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1. w Introduction 

Let f ( x ) ( -  oo < x  < oo) be a measurable function such that 

1 1 

f ( x + l ) = f ( x ) ,  ~f(x)dx=O, I]fll2= ~f2(x)dx< +oo. (1.1) 
0 0 

The asymptotic properties of the sequence f(nkX) for rapidly increasing sequences 
nk of integers have been investigated by many authors. In particular, it has been 
proved (see [3]) that for any fixed f satisfying (1.1) there exists a sequence nk 
such that the sequence f(nkx) imitates the properties of independent random 
variables in a very strong sense. I f f  satisfies certain smoothness conditions, one 
can also give estimates for the rate of growth of the sequence n k implying this 
"independent-like" behaviour. For instance, if f satisfies the Lipschitz condition 
then nk+~/nk ~o0 guarantees that f(nkX) obeys the central limit theorem and the 
law of the iterated logarithm (see [7, 17]). Here rtk+l/n k --.oo cannot be replaced 
by the weaker condition 

nk+l/nk > q > 1 (k= 1, 2 . . . .  ) (1.2) 

even for very smooth functions f :  a simple example shows that for any given q 
(arbitrary large) there exists a trigonometric polynomial f and a sequence nk 
satisfying (1.2) such that the sequence f(nkx ) fails to satisfy the central limit 
theorem. A closer look at the problem shows that in the case when only (1.2) 
is assumed, the asymptotic behaviour of f(nkX ) is strongly influenced by the 
arithmetical properties of the sequence n k. For instance, the independent-like 
behaviour holds if nk=a k (a>2  is integer) but can fail if nk=ak--1. Similarly, 
we have the independent-like behaviour if nk+a/n k ~ where er is irrational 
for every integer r >  1. This phenomenon has been investigated profoundly by 
Gapogkin (see [4] and also [2]) who has given a necessary and sufficient con- 
dition for f(nkX ) to obey the central limit theorem. Let us say that a sequence 
m 1 < m 2 < . . .  of positive integers satisfies condition B 2 if the number of solutions 
of mk++_ml=v (k>/) does not exceed a constant C for any v>0.  Gapogkin's 
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theorem states that if n k satisfies (1.2) then the sequence f(nkX) obeys the central 
limit theorem for all sufficiently smooth functions f (satisfying (1.1)) if and only 
if, for any m> 1, the set-theoretic union of the sequences {nk}, {2rig} .... , {rnnk} 
satisfies condition B z. 

The purpose of the present paper is to investigate the asymptotic properties 
of the sequence f(nkX) when only (1.2) is assumed. Though the central limit 
theorem does not necessarily hold for such sequences, we shall formulate positive 
results without imposing any arithmetical restrictions on n k. To state the results 
qualitatively, let us note that the validity of the central limit theorem and the law 
of the iterated logarithm for the sequence f(nkX ) mean that the asymptotic 

N 

distribution and asymptotic order of magnitude of ~ f(nkx), N--+oo are the 
k=l 

same as those of ((N), N ~  oo where ( is a standard Wiener-process. Let us 
introduce the quantities 

(i+1)2 -k M+NM+I ) 2  i,k __2k ( f(njx) 

Now, the main result of our paper states that i f f  is smooth enough, the sequence 
nk satisfies (1.2) and CtN<v~kN<C2 N hold for certain values of M,N,i,  k 

s 
(C1, C2 are positive constants) then the asymptotic behaviour of ~, f(nkx ), 

k=l 
N--+ m is the same as that of ((zs), N--+ Go where ( is a standard Wiener process 
and zs is a sequence of random variables which is closely related to the quantities 

s 
vi'kv, s" Hence the asymptotic behaviour of ~, f(nkX) is intimately connected 

k=* 
with that of the Vi'M,k s'S. Using this fact, we can derive many limit theorems for 
the sequence f(nkX ) both in the case when the sequence exhibits the independent- 
like behaviour and in the case when this behaviour does not hold. As a first 
application let us consider the case when the sequence nk satisfies a certain 
arithmetical condition of Gapogkin type. Then, as one can see easily, the quantities 
v~)k,N become asymptotically independent of i, k and thus Zs become asymptotically 

s 
constant. Hence, in this case the asymptotic behaviour of y '  f(nkx) is the same 

k=t  
as that of ((aN) for a certain numerical sequence as. Some typical corrollaries of 
this fact are Donsker's invariance principle, Strassen's law of the iterated 
logarithm and Kolmogorov-Erd/Ss-Petrovski type upper and lower class criteria 
for the sequence f(nkx). These results unify and extend several limit theorems 
obtained earlier in the literature. As a second application we shall show that 
though the central limit theorem and the law of the iterated logarithm do not 
necessarily hold under condition (1.2), they are "nearly" satisfied if q is large. 
More exactly, if f is smooth enough and (1.2) holds then we have 

lira sup P f(nkX)<~t _gO(t) <=~(q) l 
Nora --oo<t< +oo 

* In probabilistic statements concerning the sequence f(nkx) the probability space is the interval 
[0, 1) with Lebesgue measure. 
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where a =  [Ifl[ and e(q) ~ 0  ifq ~oo. Similarly, 

N 

1-e(q)< luimo(2a2NloglogN)-l/2 ~ f(nkX)<l+e(q ) a.e. 
- -  ~ k = l  

The functional versions of these results are also valid. Thirdly, our results lead 
to interesting consequences even in the classical case f ( x ) = c o s  2~x when we 
get an a.s. invariance principle under the mere condition (1.2). 

It is of some interest to note that our results hold without the assumption 
that n k are integers. It seems that for non-integral n k even the central limit 
theorems and laws of the iterated logarithm implied by our results are new. 
We get, e.g., the interesting result that the sequence f(qkx) obeys the central 
limit theorem (in the sense of footnote 1) for any real q > 1. (For a related result 
see 1-15].) 

The idea of the proofs is to split the partial sums off(nkX ) into disjoint blocks 
and apply Strassen's well-known martingale invariance principle (Theorem (4.4) 
of [14]) for these blocks. In the paper [1] we used the same method to get a.s. 
invariance principles for mixing processes. Independently and at the same time, 
Philipp and Stout used a similar approach to get a.s. invariance principles for 
many classes of weakly dependent random variables; see their nice and exhaustive 
paper [ 12]. 

Our paper consists of two parts. In the present, first part we establish some 
a.s. invariance principles for the sequence f(nkX ) under general conditions on 
f (x)  and {nk}. In the second part (see the next paper in this journal) we give some 
applications of these theorems. 

2. w Main Results 

Before formulating our theorems we make a few preliminary remarks. 
Let X1, X2 . . . .  be a sequence of independent random variables on the 

probability space (~, ~ ,  P) and put Sn = ~ X~ (So = 0). The investigation of the 
i=1  

asymptotic properties of the sequence S, is a classical problem of probability 
theory. In [13, 14] Strassen developed a new and powerful method for approaching 
this problem. Namely, he proved that in certain cases it is possible to construct 
a Wiener-process ~(t) such that the sequences S, and ((n) are "close" to each 
other with probability one. Such an approximation theorem was called by him 
an "almost sure invariance principle" because a theorem of this type enables 
us to carry over many asymptotic properties of the Wiener-process in an 
unchanged form for the partial sums S,. For instance, it is easy to see that if 
Sn=~(n)+o(n 1/2-") almost surely with a suitable Wiener process ~(t) and a 
constant 0>0  then the sequence X~, X2 . . . .  obeys not only the central limit 
theorem and the law of the iterated logarithm but also a larger class of stronger 
limit theorems including Donsker's invariance principle, the functional form of 
the law of the iterated logarithm, the Kolmogorov-Erd6s-Petrovski integral 
test for functions of upper and lower classes etc. Now, a typical result of Strassen 
states that ff Xa, XE . . . .  are independent, identically distributed with EXt  =0, 
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E X 2 = 1, EI X112 +6 < oo (6 > 0) then there exists a new probability space (f2', i f ' ,  P'), 
a sequence X~, X~ . . . .  of i.i.d, random variables and a Wiener-process ('(t) (all 
defined on (I2', i f ' ,  P')) such that X1 and X~ have the same distribution and putting 

S',= ~ X'i we have S ' ,=( ' (n)+o(n 1/2-~) for n---,oe with probability one where t/ 
i = 1  

is a positive constant depending on 6. The fact that here we approximate not the 
partial sums of the sequence X 1, X2, ... but a "copy" of it, makes no trouble 
in applications since if a sequence Y~, Y2 . . . .  (of arbitrary random variables) 
obeys, e.g., the law of the iterated logarithm then the same holds for every sequence 
Y;, Y~ . . . .  having the same finite dimensional distributions. Strassen also proved 
that similar results hold in the case when X1, X2, . . .  is a martingale difference 
sequence. In the latter case, however, the approximation theorem has the slightly 
modified form Sn=~(zn)-k-o(n 1/2-~) a.s. where ~ is a Wiener-process and ~, is 
a certain increasing sequence of random variables such that z , ~  a.s. In the 
present paper we shall prove results of this type for the sequence f(nkX) which 
can be considered as a sequence of (dependent) random variables on the prob- 
ability space (Qo, ifo, Po) where 12o = [0, 1), if0 is the class of measurable subsets 
of [0, 1) and Po is the Lebesgue measure on ifo. 

Throughout our paper we shall assume the standard condition 

[f(x)[<M and I l f -s , l[<an -~ (a>0,  n = l ,  2,...) (2.1) 

where s, denotes the n-th partial sum of the Fourier-series of f The second rela- 
tion of (2.1) can also be written as 

1 o0 
~n+ 2 2 <=A2n-2~ l(ak +bk) (2.2) 

where 

f ~  ao + ~ (ak cos 2 7: k x + bk sin 27: k x) 
k = l  

is the Fourier-expansion of f.  Condition (2.1) is satisfied, e.g., if f satisfies the 
Lipschitz a condition (see [18] p. 241, formula (3.3)) or it is of bounded variation. 
(In the latter case we have ak=O(1/k), bk=O(1/k) and thus (2.2) is valid with 

= 1/2.) 

Definition 1. Let Y~, Y2, ... and Z~, Z2, ... be two sequences of random 
variables defined on possibly different probability spaces. We say that the two 
sequences are equivalent if their finite dimensional distributions are the same. 

Definition 2. Let Y~, Y2 . . . .  and Z 1, Z2 . . . .  be sequences of random variables 
on the probability spaces (f2, if ,  P) and (~, ~,/5), respectively. We saff that the 
two sequences are quasi-equivalent if there exist sequences I11, I12 . . . .  and 
21, Z2 . . . .  (defined on (f2, if ,  P) and (~, ~ , /5) ,  respectively) such that 

F~l~-~l<oo a.s., Iz~-2~l<~ a.s. and the sequences f't,f '2 . . . .  and 
k----1 ~ k = l  

Z~, Z2 . . . .  are equivalent. 

We can now formulate our results. 
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Theorem 1. Let us assume that 
a) f ( x )  satisfies (1.1) and (2.1). 
b) The sequence n k of positive numbers satisfies (1.2). 
c) There exist constants a 2 > al > 0  such that for k >= 1, 0_<i_< 2 k -  1 we have 

provided that M, N and ns~tN. 2 k are large enough. 
Then there exists a probability space (f2, ~ ,  P) and a sequence X1, X 2 . . . .  of 

random variables (defined on (f2,~, P)) such that the sequences {f(nkX)} and 
{ Xk} are quasi-equivalent and 

X 1 + ... +X,=~(%)+o(n  1/2-") a.s. as n--*oo (2.4) 

where t />0 is an absolute constant, ~(t) is a Wiener-process on (f2, ~ ,  P) and % is 
a strictly increasing sequence of positive random variables (also defined on (~, ~ ,  P)) 
such that % - % _ 1 = 0 ( 1 )  a.s. as n---,oo and 

al < tim inf ~"<lim sup % < % a.s. (2.5) 
?1~oO n n~oo n 

In applications we shall need also the following, somewhat more general 
fo rm of Theorem 1: 

Theorem 2. Let us replace condition c) of Theorem 1 by the following condi- 
tion c*): 

c*) There exist constants a 2 > al > 0  such that for k >-_ l, 0<_i<-2k-1 we have 
(i+1)2 -k ( M+N ) 2  

alaM'sV<2k i~-~ \S=~4-, f (nsx)  dx<=a2aM'N (2.6) 

provided that M, N and nM/N, 2k are large enough. Here aM.N (M>O, N >  1) are 
positive numbers such that At N < a u ,  x< A2N (M> Mo, N >  No) with positive 
constants A~ , A 2. 

Then the conclusion of Theorem 1 remains valid but instead of(2.5) we have now 

�9 . "17 . "/7 n 

a 1 < h m  lnf "_<hm sup --<-az a.s. (2.7) 

where b, is a strictly increasing numerical sequence such that z b ,~n.  

We formulate one more theorem which states that replacing (2.3) by a stronger 
assumption, we shall have (2.4) with r,--an. 

Theorem 3. Let us assume that 
a) f ( x )  satisfies (1.1) and (2.1). 
b) The sequence n k of positive numbers satisfies (1.2). 
c) There exists a constant a > 0  such that for k > l ,  0_<i<2k-1 ,  M > M o ,  

2 The symbols  a.~b. and a~b.  mean lima./b.=l and  O<liminfa./b.<=limsupa./b.<co, 
n~c~ n~o~ 

respectively.  " -  ~ 
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N > No we have 

(i+l,2-k ( M+N 2 (N .2k  t 
., v,§ , 

where the constant in 0 depends only on f (x) and q. 
Then there exists a probability space ((2, ~,~, P) and a sequence X t ,  X2 , . . .  of 

random variables (defined on ( ~2, ~ ,  P)) such that the sequences { f ( nk X) } and { Xk } 
are quasi-equivalent and 

Xt  + . . . +  X,=~(o-n)+o(n 1/2-") a.s. as n-~oo (2.9) 

where ~ ( t) is a Wiener-process on (Q, ~ ,  P) and tl > 0  is an absolute constant. 

Remarks. 1. Conditions c) of Theorem 1 and Theorem 3 are of the same nature: 
both require an estimate for the quantity 

provided that M, N and nM/N. 2 k are large enough. These conditions can slightly 
be weakened. In Theorem 1 it is sufficient to require that (2.3) holds if M, N and 
nM/N ~. 2 k are large enough where 7 > 0 is a fixed constant. Similarly, the remainder 
term 0 (N.  2k/nM) in (2.8) (and also in (2.10) below) can be replaced by 0 (N ~ 2k/nM). 
The proofs of Theorems 1-3 (given in w 4) apply also under these conditions 
without change. 

2. If the sequence f(nkX) satisfies condition c) of Theorem 1 with some pairs 
(o-1, o-2) then we can choose a universal {X,}, {z,} and ( satisfying (2.4), (2.5) (and 
z , - Z . _ l = O ( 1 )  a.s.) with all the pairs (o-l,o-2)- A similar remark holds for 
Theorem 2 (when also b, can be chosen universal). 

3. The proofs of our theorems will yield an explicit estimate for the absolute 
constant q in (2.4) and (2.9). Actually, we shall see that (2.4) and (2.9) are valid 
with any constant 0 <  t/< 1/40. We chould get slightly better estimates by more 
precise calculations and by some simple modifications of the argument but to 
find the best constant seems to be very difficult. In view of a recent result of 
Koml6s, Major and TusnAdy (see [10]) it is even possible that the remainder 
term o(n 1/2-~) in (2.4) and (2.9) can be replaced by o(n ~) for any e>0. 

4. For the sequence b, in Theorem 2 we have 

At < lim inf b,/n <= lim sup b,/n < A2. 

5. Let us replace condition (2.8) by 

(i+l)2-k ( M+N 2 ( N . 2  k] 
2k ,2-k5 \ , = ~ 1  f ( n j x ) t ~ - +  . d x = a u ' N + O  t nu , {2.10) 

where aM,~V (M > O, N > 1) are positive numbers such that A1 N < au, N < A2 N 
( M > M o ,  N>No)  with positive constants A1, A2. Then the conclusion of 
Theorem 3 remains valid with the modification that ((o-n) in (2.9) is to be replaced 
by ((b,) where b, is a strictly increasing numerical sequence such that b. ~ n. 
(Actually A, < lim inf b i n  < lim sup b,/n < A 2 .) 
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6. Theorem 1 remains valid if (2.3) is replaced by 

alN<-a k ~ \ j=~+l f (n j x ) )  dx<=a2 N 

for a fixed integer a > 2. A similar remark applies to Theorems 2 and 3. 

3. w Some Standard Inequalities 

In this section we shall formulate some inequalities, each of standard type, which 
will be used in the proofs of Theorems 1-3. Their proofs will be given in Section 5. 

Throughout this paper, the following notation will be useful. Given an in- 
tegrable function g(t) (0_<t< 1) and an integer m=> l, let [g]m denote the function 
in 0_<t< l  which takes the constant value 

(k+l)/m 

m g(s)ds 
k/m 

in the interval [k/m,(k+l) /m) (k=O, 1 . . . .  , m - l )  3 

Lemma (3.1). Let f ( x )  satisfy (1.1) and the second relation of(2.1). Put ~(x )= 
f (2x )  ( O ~ x < l )  where 2__>1 is an arbitrary real number. Then we have for any 
integer m >= 2 

where C 1 is a positive constant depending only on f. 

Lemma (3.2). Let g(x) ( - o o  < x < o o )  be a function such that 
1 

g(x + l )=g(x) ,  ~ g(x)dx=O.  (3.1) 
0 

Then we have 

f tg(x)l dx g(2x )dx  <=~ o 

for any real numbers a < b and any 2 > O. 

Lemma (3.3). Let f ( x )  satisfy (1.1) and the second relation of (2.1) with A >  1 
and 0<~_<1. Let l < m l < m 2 < . . . < m  . be arbitrary real numbers such that 
mk+l /mk>q>l  for l <_k<_n-t. Then we have for any real a 

a+l  

( f (ml  x) +. . .  + f(m~x)) 2 dx = n IIf It 2 + T 
a 

where 
1 1 

~ i  (Hf[t2+ [If i l)n 

with an absolute constant C2. 

3 This notation is a modification of a notation used in [6]. 
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Corollary 1. Assume the conditions of Lemma (3.3) and also Ilfll <1. Then we 
have for any real a 

a+ l  
( f  (ma x) + ". + f (m,x))2 dx < Ca A ]If[] n 

a 

where the constant C3 depends only on q. 

Corollary2, Let f ( x )  satisfy (1.1) and the second relation of (2.1). Let 
1<mr <m2 < ' "  be a sequence of real numbers such that mk+l/m k ~ ~ .  Then we 
have 

a+ l  ( ~_~l+n ) 2  

.f t = § 2 as 
a 

uniformly in l and a. 

Lemrna (3.4). Let f ( t )  satisfy (1.1) and (2.1) and let n 1 <n2 <.. .  be a sequence 
of positive numbers such that nk+l/nk > q > 1 for k > 1. Then for any N>_ N o (where 
No depends on f ( t )  and q) we have 

N 

f(n  t) = 4t + 42 
v=l  

where the random variables 41,42 satisfy 

P ( l ~ l i > y l / N ) < C 4 e  -c~y (y>O) 4 (3.2) 

and 

1142ll _-<1. (3.3) 

The constants C4, C5 depend on f ( t )  and q. 

This lemma is a variant of similar lemmas of Takahashi [16] and Philipp [11]. 
Its proof (which is given in w 5) depends on the same ideas. 

Lemma (3.5). Let 171, rh and ~/=qa +t/2 be square integrable random variables 
with distribution functions F 1 (x), F2(x) and G(x), respectively. Then we have for 
any a>_O 

x2dG(x) <4 ~ x2dF~(x)+ 4 ~ xEdF2(x) �9 
xE~a  x2>a14 xZ>al4  

Lemma(3.6). Let ((t) be a (separable) Wiener-process and let B, B', r, s be 
positive numbers. Then we have 

sup I~(t2)-~(q)l=O(kSl21ogk) a.s. as k--+oo. 
0 ~tl <t2 <-Bk r 
it2--tl[ ~ B ' k  s 

Finally we formulate a simple lemma which is not an inequality but will be 
useful in the proof of our main theorems. 

4 We shall use the symbols E, P also in the probability space (~2o, ~'~o, Po), they denote expectation 
and probability with respect to Lebesgue measure. When it is more convenient, we shall use also the 
symbols ~ and I AI for Lebesgue integral and measure. 

A 
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Lemma (3.7). Let I71, Y2 . . . .  be a sequence of random variables on the prob- 
ability space (f2, @, P) such that every Yi takes only finitely many values. Let 

bk 
l = a l < b l < a z < b 2 < . . ,  be a sequence of integers and put Uk= ~ Yi. Let 

i = a k  

(C2', if", P') be an other, atomless 5 probability space and let U~, U~ . . . .  be a sequence 
of random variables on ((2', ~-', P') which is equivalent to U1, U2 . . . . .  Then there 
exists a sequence Y~, Y~ . . . .  of random variables on (~2', i f ' ,  P') which is equivalent 

to I11, I12 . . . .  and U{ = Z Yi' (k = 1, 2 . . . .  ). 
i=ak 

4. w Proof of the Main Theorems 

We begin with the proof of Theorem 1. As the first step of the proof we approxi- 
mate f(nkX) by a step-flmction Ok(x) as follows. Let 2Z<nk<2 l+1, put 

m = [ l + ~ l o g k ]  and define ~Ok(X ) by 

CPk(X)__ [ f  (nk X)]2m" 6 (4.1) 

Using Lemma (3.1) we get 
-a /3  2 / + ?  l~  ~/3 

<=C.2-2~176 -1~ (k=2, 3 . . . .  ). (4.2) 

(In this section C will denote positive constants, not always the same, depending 
only on f ( t )  and q.) Relation (4.2) implies 

~ ] f ( n k X ) - -  ~Ok(X)l < oe for almost all xe  [0, 1). (4.3) 
k=l  

We now divide the set of positive integers into consecutive blocks 
t r 

A 1, d 1, A2 ,  A 2 . . . . .  Ak,  A~, . . .  

(without gaps) in such a way that Ak contains [k 1/2] consecutive integers, A~, 
contains [k 1/4] consecutive integers (k= 1, 2 . . . .  ). We shall call Ak long blocks 
and A~, short blocks. Put 

Tk= ~ f(n~x),  Dk= Z (p~(x), (4.4) 
vedk wAk 

Dk= Dk_ E( Dkl D1 . . . . .  Dk_a). 7 (4.5) 

Let further ~k-1 and ~k-1 denote the a-fields generated by D1 .. . .  , Dk_ 1 and 
/)x . . . . .  /)k- 1, respectively. (Evidently ~kk- 1 = ~ -  1 .) 

s A probability space ((2, ~ ,  P) is called atomless if for every A e ~  with P (A)>0  and for every 
0 < p < P (A) there exists a B e ~.~, B c A such that P (B) = p. 
6 The r ight-hand side of (4.1) means  [g]2- where g is the function defined by g(x)=f(nkx ) (0<X < 1). 
7 See footnote 4. 
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Lemma (4.1). We have (as k -+ oo) 

E(Dk[,,%_O=O(k -2) a.e. (4.6) 

al[kX/2]q-O(k-2)<E(D2l~k_l)<_a2[kl/2]+O(k-2 ) a.e. (4.7) 

These relations remain valid if the conditioning a-field O~k_ 1 is replaced by ~k-l" 
(We note that the constants implied by 0 can now depend also on the element x of 
the probability space.) 

Proof We first show that 

]E ( T k [ ~ _ 1)[ ~ C k -  2 everywhere (4.8) 

al[kl/2]<E(Tk2l~_O<a2[k l/z] everywhere (k>ko) (4.9) 

I[ Tg- O k ]l ~ C k- 4. (4.10) 

From these relations (4.6), (4.7) will follow easily. 

Let b=b(k) denote the largest integer of the block Ak_I, let l be an integer 

such that 2~<nb<2 t+l and put w=[l+~ From the definition of ~0 k it 

follows that every (p,, 1 < v < b takes a constant value on each interval A of the 
form 

A=[i2-w,( i+l)2  -w) (i=0, 1 . . . . .  2W-l) (4.11) 

and thus every set {Dr=a1, ...,Dk_~=ak_X} where a, ,  . . . ,ak_ , are constants, 
can be obtained as a union of intervals of the form (4.11). In other words, the 
a-field 4 - ~  is purely atomic and each of its atoms is a union of intervals of the 
form (4.11). Hence to prove (4.8) and (4.9) it is sufficient to show that 

I IA1-1~  Tkdx]<= Ck-2  
A 

and 

(4.12) 

al[kl/2]<=lAl-1 5 T2dx~a2[kl/23 (k~ko) 
A 

(4.13) 

hold for any A in (4.11) (IAI denotes the Lebesgue-measure of A). To get (4.12) 
let c=c(k) denote the smallest integer of the block A k. By (1.2) we have 

1 ~ 1 _l_ q 1 
-~<j~=c --< ( l + q - ~ + q - 2 + ' " ) - - q  - 1  n~ wAk .= nj  n c 

and 

nb ~q-(C-b)=q-[(k-1)l/4l-1 ~q--(k--1) 1/4 
nc 
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Hence applying Lemma(3.2) and using the trivial relation b<2k 3/2 we get (A is 
the set in (4.11)) 

(i+1)2-~ f(n~x)dx ]IA[-* ~a Tkdx[= 2 ~ ,2!, ~ ~ 

<2w'c E 2~<C 2~ 
Vgd k ~V ~C 

2 / + ~  log b 
_<_C (4.14) 

r/c 

/I 60 90 
< c"b bT< Cq-(k-t~l/' k-~< Ck-2 

t'l c 

and thus (4.12) is valid. As to (4.13), this follows immediately from condition c) 
of Theorem 1 provided that k, c(k) and nc/2Wk a/2 are sufficiently large. But this 
is valid for k>ko since by a part of estimate (4.14) we have 2w/nc=O(k -2) and 
thus nc/2'~kl/2~ oo. Hence (4.8) and (4.9) are proved. Finally, (4.10) follows from 
(4.2) and the Minkowski inequality: 

]]Dk--Tk[I < C  ~ v-'~ ~ v-l~ 
ve Alr v=[(k--1) t /2]  

We can now easily prove relations (4.6) and (4.7). In fact, the expectation of 
the k-th term of the series 

L k6E(ITk--Oklel~-l) 
k ~ l  

is k6E(ITk--Dk[ 2) which is O(k -2) by (4.10). Hence the series is a/most everywhere 
convergent by the Beppo Levi theorem and consequently 

E(ITk-Ok[2l~_a)=O(k -6) a.e. (4.15) 

(4.15) implies, via the (conditional) Cauchy-Schwarz inequality, that 

E(IT~--Dd 1.~_1) = O(k -3) 

which, together with (4.8), gives (4.6). Furthermore, by the conditional Minkowski 
inequality and (4.15) we have 

IE(D~I~,.k_a,~a/2 -- E(Tk2l~_a)l/21<E(lTk--Okl21~_a)x/2=O(k -3 ) a.e. 

Hence, using (4.9) we get the upper half of (4.7): 

E(D I _ 1) _-< ((0-2 [-kl/2]) 1/2 -}- O ( k -  3))2 = 0. 2 [-kl/2-1 _]_ O(kl/d - k -  3) _~ O ( k -  6) 

=0-2[ka/Z]+O(k-2) a.e. 

The lower part of (4.7) can be proved similarly. 

That relations_ (4.6), (4.7) remain valid if the conditioning a-field ~ - a  is 
replaced by ~ - ,  can be proved exactly in the same way as above. We only have 
to remark that, by o~k_l C~-k_l ,  the a-field ~ - 1  is also purely atomic and each 
of its atoms is a union of intervals of the form (4.11). 
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The following lemma is a consequence of Lemma (4.1). 

Lemma (4.2). We have (as k ~ oo) 

r~l[kl/2]+O(k-2)K=E(D~14_l)<rr2[kl/2]+O(k-2) a.e. 

Proof Put Uk=E(Dk]4_I). Since U k is 4 - 1  measurable, we have by a simple 
calculation 

E (b~ 1 4  - 1) = E ((D k - Uk) z ] 2 4 _ 1 )  =E(Dk [5~k_1)- Uk z . 

Taking expected values with respect to 4 - 1  and using 4 - 1  c 4 - 1 ,  we get 

E(/52 - -  D 2 

Thus, in view of Lemma(4.1), it suffices to show that 

E(U~[~_O1/2=O(k -1) a.e. (4.16) 

To prove (4.16) we first note that (4.8) implies 

E(u~Z[4_O1/Z=O(k -1) a.e. (4.17) 

where b]*=E(Tk14_l).  (In fact, by (4.8) we have IU*I<Ck -2 on the whole 
probability space.) To deduce (4.16) from (4.17) it is sufficient to show that the 
left hand sides of (4.16) and (4.17) differ only by O(k -1) and this will follow if we 
show that 

~k21E(U~21~_O1/2-E(V21~_O1/2[z<oo a.e. (4.18) 
k = l  

Now, by the (conditional) Minkowski inequality, the k-th term of the series in 
(4.18) can be majorized by k2E ((U~- Uk) z I ~ - 1 )  the expectation of which is 

k 2 E ((U~k -- Uk)Z) = k2 E (E ((T k - Dk)[ 4-1)2)  < k 2 E ((Tk -- Dk)2) = 0 (k- 6) 

by (4.10). Hence (4.18) follows from the Beppo Levi theorem. 

Lemma (4.3). Let ffk(X) denote the distribution function of the random variable 
Dk, i.e. put Fk(X)----P(Dk<X ). Then we have for any a>__l, k>-_ko 

x2 dFk(X)<16+ C' akl/2 e -c'v~/k'/~ 
x2~a 

where C', C" (and also ko) depend only on f(t) and q. 

Proof. We evidently have 

Dk-- Tk =(Dk-- Tk)+E((Tk--Dk)I4_O--E(Tk[ 4-1)" (4.19) 

From (4.8) and (4.10) it follows that the L 2 norm of the three summands on the 
right hand side of (4.19) cannot exceed Ck -4, Ck -4, Ck -2, respectively. Hence 
(4.19) implies []/) k -  Tk[] =< 1 for k=> kl or equivalently, 

/ )k=Tk+~,  t[~[1=<1 (k>k O. (4.20) 
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Using Lemma (3.4) we get that 

Tk=~t +~2 (k~k2) 

where [l~2l[__<l and 

P(lr for y > 0 .  

This fact, together with (4.20), implies that 

D k = r h q- rl2 (k ~ k3) 

where (It hI( <2  and 

P([~I2[>x)<C4 e-c'~/kl/' for x>0 .  (4.21) 

Using Lemma (3.5) we get for any a>0,  k>k 3 

S x2dffk(X) <4 ~ x2dG(x)+ 4 ~ x2dJ(x) (4.22) 
x2>a x2>a/4 x2>_a/4 

where G(x) and J(x) denote the distribution functions of r h and r/z, respectively. 
Since we have lit h I] <2, the first summand on the right hand side of (4.22) cannot 
exceed 16. (ha the other hand, an integration by parts yields 

~_ xZdJ(x)= 4 ( 1 - J  (~_~a)) + ~ 2(1-J(x))xdx.  (4.23) 
x >= 1/a/2 1/a/2 

By (4.21) we have 1 - J ( x ) < C 4 e x p ( - C s x / k  1/4) for x=>0. Using this fact and 

calculating the integral ~ xexp(-Csx/kl /4)dx exactly, we get from (4.23)by 
Va 12 

an easy calculation 

x2dJ(x)<C*akX/2e -c''v~lkl/" (a>l )  
x => l/fi'/2 

where C*, C" are positive constants depending only on f(t) and q. A similar 
estimate holds for the integral [, xZdJ(x) and thus Lemma(4.3) is proved. 

x<= - VTI2 

Remark. So for we have considered only the long block sums Dk= ~ %. 
V~Ak 

All the statements proved above, however, have their exact counterparts for the 
short block sums Hk= Z %. Put Hk=Hk--E(Hk]//1 . . . . .  Hk_l) and let ;,ugk_ 1 and 

v~A~ 
~k-1 denote the a-fields generated by H 1 . . . . .  /-/k- 1 and/~ .... , /~-1,  respectively. 
Then we have (as k ~ 0o) 

e(H l _l)=O(k -2) a.e. (4.24) 

al[kl/4]+O(k-2)~E(Hk2[~k_~)<ff2[kl/']-t-O(k -2) a.e. (4.25) 

[. x2d~'k(x)<=16+Caka/4e-CVZ/k'~ (a>l ,  k>ko) (4.26) 
x2~a 

where Fk(X)=P(Hk<X ) and C, C (and ko) are positive constants depending 
only on f(t) and q. The proofs of the above statements are exactly the same as 
those of Lemmas (4.1)-(4.3). 
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Making use of Lemmas (4.1)-(4.3), the proof of Theorem 1 can be completed 
easily. The idea is simply to apply Theorem (4.4) of Strassen's paper [14] to the 
long block sums Tk= ~ f(n~x). We cannot do this directly, however, because 

vEAk 

{Tk} is not necessarily a martingale difference sequence (though it is approxi- 
mately such a sequence by the above considerations). Therefore we first replace 
the functions f(n~x) by functions ~ (x )  which are very close to them and for 
which the long block sums ~ ~ (x )  (and actually also the short block sums 

V E A k  

(~(x)) constitute a martingale difference sequence. For instance, we can take 
v~ zlh 

(o 'x' [~~ .... 'Dk-1) if yeA k ( k = l ,  2 . . . .  ) 
~t J=~rp,_[kll4]_lE(HkiH1,...,Hk_l) if v~A'k 

In this case we have 

(~ Dk- E(Dk[D1 . . . . .  Dk_l)= Dk, 
v~dk  

(#~(x)= Hk- E(Hg[ H1, ..., Hk_ l)= Hk 
ved '~  

which are indeed martingale difference sequences. As to the discrepancy 
[f(n~x)-(o~(x)l, we have by (4.3), (4.6) and (4.24), 

[ f (nvx)-(~ l 
v = l  

v = l  v = l  

= i If(n~x)-~o~(x)l+ ~ IE(D,,ID,, ..., Dk-OI 
v = l  k = l  

+ ~ E(Hk[H 1 ..... Hk_I) I < oO (4.27) 
k = l  

for almost all x e [0, 1). From now on, therefore, we can focus our attention to 
the sequence ~,(x) (which is, moreover, a sequence of r.v.-s taking only finitely 
many values) and the task becomes to show that the conclusion of Theorem 1 
holds for the sequence ~5~(x) instead of f(n,x). 

Let us apply Theorem (4.4) of Strassen's paper [14] to the long block sums 
Dk= ~ (o~ with f (x )=x 9/1~ Of course, we have to verify 

v ~ A k  

Vk ~oe, ~ Vs -91'~ ~ xZdP(bk<Xl~_t)<oe a.s. (4.28) 
k = 1 x 2 > v~ l l O  

k 

where Vk= ~ E ( D 2 [ ~ _ I ) .  Let us take (4.28)temporarily granted. Then, by 
i = 1  A 

Strassen's theorem, there is a sequence Dx, D 2 . . . .  on a new probability space 
(~, if ,  P) which is equivalent to D1, D2 . . . .  and 

ba + ... +bk=((~)+O(f/k ~914~ log Vk) a.s. as k ~ c~ (4.29) 
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k 

where ~ is a Wiener-process on (f2, Y, P) and Vk = ~ E(b{ 1/)1, ... , hi_l). We can 
i = l  

also assume, without loss of generality, that (g2, o~, p) is an atomless probability 
space. By Lemma (3.7) there exists a sequence {X~} of r .v.-s-equivalent to 
{~5~}-on (fL ~ ,  P) such that the Dk'S are just the long block sums obtained 
from this sequence: 

Dk = ~ X~ (k = 1, 2 . . . .  ). (4.30) 
V~LJ k 

It is easy to see that X1, X2, ... satisfy the requirements of Theorem 1 i.e. we 
have 

Xl+'-.+X,=~(z,)+o(n19/*~ a.s. as n--*~ (4.31) 

with a certain strictly increasing sequence ~, of random variables satisfying (2.5) 
and z , - % _ t  =0(1 )  a.s. as n- - ,~ .  For this purpose we first note that 

(rlfk+O(l)<S[/k<_~tTzfk+o(1) a . s .  (4.32) 

and 

f/~- fZk_ l =O(k 1/2) a.s. (4.33) 

k 

where fk ~ ~ [il/2]~Ck3/2. Indeed, the corresponding relations for V k instead 
i=1 

of Vk follow immediately from Lemma (4.2) and hence (4.32) and (4.33) are valid 
by the equivalence of {Dk} and {b~}. We also note the following simple 

Lemma (4,4), gr have (as k--+co) 
k 

~ X~=((Pk)+O(f~9/'~Ologfk) a.s. (4.34) 
j = l  veaj  

k 

E X~=~176176 a.s. (4.35) 
j = l  vezl 5 

Proof Relation (4.34) is immediate from (4.29), (4.30) and (4.32). To see (4.35), 
we note the relations 

bl +".  + Dk =o(f~/z log f 0  a.s. (4.36) 

-Ha +""  +/-/k =o(e~/2 log e0 a.s. (4,37) 
k 

where e k = ~, [i 1/~] ~ Ck 5/~. For the sequence b l ,  De, . . .  instead of D1, D e . . . .  
i=1 

relation (4.36) follows from (4.29) by using the estimate ((t)=o(t lie log t) (t-+co) 
and (4.32). Hence (4.36) is valid by the equivalence of {/)k} and {/)k}. (4.37) is 
the dual of(4,36) which can be proved in the same way as (4.36), applying Strassen's 
theorem to the short block sums /qk = ~ ~v- (Here we have to verify the 
analogue of (4.28) for /Tk: ~a~ 

Wk--+co, ~ Wk -9/1~ ~ x2dP(H~<xI~_I)<CO a.s. (4.38) 
k=l  x2> W9/1~ 
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k 

where Wk= ~ E(~q21~/_l). For the moment, let this relation be taken granted.) 
i = 1  

Relation (4.37) can be written as 

k 

~ ~v=o(e~/2 log e0 a.s. (4.39) 
j=l yeA) 

which implies (4.35) by the equivalence of {X~} and {~} and the fact that ek ~" Cf~/6. 
(As a matter of fact, relation (4.36) was not used, it served only to explain (4.37).) 
Hence the proof of Lemma (4.4) is completed. 

Summing (4.34) and (4.35) we get 

rk 

X~=((Pk)+o(r~ 9/4~ log rk) a.s. as k ~ o e  (4.40) 
v = l  

k 

where r~= ~ ([r +[il/4-1)~fk~ C k3/Z. Let us define the sequence z, of random 
i = 1  

variables in such a way that % = F'k (k= 1, 2 . . . .  ) and z, varies linearly between 
n=rk and n=rk+l for any k >  i. (We define Zo=0.) With this choice of z, relation 
(4.40) immediately gives (4.31) for the indices n = r  k. To prove (4.31) for general n 
it suffices to show 

n 
Xv 19/4o (4.41) max -~o(rs ) a.s. as k ~ o e  

}'k < n < ]"k + I v = r k + l  

and 

max I(('C,)--~(Zrk)l----o(rlk 9/'*~ a.s. as k--,oc. (4.42) 
rk<n '<rk+l  

The first relation is trivial since by (4.27) and the first relation of (2.1) the sequence 
{~(x)} remains bounded for almost all x~ [0, 1) hence {X~} also remains bounded 
with probability one (by equivalence reasons) and thus the left hand side of (4.41) 
is O(rk+ 1 --rk)=O(kl/E)=O(r~ 9/4~ a.s. To see (4.42) let us note that 

Z~ -= Pk=O(fk)=O(k 3/2) a.s. 

m a x  [T,n~'Crkl~:'grk+l--'Crk=~/k+l--~/k=O(k 1/2) a.s. (4.43) 
r k < n ~ r k + l  

by (4.32) and (4.33). Hence (4.42) follows from Lemma (3.6) (with r = 3/2, s = 1/2). 
It is also evident that f'k is non-decreasing and so is z,, furthermore by (4.43) we 
have z~ +~ - z,~ = 0 (k 1/2) = O (r k +1 - rk) whence 

"c,- %_ I =O(i) a.s. 

Finally, ~= ~, (4.32) and fk~rk imply 

c I ~l im inf z'~__<lim sup zr~< az a.s. (4.44) 
k~oo  r k k ~ o o  r k 

whence (2.5) follows in view of the piecewise linearity of z,. 
The arguments above complete the proof of Theorem 1, only two simple 

points remain to prove. The first is that the sequence z, defined above is non- 
decreasing but not necessarily strictly increasing. This difficulty is easy to 
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overcome since we can find a sequence z', of random variables which is strictly 
increasing and I z , - z ' , [<2-"  for n > l .  It is evident that I~(~,)-((z' .)l=O(n 1/4) 
a.s. (this follows, e.g., from z,=O(n) and Lemma (3.6)) and thus (2.4), (2.5) and 
r , - r , _ ~  =O(1) are valid also for r', instead of z,. The second point is that in the 
proof above we did not verify relations (4.28) and (4.38). This, however, is an 
easy task by means of Lemma (4.3). In fact, as we noted there, relation (4.32) is 
valid also for Vk instead of ~ and thus (4.28) will follow if we show that 

f k  9/1~ ~ x 2 d P ( D k < X l ~ _ i ) < o c  a.s. (4.45) 
k = t X 2 > B f  9 / 1 ~  

for any constant B > 0. Now, the expectation of the k-th term of the series in 
(4.45) is 

fk -9/1~ f x2dP(Dk<X) 
X 2 > B f g / 1 0  

which, by Lemma (4.3) and fk"~ Ck 3/2, is 0(k-27/2~ Hence (4.45) is valid by the 
Beppo Levi theorem. (4.38) can be proved in the same way, using (4.25) and (4.26). 

Remark. It is evident that the construction of {X~}, {z,} and ((t) is independent 
of the values of o-t, o'2. This proves Remark 2 after Theorem 3. 

The proof of Theorem 2 is the same as that of Theorem 1; we only have to 
use relation (2.6) at those places where, in the proof above, (2.3) was used. Instead 
of Lemmas (4.1), (4.2) we shall have 

Lemma(4.5). Let c=c(k) denote the smallest integer of the block A k and put 
Pk = a~(k~_ t. ~k~/~J (a~t, ~ are the numbers occurring in (2.6)). Then we have (as k ~ or) 

E(DkI~,~_a)=O(k -2) a.e. 

a~Pk+O(k-Z)<E(D2[~_O<o.2Pk+O(k -2) a.e. 

These relations remain valid f the conditioning o.-field ~ - a  is replaced by ~ - t .  
Furthermore we have 

o . lpk+O(k-2)<E(b~[~_a)<a2Pk+O(k  -2) a.e. 

Similarly, instead of (4.25) we shall have 

o.lp* +O(k-E)<_E(H~l:;~k_l)<o.2p* +O(k -2) a.e. 

* - a  (c*(k) is the smallest integer of the block A~). By the where P k -  c*(k)-l,[k I/4] 
assumption on aM, N we have p k ~ k  1/2, p * ~ k  t/4. The definition of fk and e k 

k k 

should be modified to f ,  = ~, Pi, ek = ~ P*. Some relations ~, are to be replaced 
i=1 i=1 

by ~ .  Finally, instead of (4.44) we have 

~r I _<lira inf r~k_< lim sup zr~_<a2 a.s. 

and thus (2.7) will hold if b, denotes the sequence for which br~ =fk  (k = 1, 2 . . . .  ) 
and which varies linearly between n = r k and n = r k +1 for any k > 1. 
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The above construction of b, shows also that 

A1 < lira inf b,]n < lira sup b,/n < A z . 
n ~ o o  n ~ c o  

In fact, by the assumption made on aM, N we have 

k k 

A1 ~ [i 1/23 +O(l )<fk<A2 Y~ [i 1/2] +O(1) 
i = 1  i = 1  

k 

whence the above statement follows since ~ [i ~/2] ~rk and bk is piecewise linear. 

Hence Remark 4 after Theorem 3 is also proved. 
The proof of Theorem 3 is also almost identical with that of Theorem 1. 

Let us observe that by (4.14) we have 2~/nc=O(q -kljS) and thus, using (2.8), we 
now get 

JA ]-1 S Tk 2 dx =a[k 1/2] +O(k -2) 
A 

instead of (4.13). (The constant in 0 depends only on f(t) and q.) Using this fact, 
the proofs of Lemmas (4.1) and (4.2) give the following 

Lemma (4.6). We have (as k--,o o) 

E(Dkl ~,~k_t)=O(k - 2) a.e. 

E(OZ[~k_l)=a[kl/Z]+O(k-Z) a.e. 

These relations remain valid if the conditioning a-field 4 - 1  is replaced by ~a-1. 
Furthermore we have 

E(D2lffk_l)=a[kl/2]+O(k-2) a . e .  

(The constants in 0 can depend also on the element x of the probability space.) 
Similarly, instead of (4.25) we have 

E(1-Jzl~_O=a[kl/4]+O(k -2) a.e. 

The above relations show that in the present case Lemmas (4.1) and (4.2) and the 
Remark after Lemma (4.3) are valid with a~ = a 2 = a. Hence the rest of the proof 
of Theorem 1 applies without change and we can take a~ = a2 = a. In particular, 
(4.32) yields Pk=aL+O(1) a.s., whence 

k 

=ark +O(kS/~)=ark +O(r5/6) a.s. 

and thus z .=an+O(n  5/6) a.s. Using Lemma(3.6) we get 

~(z.)=((an)+o(nS/121ogn) a.s. 

and this completes the proof. Remark 5 after Theorem 3 can be proved in the 
same way (see the proof of Theorem 2). 
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5. w Proof of the Standard Inequalities 

Lemma (3.2) follows immediately from condition (3.1) and the relation 

b b2 

a A a 2  

Lemma (3.6) follows from Lemma 1 of [9] by means of the Borel-Cantelli lemma. 
The proof of Lemma (3.7) is also simple routine and can be omitted. Hence it 
suffices to prove Lemmas (3.1), (3.3), (3.4) and (3.5). 

Proof of Lemma (3.1). We follow Ibragimov [6]. Let us first remark the follow- 
ing obvious relations: 

[g~ +g23,~= [g~]m+ [g2]m, [cg],n=C[g]m, [l[g],n[I <= [Igl[ (5.1) 

(c is constant). Let us now consider a function f satisfying (1.1) and the second 
relation of (2.1), let 

f " ~ (ak cos2rckx +bksin27zkx) 
k=l  

be the Fourier-expansion o f f  and write 

f = f ~  +f2 (5.2) 

where 
N 

f l = @  = ~ ( a k c o s 2 ~ k x + b k s i n 2 ~ k x ) ,  f2=f--SN. 
k=l  

N is an integer to be specified later. If O(x)=f()ox) then by (5.2) we have 

r = 4,1 + r (5.3) 

where r (x) = f l  (2x), 02 (x) =f2 (2x). Evidently 

Icos f ix -[cos  flx],,l < fi/m, Isin f ix-[s in  flx],,] < fi/m 

for any fl > 0 and thus by 

N 
r (x) = ~ (ak cos 2 ~z k 2 x + b k sin 2 Tc k 2 x) 

k--1 

and by the first two relations of (5.1) we have 

1 r  [ r  <~" 
2~zk 2(lakJ + lbk]) 

k=l  m 

[ 1 ~ 1  \ 1 / 2 ]  to, ] ~ 3/2 < 2 ~ 2 /  ~ \1/2 / ~  \,12 b.Z/ I S C 6 - - N  
(5.4) 

m k=l  \ k= l  , TF/ 
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where C6 depends on f. Furthermore, by the second relation of (2.1), the third 
relation of (5.1) and the periodicity o f f  and s~ we have 

2 
1 4 !f2(t)2d t I]1//2 --[I//2]m][ 2 __--<4 q[ ~//2 1 1 2 : 4  I f2(~x)2dx =-~ 

0 
[;t]+l 1 4 ! 4 

=2 f2(t)2dt=2 ([2]+1) Sf2(t)2dt 
o 

<8 ] I f -  szdl 2 < C7 N -2~ (5.5) 

where C7 depends only on f. (5.3), (5.4), (5.5) and the first relation of (5.1) imply 

]lO-[O]m[l~C8 (~ N3/2 q-N-') 

whence the statement of the lemma follows by choosing N = [(m/2)1/3]. 

Proof of Lemma (3.3). We shall need the following 

Lemma (5.1). Let f(x) satisfy (1.1), let 

f "~ ~ (akcos2nkx +bksin2nkx) 
k=l  

be its Fourier-expansion and define 

R(t)=�89 ~ (a2+b 2) (t>O). (5.6) 
k=[t]+l 

Then we have for any 22 > )~t > 1 and any real a 

! f(J.lx)f()~2x) < C90-1/2+C10R ([If[12+l[f[l). (5.7) 

where 0 = 22/21 and C 9, C,o are absolute constants. 

In [8], pp. 239-240 it is shown that the left-hand side of (5.7) is at most 
C1~0-1/2+C1zR(0/2)1/2 where Cn, C,2 are positive constants depending on 
f(x) and a. The proof given there yields also the little more precise inequality (5.7). 

Turning to the proof of Lemma (3,3), let us observe that 
a + l  n a + l  

(f(mix)+ +f(m,x))2dx = ~, "'" 5 f2(mvx)dx 
a v = l  a 

where + W1 + W2 + ' "  + W._I (5.8) 
n-k a+ l  

Wk=2 y' j" f(m.x)f(m.+~)dx. 
,u=l a 

Applying Lemma (3.2) to the function g(x)=f2 (x)-  II f II 2 we get 

II 2 [ g(m~x)dx 1 ~+, a ~ < 2  51f2(x) _llfl12 I d x < 4  ]lfll { f2(m,~x) d x -  ]If = = 2 

= m v  o m y  
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and thus we have 

f2(m,,x)dx-nll fN <4llf l l  2 ~ - + . . . +  __<41rfl121 
a 

4 NNII 2 q 4 q  
< < Ilfll 2. q-1 m s q -  1 

~ q - r  
r ~ O  

(5.9) 

(5.10) 

Since f satisfies the second relation of (2.1), for the function R(t) we have (using 
0<~__<1) 

R(t) t12 = Ilf-smll <A[t]-~<=2A t -~ if t=> 1 

R(t) 1/2= IIfll if t < l .  
Thus 

e < ~ Irfll+ ~ ~ a q  <l~gqgq -t r  
k = l  qk <2 qk>=2 

and hence by (5.10) we have (using A > 1) 

[ 1 + 1 _+NS~t (5.11) [W~++W,_ll<2n(Irf l l2+ll f l l )  C13A \qXl2 1 q~--I 1ogq/ 

with an absolute constant C13. Relations (5,8), (5.9) and (5.11) yield the statement 
of Lemma (3.3). 

Proof of Lemma (3.4). We shall need the following 

Lemma (5.2). Let f(t) ( 0 < t < l )  be a square integrable function and let s,(t) 
and an(t) denote, respectively, the n-th partial sum and n-th ( C, 1) ( Fej~r) mean of 
the partial sums of the Fourier series o f f  Then the relation 

rlf-s.IJ =O(n -=) (O<c~ < 1) 

implies 

IIf-a . II--O(n-~) .  

Proof Let f ~ %+ ~ (a k cos 2 rc k t + bk sin 2 7t k t) be the Fourier-expansion of 
f and put k=l 

R.=�89 ~ (a 2+b~). 
k = n + l  

On the other hand, mt+ffmz>=q>l and Lemma(5.1) imply for l<_lc<_n-1 

[I/Vd<2n(C9q-k/2WCloR (q--ff)l/2)(NfN2+Hfil) 

whence we get 

I w~ +. . .  + w,_,l  
qk 1/2 

k = l  k = l  
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Then we have 

[[ f__sn l[Z=en  ' ]if__ o.nl[ 2 - 1 k"_~l 1 2 2 (n+l)2 = -ik (ak +bZ)+R,. 

By the assumption we have Rn=O(n -2~) hence, using Abel's transformation, 
we get 

1 " 
Ilf -~ = ( n +  1) e k~=l kZ(Rk-1 -Rk)+R. 

(n + 1) 2 k=l 

<_Ro+R, + 1 ,-1 -n  ~ ~ ~ 3kRk+R" 
k = l  

= O  + O  + O  ~ k 1-2~ = O  
k = l  

proving the statement of the lemma. 

We can now turn to the proof of Lemma (3.4). For the sake of simplicity we 
consider only the case when the Fourier series of f is a purely cosine series" 

f~  ~ CkCOS27zkt. 
k = l  

The general case can be treated similarly. 

a) Let us first make the additional assumption that n k are integers and the 
partial sums of the Fourier series o f f  are uniformly bounded: 

[s,(t)l<K ( n > l ,  0 < t < l ) .  (5.12) 

In this case the proof will be a little simpler. (The case when the above conditions 
are not satisfied will be considered later.) We carry out the proof in three steps. 
In what follows, C denote positive constants, not always the same, depending 
only on f(t) and q. 

1. Le t / - /be  an integer such that 

qH> 3 HtJ (5.13) 

where fl is a positive integer such that a f t>  12. Put 

H/~ H ( m + l )  

g(t)=~CkCOS27zkt and Urn(t)= ~ g(nzt). (5.14) 
k = l  l=Hm.4-1 

Then we have for any real 2 and k > 1 

0 m = O  

and 

i exp{,~ ~ U2m_l(t)}dt<=eC~2"k+ClZl3"3k (5.16) 
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Moreover, (5.15) and (5.16) remain valid if the blocks g 2 k _ 2 ( t )  and U2k_l(t ) 
(the last blocks in the sums in (5.15) and (5.16)) contain less than H terms. 

This statement is a slight generalization of Lemma 1 of [16] (it reduces to that 
lemma if f is a Lip e function and 0 < 2 2 H 2 < 1) and can be proved in the same 
way. The only difference is that instead of the inequality e '<(1 +z+za/2)e 21~p 
used in [16] we now use the inequality e~<(1 +z+z2)e IzP (valid for any real z) 
and observe that by (5.12) we have 

k - 1  k - 1  

Y~ 14 c2m(t)? < Y~ 1413(HK) ~ < c H  3147 k (5.17) 
m~O m~O 

for any real 4. Note also that in this step of the proof we made an essential use 
of the fact that n k are integers. Indeed, in the proof in [16] w one needs the fact 
that 

1 l 

~. [I c~ 
0 i = 0  

holds provided that uz-(Uo + . ' .  +u t_ l )>0 .  If u i are integers, this statement is 
valid, as one can see easily by successive applications of the identity 

2 cos a cos fi = cos (a + fl) + cos (a - fi). 

For non-integral ui, however, the above relation fails to hold even f o r / = 0 .  

2. With the notations of the preceding point we have 

2 e x p , 4  ~ g(n,t)~dt<e cx2"p+cl*13mp (5.1S) 
0 

for any integers p > 1, 0 < r < H and any real 2. 

To prove this, let us assume, e.g., that p is even: p=2k. Then we have 

H p + r  k k 

4 ~. g(njt)=4 ~ U2m(t)+4 ~. U2~_~(t) (5.19) 
j = l  m=O m = l  

where Uo, U1 . . . . .  U2k-t are full blocks but U2k contains only r terms. From (5.19) 
we get, using the Cauchy-Schwarz inequality, 

e x p , 2  E g(njt)~dt 
o ( j=~ ) 

< exp 24 U2m(t dt. exp 24 U2,,_l(t dt 
0 0 1 

whence (5.18) follows by using (5.15) and (5.16). For odd p the proof is similar. 

3. Let now N >  No be given and put H = [N1/6]. If No is sufficiently large then 
(5.13) is satisfied. With this choice of H we define the function g(t) by (5.14) and 
write 

N 

f (n  v t) = ~, + ~2 
v=l 



342 I. Berkes 

where 
N N 

~t = ~ g(n,t), ~2 -~- Z h(n~t), h(t)=f(t)-g(t).  (5.20) 
V = I  v = l  

We show that this decomposition satisfies the requirements of Lemma(3.4), i.e. 
(3.2), (3.3) hold. To prove (3.2) let us write N in the form N=[N1/6]p+r where 
p > 1 and 0 < r < IN 1/6] are integers. With this choice ofr and p we have [ N  1/63 p ~ N 
and [N 1/6] 3 p < N1/2.2 N5/6 = 2 N 4/3 and thus (5.18) implies 

exp 2 v g(n~t) dt<e c~176 (5.21) 

for any )~ where Co is a constant depending on f(t) and q. Without loss of gener- 
ality we may assume here Co > 1. From (5.21) we easily get 

(2e -y2/sc~ O<y< 
p(l~ll>Yl/~)<12e_r3/2/sc ~ ifif y > Co N ~C~ (5.22) 

In fact, (5.21) and Markov's inequality imply 

P(l~a ] > Y l / ~ )  <2  exp { - ) t y  ]//N + Co/~ 2 N +  Co •3 N 4/3 } (5.23) 

for any positive 2 and y. Choosing 

yl/2 
2 - Y and 2 = 

2 C o t / N  2 ]//~o N5/12 

we get the following two estimates (valid for any y > 0) 

Y2 ( 1 C o @ g ) } ,  P(I~I I > Y l / ~ )  =< 2 exp {-4-C~o 2 (5.24) 

exp 3 4 C O N 1/6 

8 ~ o  
(5.25) 

Using (5.24) for 0 < y <  Co N1/6 and (5.25) for y >  Co N1/6, we get (5.22). Evidently 
(5.22) implies (3.2). 

oo 

To get (3.3) let us observe that the Fourier-series of h is h ~  ~ ck cos 2rckt 
k = l  

where ck = 0 for 1 < k < [N1/6] # and ~k=Ck for k > [N1/6]/~. This shows that ((1.1) 
and) the second relation of (2.1) are valid also for h instead o f f  with the same A, e. 
(Remind that the second relation of (2.1) is equivalent to (2.2).) Hence applying 
Corollary 1. after Lemma (3.3) we get 

[J~2112 = h(nvt) dt_~C3Allhl]N (5.26) 
0 v 
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(provided that I[hlf___< 1) where C3 depends only on q. Furthermore, by the second 
relation of (2.1) and c~fi> 12 we have 

Ir h [[ = N f -  srN,/6j~ II < A IN 1/6] --,fie ~ C N -  2 (5.27) 

(5.26) and (5.27) evidently imply (3.3) for sufficiently large N. 
b) Let us now drop condition (5.12) (but keep the assumption that n k are 

integers). Then the above proof breaks down (in step 1. we used (5.12) in an essential 
way, see (5.17)) but a simple modification makes the argument applicable in the 
present case, too. Namely, instead of defining g(t) (in step 1.) as the partial sum 
or order H a of the Fourier series o f f  let us define rather 

g (t) = Gn, (t) 

where %(0 denotes the n-th (C, 1) (Fej&) mean of the partial sums of the Fourier 
series off .  The first relation of (2.1) implies (see [18-] p. 89) 

l a , ( t ) l < M  (n> l ,  0 < t < l )  (5.28) 

furthermore we have 
HB 

g(t)= ~ dkcos2~kt with [dkr<lCk[ (5.29) 
k=l 

(actually, d k = ( 1 - k / ( H ~ +  1))Ck). Going back once more to Takahashrs proof in 
[16] w and using (5.28), (5.29)we see that with this choice of g (and defining 
Urn(t) again by the second relation of (5.14)) relations (5.15) and (5.16) will be 
valid and thus our proof above will hold in an unchanged form except a little 
modification in (5.26) and (5.27). In the present case the Fourier series of h is 

h... ~ c, cos 2~ckt where ck =Ck_dk=kCk/([ N ,  1/6] ~ + 1)for k< [N*/6.]r and c* =ck 
k=l 

for k > [NI/6]//. Hence we have fc~l<Jckrfor k > 1 and thus ((1.l) and) the second 
relation of (2.1) hold for h instead o f f  (with the same A, e) also in the present 
case. Thus (5.26) is valid also in the present case, furthermore instead of (5.27) 
we now have (using Lemma (5.2)) 

II h I1 = Il f - ~N1/q~ II < c [N1/a.]-~e < C N -  2. 

(Note that Lemma (5.2) was not proved for e = 1 but throughout in our proof we 
can assume, without loss of generality, that 0 < e  < 1.) The proof of Lemma (3.4) 
(for integer nk) is hence completed. 

c) Let us now drop also the assumption that n k are integers. In this case the 
proof of relations (5.15) and (5.16) (as we already remarked there) breaks down. 
It can be saved, however, by using an observation due to Hartman (see [5]). 
Indeed, instead of (5.15), (5.16) let us prove first that 

k-1 
~(  ( s ~ ) 2 e x p { 2  ~=oU2m(t)}dt<=eCX2Hk+clxPn3k (5.15') 

and 

_ { s in t ]Zexp~2~  
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The proofs of (5.15'), (5.16') are the same as those of (5.15), (5.16) but here no 
problem arises for non-integral  nk since we have 

cos u t dt = 0 
- - o o  

for any real u > 2. (Here we need the fact that n 1 > 4 but this can be assumed without  
loss of generality.) It remains now to observe that (sin t/t) 2 >= 1/4 for 0 < t < 1 and 
thus (5.15'), (5.16') imply (5.15), (5.16) with an extra coefficient 4 on the right 
hand side. The remaining parts of the proof  of Lemma (3.4) require only trivial 
changes. 

+ c o  

Proof of Lemma (3.5). For any distribution function H(x) with ~ x 2 dH(x) < oe 
we have - co 

~x2dn(x)=2~(1-U(x))xdx+b2(1-H(b))  (b>O). 
b b 

Using this formula and 1 - G (x) __< (1 - F1 (x/2)) + (1 - F 2 (x/2)) (x > 0) we get 
co 

~xZdG(x)<4 ~ xZdFl(x)+4 S xZdFz(x). (5.30) 
Vd ff d l Z V~ I 2 

A similar argument yields 

- V a  - ~ / 2  - V ~ / 2  

S x2dG(x) -~4 ~ x2dF~(x) +4 ~ x2dr2(x) (5.31) 
- o o  - - c o  - o r )  

which, together with (5.30), proves the statement of the lemma. 
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