(y ,  u, h) Pu[TA > t -- h]gudy -- ] Py [ Td  > t]dy 
1~1~ R 

~- f{Py[x(T)  e R - - A  for h < ~ t ] - - P y [ T A > t ] } g y  
t t  

- ~ ] P y [ T A g h ; x ( ~ ) e R - - A  for h < v g t ] d y .  
n 

Equation (2.5) shows tha t  EA (t) - -  E A  ( t  - -  h )  is a monotone function of t, so tha t  

(2.6) l i m [ E A ( t ) - - E A ( t - - h ) ] = y P y [ T A ~ h ; x ( ~ ) e R - - A  for T > h ] d y .  
t----> co R 

This limit is an additive function of h. I t  is obviously bounded and measurable so 
tha t  it is a linear function of h. Hence we may  write 

1 
(2.7) C ' ( A ) = - ~ ] P y [ T A ~ h , x ( v ) e R - - A  for ~ > h ] d y ,  h > 0 .  

R 

In  dimension s ~ 2 clearly C' (A) = 0. Theorem 1 however is concerned with 
s = 3, and in this case we have to identify the set function C' (A) with the Newto- 
nian capacity C(A). That  is done by  IT6 and McKEA~ ([5] section 7.7). They 
define the family of measures (charges) 

1 
eh(dy) = - ~ P y [ T A ~ h ; x ( T )  e R - - A  for z > h ] d y ,  

and prove by  a short calculation tha t  the corresponding potentials 

1 
p~(x)  = ~ f I x - y l - i  e~ (dy) 
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increase to Pz [TA < ~ ]  as h "a 0. They further show that  a subsequenee of these 
charges therefore converges (weakly) to an equilibrium charge e (dy), supported by 
A. The capaeitory potential corresponding to e (dy) is Px [TA < c~] ~ 1, which, as 
pointed out in section 1, has boundary value one at the regular points of A. Thus 
the total charge 

ye~(~y) = ~e(~y)  = y~(~y)  = C ' (A)  
R R A 

is the usual capacity C(A) associated with the Green function (2z ) - l [x  -- y 1-1. 
I f A  is a sphere of radius Q, then 

C(A) = sup f e (dy) 
A 

over all charges e such that  

1 f e(dy) < 1  
X @ / ~  

2~.J  Ix -y l  = ' 
A 

which gives C(A) = 27~. Equations (2.6) and (2.7) therefore yield the principal 
term in Theorem 1. 

To obtain the second term in Theorem 1 let I A ] denote the volume of A. In 
view of equation (2.7) 

EA(t)  - -  tO(A) 

=SPx[TA~t]dx- - ]PxETA<=t;  x ( T ) e R - - A  for T>t ]dx  
R - - A  R 

= [ P z E T A g t ;  x(~)eA forsome ~>t]dx-- lA I 
R 

= ~ f [ p  (x, y ,  t) - ~A (x, y ,  t)] P~ [TA < ~ ]  gy dx --  ] A 1. 
R R  

Using the symmetry o fp  and qA, 

(2.8) EA(t) -- tC(A)  

= f { l i p  (y, x,  t) - qa (y, x,  t)] dx}  P y  [TA < oo] du - -  I A ] 
R R 

= f PvETA <~ t] P~ ETa < oo3 dy - I A I 

= ~PvETA < t] PyETA < oo]dy. 
R - - A  

By equation (2.8) 

DA(t, h) = Ea(t) -- EA(t --  h) -- hC(A)  

= f P x [ t  --  h < TA ~ t]Px[TA < ooJdx 
s  

- = f  f P x [ t - - h < T a ~ = t ; x ( t )  E d y ] P x [ T A < o o ] d x .  
x ~ T t - - A  y e R  



114 FRAZqX SPITZE~: 

Jus t  as in going from (2.3) to (2.4) we now use the symmetry  of qA(x, y, t) to 
reverse the direction of time. The result is 

DA(t ,h)-~  ~ ~ P y [ T A ~ h ; x ( 7 : ) e R - - A  
xe2-A ye~ for h ~ t ; x ( t ) ~ d x ] P x [ T A ~ o o ] d x  

(2.9) - ~ f P y [ T A ~ h ; x ( ~ ) ~ R - - A  for h < ~ t ; x ( ~ ) e A  
R for some T ~ t] dy 

~-- f S Py[TA ~ h;x(h) ~dz] Pz[t -- h < TA < ~ ] d y .  
yetr zeR 

Now we shall apply the following 

Lemma. In  dimension three,/or x ~ R -- A, 

/A (x, c~) - - /A (X, t) -~ Px It < TA < oo] 

~]A(X ,~)C(A)2(2~) -a /~ t  -lj~, as t - - ~ ,  

uni]ormly ]or x in a compact set. 
This lemma is due to JOFFE [6] who proved it for sets A with positive volume 

1A 1, using the theory of additive funetionals of the Wiener process of M. KAc. 
We shall first complete the proof of Theorem 1, and then sketch a proof of the 
lemma which does not require Tauberian arguments, and which applies to any 
compact set A with positive capacity. 

The lemma applied to (2.9) gives 

DA(t, h) ~ 2 C(A) (2~) -3/~ (t - -  h) -1/~- 

~ P y [ T A  ~ h ; x ( h ) e d z ] P z [ T A  ~- c~]dy 
yeR zeR--A 

,,~ 2C(A)(2~)-s/2t-1/~ f Py[TA ~ h;x(~)~ R - -  A for T > h]dy. 
R 

Comparison with equation (2.7) shows tha t  

DA(t, h) ,,, 2 h C ( A ) ( 2 ~ )  -3j2 t -112 ]eh(dy),  
R 

where the total  mass of ea is C (A). Tha t  proves Theorem 1. 
To derive the Lemma observe tha t  

(2.10) ]im ] x ]/A (x, oo) = lira ] x ] Px [TA < r --  C(A) 
27~  ' 

since ]A (x, oo) is the capacitory potential 

1 / e(dy) 
/A(x' ~176 I x - y i  ' 

A 

where e (dy) is the weak limit of the measures eh (dy) in (2.7). Now we write 

Px[t < TA < oo] .~ fqA(X, y, t) Pu[TA < oo]dy, 
R--A 
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and use (2.10) to conclude 

Px[t < TA < c~] ,,~ C(A) f qA(x,y,t) dy. 
2,~ J lul 

R - - A  

Decomposing fur ther  

C(A) f p(x,y,t) Px[t < TA < r ~ ~ J [y[ dy 
R - - A  

C(A) f Pz[x(t)edy;TA <t] C(A) [Ax(t) - -  Bx(t)] 
2 ~  J Ivl - 2 ~  

R - - A  

I t  is easy to cheek tha t  

Ax(t) ~ f P(Xl~'t) dy ,,~ ]ff~-~t -1/~, as t - ->oo,  

R - - A  

and therefore the Lemma will be proved if  we show tha t  

Bx(t)= f p~[x(t)edy;TA<-t] ~ jyj ~ Px[TA < c~]t -1/~ as t - ~ .  
R - - A  

That  is the only delicate par t  of  the proof. Decompose 

i l~d Px[TA<v;x(TA)edz]p(z , y , t - -v )dy .  Bx(t) = J" j" lYl ~ = 
y e R - - A  z ~ R  0 

In terchanging the order of  integration, and calculating the integral on y (in polar 
coordinates) gives 

t 

,., '. 

t 

0 

Finally, decompose 

j f f~  Pz[TA ~ t] 
Bx (t) ~0 VT -t- C~ (t) , 

where Cx (t) is the error term 

t 
1 

0 

I f  we can show tha t  J/tCx (t) --*- 0 as t ---> co, then 

Bx(t) ~., Px(TA < oo]t -1/2 
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and the proof is complete. Since the integrand in the formula for Cx (t) is non- 
negative, tha t  is readily accomplished by probabili ty arguments which give the 
estimate 

t + l  

~. d~Px[TA ~ ~] = Px[t  <~. TA g t ~- 1] 
t 

] p ( x , y , t )  Py[Ts  ~ 1]dy ~ k t  -812 . 
R 

Here S is a large sphere containing A and k ~ 0, depending on x and on A but  
not on t. A look back over the proof shows that  uniformity on compact sets is 
automatic.  

I t  only remains to verify theat  the error term o (t-1/~) vanishes when the set A 
is a sphere. Tha t  is immediate from an explicit calculation of ]A(X, t), (see [1], 
p. 247). 

R e m a r k :  0n ly  for diffusion in dimension s >= 5 is the limit 

lim [EA(t) -- tC(A)] -~ S(Py[TA < oo])2dy 
t----> c~ R -- A 

finite for sets of positive capacity. 

3. Proof of theorem 2 

Here it is essential tha t  the dimension be s ---- 2, and our proof is entirely 
based on Hunt ' s  investigation of the asymptotic  behavior of Px [TA ~ t]. Following 
HV~T ([4] section 5) we define, for any compact A c R with positive capacity, 
the Green function 

o o  

GA (x, y) : ~ qA (X, y, t) dt,  x, y e R .  
o 

Here qA was defined in (2.1). H u n t  showed tha t  

H A  (x )  - ~  lim GA (X, y )  < 0 %  X E R 
[y]~r 

exists, and tha t  also 

(3.1) lim [HA (x) -- 1 In I x l] = - -  (2 ~) - i  K (A) 
[xl-+oo 

exists and is finite. For  the identification of this limit with - -  (2 ~ ) -1K (A) we refer 
to Iqevanlinna's characterization of Robin's  constant - - K ( A )  in terms of the 
asymptot ic  behavior of the Green function with pole at infinity ([8] Ch. 5, section 3). 
We further record from [2] or [4] tha t  HA is harmonic on R --  A, so tha t  for large 
enough @ > 0 the mean value theorem yields 

(3 .2 )  ,x / _  - I] = - (2 

Here ~ denotes the constant measure of mass one on the circumference [ x[ ---~ @, 
and we shall use the symbol ~ for this purpose exclusively. 
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We need also some preliminary information concerning EA (t) when A is a disc. 
To simplify the nota t ion write 

Eg~llzl <r] (t) = Er(t), T[~llz[ <rJ = Tr.  

I t  is simplest to solve the heat  conduction problem in section 1 by  the method  of  
Laplace t ransforms to obtain 

c o  

(3.3) ~ Px[Tr  <= t] e-~tdt = k -1 K ~  [xl) 
o Ko(~/2-~r) 

when X > 0, 1 x l > r. Here K0 (z) is the Bessel funct ion of  the second kind with 
imaginary  argument ,  of  order 0, and K1 (z) is the corresponding function of  order 1. 
I t  is well known tha t  

-1 d z ~ [zvKv(z)] = --  z ' - I K , _ I ( z ) ,  

which gives 
o o  o o  

] Er(t)e-~tdt---- .~ .~ PxETr ~ tJe-atdtdx 
o l x l > ~  0 

K1 (r V~)  
= 27~r~'-a/2 K0(r]/2k) " 

For  small positive z 

so tha t  

Z 

Ko (z) = - -  log-~- - -  ? + 0 (z), 

K l ( z )  = z-1 § 0(1), 

c o  

~. Er (t) e -At dt ,,~ 2 k21n(1/k ) , a s h - e - 0 .  
0 

As Er  (t) is monotone  K a r a m a t a ' s  theorem yields the conclusion 

2 n t  
(3.4) Er (t) ~ ~ -~ - ,  as t --> co.  

Observe tha t  the first order approximat ion to Er(t) in (3.4) is independent  of  r 
so tha t  we are still far f rom the goal of  obtaining an approximat ion which does 
depend on the set A. The crucial step is again due to I tV~T who used (3.1), (3.2), 
and a Tauber ian a rgument  similar to t ha t  which gave (3.4) to  verify the conjecture 
of  KAc t h a t  for x e R - -  A 

2~ 
Px[TA > t] ,,~ -~-{ HA(x) ,  as t - > c o .  

H u n t ' s  proof  of  this result ([d], section 6) requires no essential modification to 
yield 

(3.5) P x [ T A > t J d $ ( x ) ~ - -  HA(x)d~(x) ,  t ->co  
[xl =~ lntlxl 

for every ~ > 0, large enough so tha t  A lies in the open disc ]z I < ~. 
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The rest of  our proof  depends on the observat ion tha t  a ]3rownian mot ion  
star t ing at  a point  outside a large disc has to hit  the  circumference before visiting 
a set A in the  interior. Given A we choose r so large tha t  A c [z[ ] z] < r] and write 

Er(t) -- EA(t) = .~ {Px[Tr < t] -- Px[TA < t]}dx 
] ~ l > r  

-- [. P x [ T A < t ] d x :  ~ Px[T  r < t < T A ] d x + O ( 1 ) ,  
[xlz~R--A,lxl ~'1 lxl >r 

0 (1) being bounded as t --> cr Using the strong Markov proper ty  

(3.6) 

Now let 

Er (t) -- EA (t) 
t 

-~ ,~ { .[ ~ d ~ P x [ T r ~ ;  x(Tr) e d y ] P y [ T A > t - - T ] } d x + O ( 1 ) .  
lzl>~' lul=r o 

gr(t) =- .[ Py[TA > t]d~(y). 
lu[=~ 

I n  view of  the ro ta t ion invariance of  Brownian mot ion 

S Px[Tr < t; x(Tr)  edy]dx -= [ Px[Tr < t]dxd~(y) -= Er(t) d~(y), 
Izl>r Ixi>r 

so tha t  (3.6) becomes 

t 

(3.7) Er(t)- -EA(t)  = ygr( t - -  ~)d~Er(T) + 0 ( 1 ) ,  t > 0 .  
o 

The asymptot ic  behavior  of  Er (t) was given in (3.4) so tha t  we proceed to 
estimate gr (t). B y  use of  (3.5) 

g~ (t) ~ - ~ -  HA (x) d r (x) 
I~ I =r  

- - l n t  HA(X ) -- I n l x  I d e ( x ) +  l r t t '  
Ixl =r  

and equat ion (3.2) now yields 

(3.8) gr(t)~ ( ln t ) - l [21nr--  K(A)],  t - ->c~.  

I t  only remains to subst i tute (3.4) and (3.8) into (3.7) to conclude t h a t  as t -> r 

Er (t) -- EA (t) 
t - - 2  

(3.9) ~ 23r[21nr-- K(A)] ~f ~ 1  d( l_~ ) 
2 

27~t 
,~ ~ [2 In r - - / ~ ( A ) ] .  
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(3.12) 

But  

Given 2 compacet  sets A and B, each with positive capacity,  we m a y  choose r so 
large tha t  (3.9) holds both  for A and for B. The difference of  the resulting versions 
of  (3.9) reads 

2z~t 
(3.10) EA(t) -- EB(t) ,,~ ~ [K(A) - -  K ( B ) ] ,  t -~ co,  

which proves the first half  of  Theorem 2. The proof  would be complete if we knew 
tha t  the unit  disc dissipates the energy 

2 ~ t  2 ~ t  
(3.11) E1 (t) = ~ § ~ (1 -~ 7 - -  in 2) A- o (t In -2 t). 

For  this fact  see CARSLAW and JA~OER ([1] pp. 335--336), who invert  the Laplace 
t ransform in (3.3) to obtain a complicated expression for ] (x, t) = Px [T1 ~ t], 
and a simpler one for the temperature  gradient  at  the circumference of  the uni t  
disc, namely  

oo 

du 
- -  4 f le-U~t/2j~(u) + y~o(u ) 

o 

OEl(t) 0 f 1 f A/(x,t)dx Ot -- Ot f(x,t) dx=  ~- 
lxJ  >__ 1 I zJ  > 1  

and integrat ion by  parts  yields 

aE~ 
(3.13) 0t 

JAEa~R ([1] p. 336) states t ha t  

2 
(3.14) - -  ~5(t) - -  ln2t  -- 2 7 

- = r  

2V -b o(ln-2 t) t--> oo. ( ln2t--2y)2 

To sketch an elementary proof  (all the arguments  in the literature seem to infer 
the behavior  of  ~b (t) as t --~ oo from tha t  of  its Laplace t ransform near zero) let 
denote equali ty up to terms of  smaller order than  (ln t)-z, as t -+ oo. Then, by  
(3.12) 

A 

f u ~ t  

4 e 2 '  

- -  q~(t) ~ ~ u[J~(u) + y02(u)] du 
0 

for every A > 0, since J02 (u) q- Y02 (u) is bounded away  from 0. F rom the asym- 
ptotie behavior  of  these Bessel functions 

J~(u) + Y~(u) = 1 + - ~  In + y o (u), u --~ c~, 

so t h a t  

A A t~ 

/ /: J -~2t 2 
E--x 

o 

dx 
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where we have defined "~ by 

ln~--~ l n 2 t - -  2 y .  

I t  follows that  for every B > 0 
B Y  

- -  ~ (t) ' ~  2 x [~2 -1- (In x - -  In -~)2] 
0 

.B~ 
e -  x 

"~ 2 x(lnx _ InT) 2 dx, 
0 

Now an integration by parts yields 

" e-- x 

~ (/)(t) ~ 2 t n ~ _ I n x d X .  
0 

Finally 

dx 

T ----> cx~ . 

2 / [ 1  ,] 
- -  ~ (t) ~ ~ -{- 2 e-x In v - -  In x In T dx 

0 

~ + e-x In x dx 
0 

~ -k ~ e-~lnxdx 
0 

2 2y 
--  lnl: (lnT)2 , T-->c~. 

Thus (3.14) is proved, and by (3.13) we may integrate (3.14) to obtain (3.11). That 
completes the proof of Theorem 2. 

4 .  R e l a t e d  p r o b a b i l i t y  p r o b l e m s  

Both theorems are valid in a more general setting, roughly speaking for 
stochastic processes whose potential theory resembles the classical one. In  par- 
ticular the result of KAr and Hu~T concerning the asymptotic behavior of 
Px[TA > t] has been extended to arbitrary recurrent random walk in [7]. (See also 
[9], Ch. 7, problem 10 for an incomplete generalization of Theorem 2.) However, 
Theorem 1 has the more interesting history of having suggested improvements 
even in the case of Brownian motion. In  1951 DVOaETZKY and ER])6s [3] con- 
sidered a related problem for simple random walk on the lattice points of s dimen- 
sional Euclidean space. Let Ln ---- the number of distinct points visited by the 
random walk in time n. I f  Tx denotes the time of the first visit to the point x, then 

E[Ln]-~ ~ P [ T x  ~ n]. 
x * O  

Thus E[Ln] is the discrete analogue of EA (t) with the set A ---- {0} consisting of a 
single point. Theorem 1 then has the natural analogue that  E[Ln]/n tends to a 
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l imi t ,  b u t  DVORETZKu and  EI~DSs p roved  more,  i . e . ,  t h e y  showed t h a t  Ln/n 
converges with probability one. Now replace Ln b y  LA (n) -~ the  number  of  l a t t i ce  
po in t s  x such t h a t  the  r a n d o m  walk  xk e x -~ A for some ]c in the  in te rva l  [1, n]. 
Aga in  one finds t h a t  E[LA (n)] is the  analogue of  the  energy EA (t) and  t h a t  the  
corresponding s t rong (probabi l i ty  one) s t a t e m e n t  holds.  (For  a p roof  va l id  for 
a r b i t r a r y  r a n d o m  walk,  and  for re la ted  results  see  [10].) The  corresponding s t rong 
law for Brownian  mot ion  (a p roof  based  on Theorem 1 and  Bi rkhoff ' s  ergodic 
theorem is g iven b y  WJ~ITMAN [10]) reads  as follows: 

F o r  Brownian  mot ion  x(t) in 3 space R (in any  dimension s i f  C(A) below is 
i n t e rp re t ed  correct ly)  and  for a n y  compac t  set A c R le t  At = [x ] x ~ R, x (~) ~ x ~- A 
for some 0 I< ~ ~< t]. Le t  A0 = A,  and  denote  the  Lebesgue measure  (volume) 
of  At  b y  ]Atl. Then 

E [ I A t l ]  = EA(t) + [A[ 

in the  no t a t i on  of  (1.1) and  

l~m ~ = C(A) 
t --e. o o  

with  p robab i l i t y  one on the  p robab i l i t y  space of  the  Brownian  mot ion .  
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