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1. Introduction 

Let X( t ,  co), t~[0, T] be a stochastic process with continuous sample paths 
defined on some probability space (f2, ~ ,  P). Denote by 

G(u, T, co)= {t: X( t ,  co)=u, tE[0, r ] }  (l.1) 

the level set X( t ,  co)=u. When X( t ,  co) has absolutely continuous sample paths 
then, under rather general conditions given in [4], the cardinality of G(u, T, co) <oQ 
a.s. and one can proceed to investigate moments of G(u, T, co). In this paper 
we will be concerned with processes for which the number of elements in G(u, T, co) 
is uncountable and we give conditions in terms of the joint distribution of X ( t  1 , co) 
and X ( t  2 , co), tl , t 2 e [0, T], for which the capacity of G(u, T, co) is strictly positive, 
with respect to certain potential functions, on a set f2 'c  •, P(f2')> 0. 

The question of level sets has received a great deal of attention for many 
types of stochastic processes. In the case of Gaussian processes, to which the 
results in this paper can be readily applied, it has been studied by Orey [5] and 
Berman (see [2] for a listing of Berman's work on this and related topics). In 
Theorem 4, p. 146 [-3], Kahane obtains results on the capacity of the level set of 
a random Fourier series which is also a Gaussian process. In Theorem 1 of this 
paper we extend and simplify Kahane's result although our method of proof is 
essentially the same as his. For an explanation of capacity and potential the 
reader is referred to Chapter 13, [3]. 

We proceed to state our results, the proofs will be given in Section 2. Assume 
that for all pairs t I , tzG[0 , T] and all (x 1 , X2) in some neighborhood of (u, u) the 
density function p ( x  1, x2;  q ,  t2) of X(t~), X(t2) exists, is continuous in (xl, x2) 
and satisfies the following dominated condition: 

p (x  1 , x2; t 1 , t2)<g(t  1 , t 2) (1.2) 
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where 

T T  

S S g(tl, t2) at1 dt2 <00. (1.3) 
00 

Assume also that for all te l0,  T] and x in some neighborhood of u the density 
p(x; t) of X(t) also exists and is continuous and satisfies 

p (x; t) __< h (t) (1.4) 

where 

T 
I h(t)dt<oe (1.5) 
0 

and 

T 
p(u; t) dt>O. (1.6) 

o 

Let k(t, ,  t2)= k(I t 1 - t  2 ]) be a potential function such that 

T T  

S S p(u, U; t l ,  t2)k( l t  I -- t2[  ) d t  1 d t  2 < o o .  (1.7) 
o0 

We denote the fact that the capacity of a set A e [0, T] is strictly positive with 
respect to a potential k by Capk(A) > 0. 

Theorem 1. For X(t, co), t~ [0, T] as defined above, satisfying (1.2) through (1.7), 
Capk(G(u, T, co))>0 on a set f2'c~2, P(f f )>0 .  

This result is used to find the Hausdorff dimension of the level set of a separable 
stationary Gaussian process. Let Z(t, co), be a separable stationary Gaussian 
process, EZ(t)=O, EZ2(t)= 1, r(z)=EZ(t  +z)Z(t)  and r +z)-Z(t))2.  
Following Orey [5] we say that r has index ~ if 

e = s u p  {fl: ~r(z)= o(zP), z J,0} =inf  {~: re = o(o-(z)), z~0}. 

Let dim G(u, T, co) denote the Hausdorff dimension of G(u, T, co). Define 

dim G(u, c~, co)= lim dim G(u, T, co). 
T~oo 

Theorem 7. Let Z(t) be a separable stationary Gaussian process EZ(t )= O, EZ2(t)= 1 
such that a(z) has index ~, 0 < e <  1 and lim r(z)=0. Then for each u, - oe < u < o c ,  
dim G(u, 0% co)-- 1 - ~  a.s. ~ 

Theorem 2 is the same as Orey's Theorem 3 [5] but with weaker hypotheses. 
It is different from Theorem 2.1 [ i ]  of Berman although one direction in our 
proof of Theorem 2 uses one part of Berman's proof. An essential difference in 
these two theorems is that we obtain (2.5) for a fixed level u whereas in the second 
part of Theorem 2.1 it is obtained for almost all u (see the line preceeding (2.6) 
in [1]). Under the conditions of Theorem 2 the local time for the process exists 
and in some sense it can be taken as a measure supported on G(u, T, co). This 
is Berman's approach. However, the local time, by its nature, is only defined at 



Capacity of Level Sets of Certain Stochastic Processes 281 

almost all levels; it can be zero at a fixed level. One way around this is to establish 
joint continuity of the local time in both time and the level. This is the major 
direction of Berman's work referred to above and it leads to many interesting 
results, although for a restricted class of processes. (Compare Theorem 2 with 
Theorem 2.1 Eli in which t is contained in a finite interval.) 

There is a very close relationship between the local time and the measures 
Y(t, u, co) that are introduced in the proof of Theorem 1 but we will not pursue 
it in this paper. 

2. P r o o f s  

Proof  of  Theorem 1. Define 

where 

%,~(x)={1 Ix-ul<~. 
0 otherwise 

- -" te l0,  T]. Consider and 8 n - 2  , 

1 t 

Since everything is finite and positive, by Fubini's theorem this is equal to 

1 t t u + e n u + g m  

4e, e,, o 0 U--gn u - -g i n  

Therefore, it follows from the dominated convergence theorem using (1.2) and 
(1.3) that 

t t 

lim E[Y,( t ,  co) rm(t, co)] = ~ ~ p(u, u; s, ,  sz) ds~ ds z . (2.1) 
rn, n ~  ~ 0 0 

Consequently 

lim E[(Y,(t, co)- Y,,(t, o)))2] =0.  (2.2) 

By the Borel-Cantelli lemma there exists a subsequence of the Y,(t, co) which 
converges a.s. to a limit which we will denote by Y(t, co). Taking a further sub- 
sequence, if necessary, we get 

lira Y,~(t, co)= Y(t, co), t e l  (2.3) 
k ~ o o  

where I is a countable dense set in [0, T] ; we can and do include T e l .  
We define Y(t, co) for all teE0, T] by 

Y(t, co) = inf  (Y(s, co): seI ,  s> t}  

Clearly, Y(t, co) is a non-decreasing function in t. It follows from (2.1) and (l.3) that 

E y2 (T, co) < oo. (2.4) 
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For each coeOcf2,  P ( ~ ) = I  the non-decreasing functions Y,k(t, co) are 
bounded measures on [0, T] ;  the same is true of Y(t, co). By (2.3) and the fact 
that Y,k(t, co) and Y(t, co) are non-decreasing, the measures Y,~(t, co) converge 
weakly to Y(t, co) and this is true almost surely with respect to O. 

Since X(t, co) has continuous sample paths a.s. the measure Y(t, co) is supported 
by G(u, T, co). In order to show that G(u, T, co) has positive capacity with respect 
to k on a set of positive measure with respect to (O, ~-, P) we show that 

TT 
~ k([tl-t2])dY(tl,ca)dY(t2,o))<~ a.s. (2.5) 

O0 

and that f2'= {ca: Y(T, ca)>0} is such that P(s 
We first show (2.5). Let kj([t-t'])=k([t-t')[)/xj, j = l , 2  ... . .  Therefore k~Tk. 

By monotone convergence 

E !k(Itl-t2l)dY(tl ,co)dY(t2,co ) (2.6) 

T 
= i~limE[i! dY(tl'co)dY(t2'co)]" (2.7) 

Since Y,~(t, co) converges weakly to Y(t, co), (2.6) 
TT 

= J'~lim E [ liml_k~| ! !  kj([tl-t2l) dY"k(tl'ca)dY~k(t2'co)] 

=lira  l i m e  kj(Itl-t2l)dY,,(tl,co)dY,~(t2,co ) (2.8) 
j~oo k~oo 

by dominated convergence, since kj < j  and Y(T, co)< oo a.s. (using (2.2) and (2.3)). 
Repeating the argument used in the beginning of the proof we see that 

TT 
[I  ~ kj([tl - - t 2 [ ) d Y n k ( t l '  ca)dYnk(t2' co)] l ime  

k~oo kO 0 
TT 

---~ ~ kj(]t 1-t2[)p(u,u; t l, t2)dt~ dt 2. 
O0 

Therefore (2.6) equals (2.8) equals (1.7) by the monotone convergence theorem. 
Thus we establish (2.5). 

By the same arguments as above, using (1.4) and (1,5) we can show that 
T 

EY(T, co)= ~ p(u; t) dt (2.9) 
0 

To show Y(T, ~o)>0 in a set of positive probability we note that by the Schwarz 
inequality, for 0 < 2 < 1 

E2 y ( T' CO) >O (2.10) PlY(T, co)> 2EY(T, co)] >=(1 -,~)~ EY2(T, co) 
by (1.6) and (2.4). 

Proof of Theorem 2. We first show that for any t/> 0 we can find a T o so that for 
T >  T o dim G(u, T, co)__> i - ~  on a set f2'cs P(Y2')> l - t / .  It is easy to check 
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that conditions (1.2) through (1.6) are satisfied. For g(t 1 , t2) we  take p(0, 0; t 1 , t2) -- 
p(0, 0; 0, t 2 - q). In this case (1.3) is 

r T - v  
2 !  ( 1 ,  r2 (z))1/2 dv. (2.11) 

The function 1-r2( 'c)=0 for "c=0 but since it is continuous and l imr(v)=0,  
~ o o  

1-r2(z) is bounded away from zero for z > 6 > 0 .  Therefore (2.11) is finite if 

d~ 
- - < o o  (2.12) 

o ~ ( ~ )  " 

Since a(z) has index ~< 1, ~(z)>zP for some/~< 1. Therefore (2.12) is finite. For 
h(t) in (1.4) we can take 1. 

By the same change of variables that gave rise to (2.11) we see that (1.7) is 
equal to 

u 2 

- ! ( T - z )  e d~ ( 2 . 1 3 )  
~z (1 - -  r 2 (Z)) 1/2 

and, as above, this will be finite if 

k(l~J) 
! ~ d z < o o .  (2.14) 

Since ~ (~) has index ~, a (r)> ~e for all fl > ~ and (2.14) is finite for k ([z I)= z-(1- ~-a) 
for all 6 > 0. Therefore the capacitarian dimension of G(u, T, co) is greater than 
or equal to 1-c~ for all co for which Y(T, co)>0 (Here G(u, T, co) and Y(T, co) 
are as given in the proof of Theorem 1). By the equivalence of the capacitarian 
and Hausdorff dimension we have dim G(u, T, co)> 1 - e  for all co for which 
Y(T, co)>0. To complete this part of the proof we need to show that 

lim P [Y(T, co)> 0] = 1 (2.15) 
T~oo  

(since Y(t, co) is increasing in t). By (2.10), (2.15) will follow if we show that 

E 2 Y(T, co) 
lira - -  - 1 .  T ~  Ey2(T, o9) 

Clearly 

T 
EY(T, c o ) = 1 ~  e -u2/2 

and 
1 T 

Ey2(T, col=~! ( T _ z ) ~  1 
_ re  ( z ) ) ' / ~  

For any 31 > 0 we can find a 3 such that 

I 1 "l~-a e_,2 
( 1 - - 6 2 )  1/2 e ~ 6 1  . 

(2.16) 

u 2 

e- l  +r(~) dv. (2.17) 
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Choose t o such that r(r)<5 for z>r o. Then (2.17) 
/ /2  1 T 1 -1+-~  

<=M(zo) T + ~ ( T - z ) ( 1 _ 5 2 ) 1 / 2  e dz 

where M(ro) is a constant that depends on "c o. (2.8) is 

1 r 
_-< M('co)T+~ ~ (T - z )  e -'2 dr 

C o n s e q u e n t l y  

1 T 1 - - -  

+ -  ~ ( T - r )  52)1/2 e 
n ~o (1 - 

U 2 

1 +'~-- e-U2 dr. 

(2.18) 

T 2 
_ _  e -U  2 

E 2 Y(T, co).. 2n 

E yE(T, co) 
M (to) T+--~- ( T -  %)2 e - ,  2 + _1 ( T -  %)2 51 

ZT~ 7C 

1 1 
i> > - -  

--2 M(ro) (l_rO 2 (1 ro 2 =1+351 
T ~- +2  5 i \ T} \ T !  

for T sufficiently large. Therefore we obtain (2.16) and we have proved the first 
part of the theorem. 

To complete the proof it suffices to show that dim G(u, T, c o ) < t - a  a.s. 
for all T. This is precisely what Berman shows in the first part of his Theorem 2.1 
[1]. Even though his condition (2.1) is stronger than saying that a(t) has index a, 
the critical inequality on line 10 page 1263 still holds. 

Remark. If a process X(t) satisfies the hypotheses of Theorem 1 and if in addition 
(2.16) holds for this process, then the following result is immediate: For any t/ 
we can find a T o such that for T > T  o Capk(G(u, T, co))>0 on a set O'~O,P(C2') 
> l - t / .  
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