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On Denumerable Chains of Infinite Order 

M. Iosifescu and A. Spfitaru 

I n t r o d u c t i o n  

In [-5] Harris studied strictly stationary doubly infinite sequences (~t)t~z, 
where ~t can take D > 2  distinct values 0, 1, . . . , D - 1 .  The transitions of such 
a process are described by the function 

P( . . . ,  i2, il; i) = P (~t = i] ~t- 1 = il, ~t- 2 = i2, "''), 

O<i, il, i2, . . . < D - - l ,  t e l  Because of the fact that the future behaviour of ~t 
depends in general on its complete past history, these sequences are referred 
to as homogeneous chains of infinite order with a finite number of states. Harris'  
aim was to relate stochastic properties of (~t)t~z to functional properties of its tran- 
sition function. His technique was to map the half-infinite sequence ..., ~,_ 2, i t -  
o n t o  the unit interval by means of the correspondence rh= ~ ~t_r/D r, tEZ. 

r ~ N *  

In other words, q, is the number whose D-adic expansion is .~t-~ ~ t - - 2  . . . .  The 
qt then form a Markov chain whose transition probabilities are given by 

/ i + qt [ ~ D r\ 
P {~,+, = T I ~ ,  = )L i t_ j  ) = P (  .... it_2, it-l; i). 

\ ~ ] r ~ N *  l 

In what follows we consider chains of infinite order with a denumerable 
set of states taken to be the natural numbers. Our device is to associate with the 
half-infinite sequence .. . ,  ~t-2, ~,-1 the irrational number ~/, whose continued 
fraction expansion 1 is (~t-~,~t-2,  ...). Thus, we are led to study in Section2 
certain Y-valued Markov chains with transition probabilities of the form 

P q , + l = / ~ y  t/,=Y =Pi(Y), i e g * , y e Y ,  

where (Pi(Y))i~u* is a given probability distribution on the natural numbers for 
any y ~ Y. Next, by making use of the properties of such Y-valued Markov chains, 
we establish in Section 3 the existence of denumerable chains of infinite order 
under conditions different from those given in [-7], p. 188. The results obtained 
can be viewed as properties of the continued fraction expansion as well. 

Our treatment follows closely that of Harris. Nevertheless, it is necessary 
to note that his proofs are just sketched and even untrue in full generality under 
the conditions assumed. (See further Footnote  2.) 

i Other f-expansions (see, e.g.,[9]) could be employed as well. 
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N o t a t i o n s  
N * = { 1 , 2 , 3 , . . . } ,  

N =  {0, 1,2, . . .},  
- N = { . . . ,  - 2 ,  - 1,0}, 

Z = ( -  N)w N*, 
Y =  the set of  i r rat ionals  in [0, 1], 
R = the set of  real number s ,  

a + = m a x ( a ,  0), a~R, 
[a]  = integral  pa r t  of  a ~R ,  
c,, = m-th F ibonacc i  number ,  m ~ N, defined recursively by 

C o = C l = l ,  C m = C m _ l - ~ C m _ 2 ,  m>_2. 

1. Pre l iminar ie s  i 

1.1. Fo r  any probabi l i ty  dis t r ibut ion p = (Pi)~N* on N* let So (p)= 0, si (p)= ~ p~, 
1=1 

ieN*. Let 0 be a r a n d o m  variable  uniformly dis tr ibuted on [0, 1]. Fo r  any two 
probabi l i ty  dis t r ibut ions P=(P~)i~N* and q=(qi)~N* on N* define N*-va lued  
r a n d o m  variables  cr and  z by 

a=i iff S i _ l ( p ) < O < s i ( p )  , i~N*, 
and 

z=i iff S i _ l ( q ) < O ~ s i ( q )  , i~N*, 
and put  

d (p, q) = Pr (a =# z) 

= Z ( P r ( a = i , z > i ) + P r ( a > i ,  z= / ) )  
IEN* 

= ~ {(si(p) - max  (s~_l (P), si (q))) + + (s~ ( q ) -  max  (Si_l(q), si (p))) + }. 
ieN* 

Let us not ice that  for any  A c N* we m a y  write 

Pr(aeA, zr Pr(c~(sA, zeA)<d(p,q), 
whence 

d(p, q ) >  IPr(aeA, ze A) -  Pr(ae A, z eA)l. 
On the other  hand  

Pr(aeA, z~A)-Pr(a~A, zzA)=Pr(azA)-Pr(zeA)= ~ Pi- ~ qi. 
l eA  ieA 

Therefore  
d(p,q)>= sup ] ~ , p i -  ~q, I - -2  -1 y~ [pi-q~l. (1) 

A~N*  icA i~A i~N* 

(The last equali ty is well known.  See, e.g., [1], p. 224.) 

It  should be noted  that,  in general, the sign " > "  in (1) cannot  be replaced 
by " =  ". A special case for which " =  " h o l d s  instead o f "  > "  is that  of  dis t r ibut ions 
p and  q such that  p ~ = q i = 0  for i > 2 .  2 

Remark. It  is easily seen that  d( . ,  .) is a metr ic  on the set of all p robabi l i ty  
dis t r ibut ions on N*. 

2 It seems that Harris, who considered in some detail this case only, overlooked the general situation. 
Consequently, the definition of his ~ ,  m ~ N, and the statement of his Condition B (see [5], p. 712) have 
to be altered for D > 3. 
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Next, consider a family (P(7))~r of probability distributions on N*, where 
F is an arbitrary set. Put 

eo = sup d(p(7), P(7')). 
~, "y' a F  

Proposition 1. Assume that eo < 6 < 1. Then either 

(a) pi(7)<=b for any ieN*,  7eF, or 

(bi) there exists ieN* such that Pi (7 )>6-e0  for any 7eF (consequently, 
pj(7) <= 1 - b  + eo for any j 4: i, 7 e F). 

Proof If (a) does not hold, then there exist ieN* and 7 e F  such that A(7)> 6. 
Let us prove that then (bi) holds. Indeed, on account of (1) with A =  (i}, the 
existence of a 7'EF such that p~(7')<6-e0 would lead to 

d (p (7), P (7')) => I P~ (Y) - Pi (Y')l > ~ - (r - Co) = Co, 

thus contradicting the definition of eo, q.e.d. 

Proposition2. Assume that %<1.  Then there exists at most one ieN* such 
that Pi(Ti)= 1 for some 7ieF. 

Proof Suppose on the contrary there are i+-jeN* and 7i,TjeF such that 
Pi(Ti)=pj(Tj)= 1. Then pi(7;)=0 and on account of (1) with A =  {i} we can write 

d (p (71), P (T j)) >IP, (7,)- P~ (Tj)l = 1. 

It follows that e0 = 1, thus contradicting the hypothesis made, q.e.d. 

1.2. The following lemma (which we shall need in the proof of Lemma 4 
below) is only slightly different from Lemma 1 in [5], p. 713 given there without 
proof. 

Lemma3.  Let ((i)ieN* be a sequence of N * w  {oe}-valued random variables. 

Let ao--O, a,= ~ (i, neN*,  um=Pr (~j=m) , meN*. Assume that 
i = 1  

PrG>kl~._O_->r~, (2) 

whatever n, keN*,  where the r k are nonnegative numbers such that 

E rl, = oo. (3) 
keN* 

Then 
n 

lim n-1 ~ ui = O. (4) 
n ~ o o  i = 1  

I f  in addition the r k satisfy rk >=a>O , keN*,  then (4) can be replaced by 

Y, ui < ~ .  ( r )  
i~N* 

Proof. It is obvious that 
m 

um= ~ Pr (a j=m) ,  meN*. (5) 
j = l  

Let us consider 

vm= 1 - u m = P r  aj+m , meN*.  
J 
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It is easily seen that 
m--I k 

v~= ~ ~Pr(aj=k,~j+l>m-k)+Pr(~l>m) 
k= l j= l  

for any meN*, with the usual convention about empty summation. On account 
of (2) and (5) we may write 

m--1 k m-1 
v,.>=_ ~ ~r,~_kPr(aj=k)+rm= ~ ukrm_k 

k= l j= l  k=O 

(with Uo = 1). Since Urn + Vm = 1, meN*, we obtain 

~ Ukrm_k~l , mEN* (6) 
k=0 

(with ro = 1). Now, (6) implies that 

( 2  Uk xk)( E rk xk)<(1--X) -I 
kEN k e n  

for any 0 < x < 1, whence according to (3), 

lim (1 - x) ~ u k xk=o. 
x$ I k e N  

Then, (4) follows on account of Theorem 96 in [4], p. 155. 

(A simple proof of the fact that the last equation implies (4) (for which we 
are indebted to Prof. Ciprian Foia~) is as follows: For  any e > 0  there exists 
0 '<x,  < 1 such that ( 1 - x )  ~ bl k X k < •  for any x in the interval [x~, 1). It follows 

k~N 

that for any natural number n>  (1-x~) -1 we may successively write 

~ ) k  [n/2] ( ~ )  [n/2] 
e>n- tEUk(1  - > n - ' Z u  k 1 -  >(2n)- lZuk,  

k e n  \ k=O k=O 

so that (4) holds.) 

Finally, if r k > a > O, k e N*, then (6) implies that 

~ Uk ~a -1, meN* 
k=O 

and (4') follows, q.e.d. 

1.3. Let Ybe the set of irrationals in [0, 1]. For  each y e  Ylet (il, i2, ...) denote 
the infinite continued fraction expansion 

+ + " ' + 1  i, 

of y. We shall use the notation (y-y ' ) , , ,  y, y ' e  Y, rr~N, to mean that the first m 
digits in the continued fraction expansion of y are the same as the first m in the 
expansion of y'. (Of course, (y-= Y')o means no restriction is imposed on y and y'.) 
It is easily proved that if (y -- Y')m, Y, Y' e Y, m e N, then [y - y'] < (6, 6 ,  + 1)- i, where 

crn=2-~-l((1-k-V~)m+l-(1-]/~)m+l)/~/5, meN, 

i.e. the Fibonacci numbers defined by Co=Cl = 1, Cm=Cm_l+Cm_2, m>2. 



On Denumerable Chains of Infinite Order 199 

2. A Class of Y-Valued Markov Chains 
2.1. Assume we are given a sequence P(')=(Pi('))isN* of functions defined 

on Y such that p (y) is a probabil i ty distr ibution on N* for any y e Y. Put  s o (y)= 0, 
i 

s i (y)=si(p(y))= ~p~(y),  i eN* ,  y e  Y, and define 
/ = 1  

e , .=  sup d(p(y), p(y')), m e N .  (7) 
(Y-~ Y')m 

Clearly, era__< 1, m e N ,  and the sequence (em)m~N is nonincreasing. 

In what follows we shall use 
k 

Conditionn: ~ ~ (1-em)=Oo. 
k e N m = O  

We notice that  Condi t ion  H implies that  both eo < 1 and lim em=O. On 

account  of (1) this last equat ion implies that the functions pi, i eN* ,  are con- 
t inuous on Y. 

Next,  by virtue of Proposi t ions  1 and 2, the inequality eo < 1 implies the 
following alternatives. Either 

(a) sup Pi(Y)<l ,  or 
i eN* ,yeY  

(bi) inf Pi (Y) > 0 (consequently, sup pj(y) < 1). 
yEY j * i ,  y eY  

Also, either 

(ai) pi(yl) = 1, where yie  Y satisfies Yi = ( i +  yi) -1, or 

(b) Pl (Yi) < 1 for any i e N*. 

Let (t~),~ N be a sequence of independent  r andom variables uniformly distri- 
buted on [0, 1]. Define Y-valued random sequences (~),~N and (~/',,)~N as follows. 
Set ~/0 =Yo, ~/~ =Y~, Yo, y~e Y, and, assuming that r/~ and q'~ are determined,  then 

1 
q~+1- iff S i _ l ( l l n ) < t n ~ S i ( ? l n ) ,  i eN* ,  

i +~l. 
while 1 

! 
~/'~+1-- i + ~ / ;  i f f  Si_l(~f~)<t~<=si(~ln), i eN* .  

Consider  also N*-valued random sequences (~.).~N and (c(.).~ N defined by 

~ . = i  iff s~_,(~l.)<t.<s~(q.), i eN* ,  
and 

c<, = i iff si_ 1 (tf.) < t. < sl (rl'.), i e N*. 
Therefore  

?]n+l-  {Xn.~_~] n ~]'n+l-- , , , n e N .  (8) 
' ~n +~/H 

Clearly, (r/H).~N and (r/'.),~ N are Y-valued homogeneous  Markov  chains with 
the same transit ion law given by 3 

( 1 t P q . + l ( t / . + O = / ~ y y  q . ( t / . )=y  =Pi(Y), i e N * , y e  Y. 

s Throughout this section P is to be understood as depending on Yo and y~. We avoid the notation 
Pyo,y~ in order to simplify the writing. 
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Notice that by the very construction of the sequences considered, for any 
event E belonging to the a-algebra generated by the e, and ~(,, heN,  we have 

P(EI ~m, t/m , O<_m<_n)=P(E[tl,,tl'~), neN. (9) 

Further, for any n ~ N 

P (c% 4= c~;[ ~,, q',) = d (p (~/,), p (~',)) = eo, (10) 

whence P(~,~=c~'.)__<e o. Then, by making use of (10) it is not difficult to prove 
that k 

P(c~+j=c(.+j, O<j<klr / . , r / ' . )>  1~ ( l - e , . ) ,  (11) 
m=O 

P(O~n+j:#:~'n+j, O~j ~k)~eko +1, (12) 

whatever n, k ~ N, and that 

P(an+j.= a',+j, a,+l ~ c(.+l, O<j<k<_ l<--m)<--_ek Ff~ - k  (13) 

whatever n s N, k ~ N* and m > k. 

2.2. Now, we are prepared to prove 

Lemma 4. Assume that Condition H holds. Then for any ~ > 0 one has 

lim n -~ ~ P(J t / . , - t /~ l<e)=  1 
n ~  o o  m =  l 

uniformly with respect to Yo, Y~ e Y. 

Proof. The first step of the proof, related to Doeblin's "two-particle" method, 
will be the construction of a sequence of random variables to which Lemma 3 
applies. 

Following Harris ([5], p. 714) let us say that an "engagement"  occurs on the 
n-th step i re ,_  1 =t= e'~_l and c~,= c(,. For  any s<=t~N, let Ps,~ denote the number of 
engagements occurring in the interval Is, t]. 

Let %, n~N*, be the moment of occurrence of the n-th engagement. Since 
even z I may take the value oo some more explanation is needed. In fact z 2 will be 
defined only on ~2t =(z~ < oe) and, in general, if % is defined on ~2,_ 1, n_>_2, then 
z, + 1 will be defined on f2,_ 1 c~ (~, < oo). 

Consider the sequence (~i)i~N* defined by ~1 = zl and for n__> 2 

f z n -  Zn_ 1 on ~2. 
oo on f2~. 

Let us show that this sequence fulfils the assumptions of Lemma 3. Clearly, 

a~ = ~ [i equals % on f2, and oo on ~ ,  n ~ N*. Then 
i=1 

P ( [ , > k l a , _ l  = oo)= 1, n > 2 ,  

and on account of (9) and (11) 
k 

P((,>kla,-l=t<~176176 H (1--em), neN*. 
m=O 

Since we have assumed Condition H the verification is complete. 



On Denumerable Chains of Infinite Order 201 

Now, let us notice that, in the present context, um of Lemma 3 is in fact the 
probability that an engagement occurs on the m-th step. Hence u~ + . . .  + u, is the 
expected number of engagements in the first n steps. Therefore, on account of 
Lemma 3, we may assert that 

lim E Po,, - 0 ,  (14) 
n ~ o D  n 

uniformly with respect to Yo, Y; e Y. 

Next, for any natural number k < r we have 

P(P~-k,~-I = 0) =P(c~j= e~, r - k -  1 < j < r -  1) 
k 

+ ~ P(c~j=c@~=t=c(t,r-k-l<=j<r-m<_l<_r-1) 
m = t  

+ P ( ~ j *  c@ r - k -  1 <-_j<r- 1). 

It follows on account of (12) and (13) that 

P(P~ k,~-I = 0 ) =  1 --P(P~-k,,-1 -->-- 1)__<P(c~j= c@ r - k -  1 <j<=r- 1)+ak, 

k 

where ak = ~ ek_,, e'~. By making use of Markov's inequality (see e.g. [8], p. 158) 
m = O  

we deduce that 

P ( e j =  e~-, r - k -  1 <=j<=r- 1)= 1 --EP~_k,~_ 1 --ak. (15) 

Now, let ~>0  and take k>min{m:(CmC,,+O-l<e}. Since the event (e~=0~}, 
n 

r - k -  1 <=j<=r- 1) implies (q~--~/')k+l and since ~ P,-k,~-i <kpo,,-a, on account 
of (15) we may successively write ~=k 

n - l~P ( i t / . , - t / ~ i<e )_ ->n  -1 ~ P ( c ~ j = e } , r - k - l < j < r - 1 )  
m = l  r = k + l  

>(n-k)  n - ~ - k n - ~  Epo,,_l --(n--k) n-l ak, 

whence on letting n ~  oe and making use of (14), we obtain 

lim infn -1 ~ P(Iq,,-t/~,[ < e ) >  1 - a  k 

uniformly with respect to Y0, Y~ e E 

To complete the proof we need only show that lim ak = O. As we have already 
k ~  

noted, Condition H implies that both eo < 1 and lira e,, = O. Next, for any 0 < k' < k 

we can write ak<=ek,/(1- eo)+ k' eko -k'+l. Therefore, the convergence of a k to zero 
follows upon letting first k ~  and then k ' ~ ,  q.e.d. 
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t ~ t . Corollary.Let F.(yo; x )=n  -1 P(qm<x)  so tha tn- l  ~ P(rl~=x)=F.(Yo,X) , 
x eR .  Then m = l  m = l  

!irn dL(F,(yo; ' .  .), F,(y0,.))=0, 

uniformly with respect to Y0, Y'o~ Y, where d L denotes Paul L~vy's distance 4. 

Proof Let e > 0  be arbitrarily given. By Lemma 4 we can find an n ~ N *  such 

that n -1 ~ P(lr/m-~/~,l > s ) < e  for any n>n~, Yo, Y ~  Y. 
m = l  

Now, (~l,,<x)c~(q',,,>x+s)c([rl,,-q,,[=O, for any meN*,  x~R,  and on 
account of the elementary inequality P ( A n  B) > P (A) - P (BC), we deduce that 

Fn (yo ; x)<=Fn(Y'o;Xd-e)q-s 

for any n>n~, x~R,  Yo, Y ~  Y. By interchanging Yo and y~ and replacing x by 
x - s  we finally deduce that 

F~ (y~ ; x - O - s < V , ( y o ;  x ) <  F, (y~ ; x + s ) + e  

for any n>=n~, x~R,  Yo, Y'o ~ Y But this amounts  to 

, < dL(F~(yo; .), F~ (yo ; . ) )=s  

for any n > n~, Yo, Y~ ~ Y, thus completing the proof, q.e.d. 

Remark. If one assumes that So < 1 and ~, Sm< ~ (a stronger hypothesis than 
m e n  

Condition H) the conclusion of Lemma 4 can be strenghtened in a certain respect. 
We have namely 

L e m m a  4'. I f  s o < 1 and ~ s,, < ~ then 
rtl~N 

P (lim ( q , -  q;) = 0) = 1. 
n ~  st) 

Proof It is sufficient to prove that  

n~N m>=n 

On account of (12) we have 

P ( U  (~ (~m=c~,))=l imP( ~ (c~,,=am))=lim P(p ,+~=0) ,  
n E N m > n  n ~ c ~  m>=n n ~  

where p,+~ is the number  of engagements occurring after the n-th step. As already 
noticed in the proof  of Lemma 4, in the present context u,, of Lemma 3 is the 
probabili ty that an engagement occurs on the m-th step. Hence, ~ u,, equals 

k m > n + l  

Ep~+x. Further,  r k of L e m m a 3  can be taken as l~ (1-sin), and then ~ s , , < o o  
m = 0 m e N  

4 As well known dL defined by 

dL(F, G)=inf{s>0: F(x-O-e<G(x)< F(x +e)+e,xER}, 

where F and G are distribution functions, is a distance on the set of all distribution functions. Weak 
convergence of distribution functions and convergence in the metric d L are equivalent. See, e.g., [ 11], 
p. 133. 
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implies the existence of an a > 0 such that r k > a, k ~N. As by Markov's inequality 
P (P, + 1 = 0) > 1 - E p, + 1, we need only apply the second half of Lemma 3, q.e.d. 

Clearly, Lemma 4' implies that whatever 5 > 0 

lira P(I t / , - f f ,  I <5)= 1 

for any Yo, Y'o ~ Y,, but uniformity of convergence with respect to Yo, Y~ ~ Y seems 
not to follow. 

Actually, on account of(15) for any 5 > 0 and any n > k ~ min {m: (Cm c,, + 1)- 1 < e} 
we have 

P ( ]q , -  t/',[ < e)_>P (c~j = c@ n - k -  1 <j<=n- 1) 

n--1 

>=l--Ep, -k ,n-x- -ag=l- -  ~ Um--ak, 
m = n - - k  

so that uniformity of convergence with respect to Yo, Y~)e Y of P (I q,-q' ,]  < 5) to 1 
as nooo  would be ensured by uniformity of convergence with respect to Yo, 
y~ E Y of u m to zero as m--* oo. Notice that from Lemma 3 we only know that 

m 

u~ <a -1, meN*.  
k = 0  

2.3. Let ~ denote the set of (right-continuous) distribution functions F such 
that F ( 0 - ) =  0 and F(1)= 1. It is well known that ( ~  dL) is a compact metric space. 
(See [8], p. 180.) 

Proposition 5. Assume that Condition H holds. Then in case (ai) 

lim dL (F, (Yo ;.), F) = 0 (16) 

uniformly with respect to Yo ~ Y, where 

F(x)= {~ for x<y i  
for x>y l .  

Proof We begin by noticing that on account of Corollary to Lemma4,  
Eq. (16) for a fixed Yo e Y,, implies its validity for any Yo ~ Y (i. e. F is independent 
of Yo) and, moreover, convergence is uniform with respect to Yo. Then, in ease (ai) 
we have P(~/n =yill/o =y~)= 1 for any neN*,  so that 

F.(y~; x)-- {~ for x < y  i 
for x > y .  

whence, on account of the remark above, (16) holds and F has the form stated, 
q.e.d. 

To state the next result we need 

Condition U. The series ~ p~ (y) is uniformly convergent with respect to y ~ Y. 
ieN* 

Notice that Condition U is automatically satisfied (by virtue of Dini theorem) 
in the case where (Pi (Y))i~N* is a probability distribution for any y e [0, 1] and the Pi 
are continuous functions on [0, 1]. (Actually, continuity can be replaced by a 
weaker assumption, namely lower semi-continuity. See [1], p. 218.) 
15 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 27 
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Remark. Condition H does not imply Condition U as it might seem. This is 
shown by the following example. Take PI (Y)= (1 + y)/2 and for i>2 

(y/2 if 0 < y < 1/i 
p,(y)= { ( 1 - ( i - i ) y ) / 2  if 1/i<y< 1/(i--1) 

{o if 1/(i- 1 ) < y < l .  
This leads to 

si(y)={~+iy)/2 if O<y<l/i~,  
if 1 / i<y<l}  ieN*, 

so that Condition U is not satisfied. On the other hand e0--�89 e,,=(4c,,_x c,,) -x, 
meN*, that is Condition H holds. (Actually, the stronger condition Co< 1 and 

g,, < co is satisfied.)The e,, are deduced as follows. Set cb(x, x')=d(p(x), p(x')) 
m~N 

for 0_<-x, x ' <  1. As q~ (x, x ' )= q)(x', x) we need only study the case x > x'. We have 

1 -sx(x') if (x, x')eD I 

x')=  k_l 
[~(s , (x ) - s , (x ' ) )+l - s , , (x ' )  if (X,X')eDk, k>=2, 

where D1 = {(x, x'): x = x/2}, Dk---- {(x, x'): ( k -  1) x/k < x' <_ k x/(k + 1)}, k >__ 2. This 
shows that q~ is continuous, 4~(., x') is increasing on [x', 1] and 4~(x, .) decreasing 
on [0, x]. Thus e o = ~ ( 1 , 0 ) = l - s , ( 0 ) =  �89 Next, in the region {(x,x'): x>x',  
1/(i+ 1 ) < x , x ' <  1/i} the function ~ takes the value i ( i+l ) (x-x ' ) /4  at (x,x'). 
A moment's reflection then shows that 

e x = s u p ~ (  1 i~-~) i ( i + 1 ) ( 1  1 ) 1 
T '  = s u p - -  = - - ,  i~N 4 i i + 1 4 

and, for m > 2, 

8,,=sup i---(i~I(i +cm_ 2/cm_O -x --(i +Cm_x/C,~)-~I=(4C,,_x C,.) -x. 

Theorem 6. Assume that Conditions H and U hold. Then in case (b) there exists 
a continuous F ~ -  such that 

~im dL(F, (Yo ;.), F) - 0, (16') 

uniformly with respect to yoe Y. 

Proof. Uniformity of convergence with respect to Y0 e Y in (16') can be justified 
as in the proof of Proposition 5, so that we shall no longer deal with it. 

Since (~,, dL) is a compact metric space, and F,(yo; . ) ~ J  for any heN*, yo~ Y,, 
to prove (16') it is sufficient to show that all weak-convergent subsequences of 
the sequence (F,(yo;.)),~N, have the same limit. Thus, let us suppose there are G1, 
Ga~f f  and two increasing sequences of natural numbers (nk)k~n, and (n~)k~n, such 
that 

j im dL(F, (yo ;. ), G~)=lira d L ( V , ~  (Yo ;.), G2) --0. 

We have to prove that Gx = Gz. 
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On account  of  C h a p m a n - K o l m o g o r o v  equa t ion  we can wri te  5 for x > O ,  
m e N * ,  1 

.P(t/m+l ~ x ) =  ~ P(t/m+l <=xltlm=z) dzP(qm<=Z) 
0 

1 

= ~ (  ~ Pi(z))d~P(rlm<=Z), 
0 i > x  1 - z  

whence 
n k q -1  1 

nk -t  Z P ( q m < x ) = S (  E Pi(z))dzF.k(Yo;Z)" 
m = 2  0 i > - x - l - - z  

A s s u m e  for the m o m e n t  tha t  G1 and  G 2 are  cont inuous .  Therefore  

limF.k(yo;x)=Ga(x), limF.~(yo;x)=Gz(x), xeR. 

Then  let t ing k--* w in the  preceding  equa t ion  we ob ta in  tha t  

1 

G~(x)=SPOh <Xlqo=Yo)dGl(yo), xeR. (17) 
0 

(We are just i f ied to pass  to the l imit  under  the in tegral  sign since G~ has been 
assumed to be con t inuous  and  the in tegrand  has at most  a coun tab le  set of  po in ts  
of  d iscont inui ty . )  The  above  equa t ion  leads to 

1 

Gl(x)=~P(q,,<X]qo=Yo)dGa(yo), xeR, 
0 

for any  neN*, imply ing  
1 

Gl(x)=[Fn~,(yo;x)dGl(yo), xeR, keN*, 
0 

whence, u p o n  let t ing k - - , ~  we ob ta in  that  G1 = G2. 

Thus,  to comple te  the  p r o o f  we need only show that ,  if 

l im dL (F,,k (yo ; .), G)=0, 
k ~  cc 

then G is cont inuous .  Let  C(G) be the set of  poin ts  of  con t inu i ty  of  G in [0, 1]. W e  
have to p rove  that  C ( G ) = [ 0 ,  1]. Cons ide r  first con t inu i ty  at  i r r a t iona l  points .  
Let  y = (il, i2, ...) e Y W h a t e v e r  0 < m < n we can write 

P (~._~ = iz, 1 < l <  mlq,,_m)=pim(rln__m) 

1 1 + 1 I 
"Pi'~-l(im+-l'ln-m)'"Pi2( li~3 ""q'- i lm~-1 q-limq-tln-m ) (18) 

1 1 

5 Although the Pl are defined only on Y, the integrals we write make sense since for any meN* the 
distribution function P(t/~,<z) is continuous at rational points, so that it assigns probability zero to 
the rationals in [0, 1]. This would enable us to give the p~ arbitrary values at rational points. In order 
to preserve continuity (in the topology of [0, 1]) at irrational points we can and do define pl at a rational 
point as its minimum (with respect to Y) at that point. (See I-6], p. 300.) 
15" 
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We want to show by making use of (18) that  for any e > 0  there exists m(e)~N* 

such that  P(ct,,_t = i z , 1 < l<m(e)ltln_m(~))<~ (19) 

for any n>m(e). Clearly, (19) holds in case (a). The  same is true in case (bl) if for 
any r e N* there exists a natural  number  n > r such that  in :~ i. It remains to consider 
the case in which (bi) holds and there exists an r~N* such that in=i for any n >  r. 
In this case (19) also holds since pi(y~)< 1 and p~ is cont inuous at y~. (Notice that  
yi=(i, i,...).) 

Inequal i ty  (19) implies that  

P (an_, = iz, 1 < 1 < m (e)) < e (20) 

for any n > m (e). 

Now,  let us put  ax(y)= 1/(il + 1) and 

Y 1 I m > 2  
a m ( Y ) = - - + +  l / 1  +1 im+l  _ 

i I meN*, 
b~(y)=  + ' " + l i r a  

and define 
~ (~, y)= min(l y-am(e) (y)l, [ y -  bm(~) (Y)l). 

It is easily seen that  for n>m(e) the event (l~l,-yl<b(e,y)) implies the event 
(~ ,_ l= i t ,  l<l<m(e)).  Then,  for any x~[0 ,  1] such that  l y - x l < b ( e , y )  and any 
n > m (e) we can successively write 

[F~(yo; y ) - F , ( y o ;  x)[ <n -1 ~ [P(tlm< Y) -P(q , ,<  x)] 
m = l  

i ~ <=n -1 P ( l q , , - y l < l y - x l ) < n  -1 ~ P(Iqm--YI<6(~,Y)) 
m = l  m = l  

<(m(e)--l)n-X +n -1 ~ P(c~,,_t=i,,  l < / < m ( e ) ) .  
m = m ( e )  

On account  of  (20) we deduce that  

IF, (To; y ) -  F, (To; x)l <re(e) n -1 +e. (21) 

Let  x 1 < y < x z , x 1 , x 2 ~ C (G), such that  y - x I < 6 (g, y), x z - y < 6 (e, y). It follows 
from (21) that  

F,(Yo ; x 2 ) -  F,(Y0 ; xa)<2(m(e) n-1 +e), 

whence, upon  letting n ~ ~ ,  
G(x2)-G(xa)<2e,  

proving that  G is cont inuous  at y. 

Let  us now prove continui ty at rat ional  points. Let  

11+...+111 
x = / ~ 1  ik 
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with i k > 2. Whatever  n e N and m e N* we have 

P ( % > m [ q . ) =  ~ p,(t/.), 
i>=m 

and then Condi t ion  U implies that for any e>  0 there is an m' (e)eN* such that  

P ( % > m ' ( a ) ) < e ,  neN. (22) 
Put  

/~1  1 I 1 ] 1[ 1[ 

1 + 1 1 

and define 
3' (e, x) = min ([ x - a~,,(~)(x)l, Ix - b~, (,)(x)]). 

It is easily seen that  for n>=k+2 the event (l~/n-Xl<3'(e,  x)) implies the event 

(o~._t = il, 1 <-_ l<k, O~n_k_ x >=m'(e)) 

w (e ._ l= i l ,  1 <l<k,  ct._k=i k -  1, Ct._k_ 1 = 1, %_k_2>m'(e)). 

Then for any x' ~ [0, 1] such that I x -  x'l < 3' (e, x) and any n_-> k + 2 we can write 

IF~(yo; x)-F~Cvo; x')l ~ n  -1 ~ V ( I q ~ - x l  < 3'(~, x)) 
m = l  

< ( k + l ) n - l  +n -1 ~ (P(O~m-k-l>m'(a))+P(O~m-k-2>m'(8))), 
m = k + 2  

and on account  of (22) we deduce that 

IF. (yo; x ) - V .  (yo; x')] < (k + 1) n -1 + 2 e .  

N o w  cont inui ty  at x follows as in the previous case. 

It remains to prove continui ty at 0 and 1. 
As to cont inui ty at 0 we have to note  that for hEN* the event ( t / .< 1/m'(e)) 

implies the event (~.-1 >m'(e)) so that for any 0 < x <  1/m'(e) we can write 

F. o; x)<=n -1 Z P( m< 
m = l  

This leads to G(x)<e ifxeC(G), i.e. G is cont inuous at 0. 

As to continuity at 1 notice that for n > 2 the event (q. > (1 + 1/m' (e))-1) implies 
the event (e ._l  = 1, e ._  2 > m' (~)) so that for any (1 + 1/m' (~))-* < x =< 1 we can write 

1 --Fo(yo ; x)<n- '  ~ P(qm>(1 + 1/m'(a))-X)<n -1 +e. 
m = l  

This leads to G (x) > 1 - e if x e C (G), i.e. G is cont inuous at 1, q.e.d. 

Proposi t ion7.  Under the corresponding assumptions in Proposition 5 and 
Theorem 6 the limiting distribution F is the only stationary distribution for (q,),~x. 
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Proof Actually, we have to prove that F is the only distribution function 
assigning probability 1 to Y which satisfies the equation 

1 

G(x)= ~P(th <Xltlo=Yo)dG(Yo), xER. (23) 
o 

Clearly, the above equation is satisfied by the limiting F of case (a0 and on 
account of (17) also by the limiting F of case (b). The argument of uniqueness 
is hidden in the proof of Theorem 6 (lines 13-17 on p. 205). Namely, if a distri- 
bution function G assigning probability 1 to Y satisfies (23), then this implies that 

1 

G(x)= ~ F,,(yo; x) dG(Yo), x~R,  
0 

for any neN*, whence upon letting n--,oe we deduce that G(x)=F(x), x s R  
(case (b)) and G(x)=f(x), x+y,  (case (a,)). The latter case leads immediately 
to G(x)=F(x), xeR,  q.e.d. 

Theorem 8. Assume that Conditions H and U hold. Then the continuous limiting F 
of case (b) is either purely singular or identical to Gauss' absolutely continuous 
distribution function with density (log 2)-1/(1 +x), 0_< x_< 1. The latter case occurs 
when p~ (y) = (y + 1)/(y + i) (y + i + 1), i ~ N*, y ~ Y. 

Proof Assume for a contradiction that 

F=cFI+(1-c )F2 ,  0 < c < l ,  

where F 1 and F z ~ are the absolutely continuous and the singular part of F 
respectively. If we write Eq. (23) in the operator form G = VG with 

1 

(VG)(x)= [, ~ pi(z)dG(z), x > 0 ,  
0 i > x - l - z  

then we have 
C ( F  1 - -  V F 1 ) =  - ( 1  - c ) ( F  2 - VF2).  

The desired contradiction will be reached if we prove that VFI is absolutely 
continuous and VF2 singular. For, on account of Proposition 7, neither F~ - VF1 
nor F2 - VF2 can vanish identically. 

Absolute continuity of VF~ is immediate. Indeed, for (j + 1)- 1 < x < j -  1, j e N*, 
we have 

1 

(VFO (j-1)-(VF1) (x)= ~ ~ F; (z) pi(z) dz 
i>jO 

x-~--j  1 ~ x ~--j 
- (  ~ S F;(z)P,(z)dz+Z ~ F;(z)p,(z)dz] = ~ F;(z)pj(z)dz. 

\ i> j+ l  0 i > j x  l _ j  0 

Therefore VF 1 is absolutely continuous, its density being, e.g., 

0 for x < 0  or x > l  
x - Z F ; ( x - l - j ) p ~ ( x - l - j )  for ( j + l ) - l < x = < j  -1, j~N*. 

Let us now prove that V F  2 is singular. Let 2 denote Lebesgue measure and 
# the measure generated by F 2 (i. e. /~ ((-0% x ] ) = F  2 (x)). As F2 is singular, there 
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are two disjoint sets A and B such that A u B = [ 0 ,  1) and 2(A)=y(B)=0. In 
order to simplify the writing, for any set A of real numbers put 

A+j={x:  x - j e A } ,  A - j = { x :  x+j~A},  jeN*,  

and, if 0 ~ A, 
A - I = { X : X  I~A}. 

As before for ( j+ l )  -1 < x N j  1,jaN*, we have 
x 1 j 

(VFz)( j -1)-(VF2)(x)  -= ~ Pj(z)dVz(z)= ~ Pj(z)dF2(a), 
0 [x , j -1] - l - - j  

implying 
(V#)(A)= 5 pj(z)dF2(z ) (24) 

A 1 j 

for any Borel set A in ((j+l)-1,j-1].  Now define Aj=(A+j) -1, Bj=(B+j) -1, 
jEN*, A'= U Aj, B'= U Bj. Clearly, Aj, Bj~(( j§ I)-I,j-I], j~N*, A' ~B'=~J, 

j~N* jcN* 

A'uB'=(0 ,  1]. It is easily seen that 2(A)=0 implies that 2(Aj)=O, j~N*. Thus 
2(A')--0. Next, taking A=Bj in (24) yields (Vy)(Bj)=O, j~N* (on account of 
the fact that #(B)=0), whence (VIJ)(B')=O. But 2(A')=(VI~)(B')=O, means that 
VF 2 is singular. 

Let us now deduce the form of F in the absolutely continuous case. We start 
from the equation 

F - F 1 = ~ pj (z) dF(z) (25) 
0 

valid for 0 < x <_ 1,jeN*. Put F '=  f. Differentiation of (25) with respect to x yields 

(J+x)-2 f  j + x  =pj(x)f(x), jeN*,  

almost everywhere (with respect to Lebesgue measure) in [0, 1]. As ~, pj(y)= 1, 
y~ Y, we obtain the functional equation j~N* 

f (x)=  ~ ( j + x ) - 2 f ( ~ )  (26) 
]eN* \J~-~ l 

almost everywhere in [0, 1]. Clearly, Gauss' probability density f (x)= (log 2)-1/ 
(1 +x), xe[0, 1], satisfies (26), and this leads to the limiting F and the Pi described 
in the statement of the theorem. Thus, we have to prove that any probability 
density g on [0, 1] satisfying (26) coincides almost everywhere with Gauss' one. 
To this end put v (A)= ~ g(x)dx for any Borel set A in [0, 1], and consider the 

a 
transformation T of Y onto itself defined by Ty=y -1 (mod 1). Since 

j . j + x  ' j , 0_<x_<l, 

and since on account of (26) 

~ v ( ( -  1 1))  
j~N* j §  ' j =v((0, x)), 0_<x_<l, 
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it follows that T preserves v. This proves uniqueness (almost everywhere) of the 
probability density satisfying (26). (See [10], p. 77.) 

To complete the proof we need show that p = (Pg)~eN* satisfies Condition H. 
(Condition U is obviously satisfied.) Here is a concise account of an elementary 
but tedious computation. Set �9 (x, x') = d (p (x), p (x')) for 0 < x, x' < 1. As �9 (x, x') = 
�9 (x', x) we need only consider the case x>x'. We have si(x)=i/(x+i+ 1), i~N*, 
and putting i (x, x') = [(1 + x) (x - x')- 1] 

Hence 

(x, x')= Y (s,(x')-s,(x))+ Y p,(x') 
i<=i(x, x') i> i(x, x') 

i 
= ( x - x ' )  ~ (x+i+l) (x '+i+l)  i<i (x ,x ' )  

x '+l  
x' +i(x, x')+ 1 

(27) 

k - 1  k 

�9 (x, x ')= ~ sj(x')- ~ sj(x)+ 1 (27') 
j = l  j = i  

in the region {(x, x'): ( (k-  1 )x-1) /k  <= x'< (k x-1)/(k + 1)}, k >2. Now, it is easily 
seen from (27') that �9 is continuous 6, ~ (., x') is increasing on Ix', 1] and �9 (x,.) 
decreasing on [0, x]. It follows that t 0 =4(1 ,  0)=2/3. Next, one deduces from (27) 
that 

t ~ r ( x -  x')(C~ +l l o g ( x -  x')l) <~b(x, x ) = ( x -  x)  (C z +l l o g ( x -  x')l), 

where - 3 < C a < 0  and 0 < C 2 < 2  are absolute constants. Consequently, e,,= 
O(a-m), meN, for some a > l .  7 Therefore, even the stronger condition e0<l ,  

em< 0% is satisfied rather than Condition H, q.e.d. 
meN 

3. Chains of Infinite Order 

3.1. A chain of infinite order may be viewed as a special random system with 
complete connections. (See [73, p. 186.) More precisely, if we consider the case of 
an N*-valued homogeneous chain of infinite order, let P be a nonnegative function 
defined on W x N*, where W=(N*) (-m, such that ~P(w; i)= 1 for any w~W. 

ieN* 

Under suitable conditions one proves the existence of a strictly stationary, doubly 
infinite sequence (~t)t~z of N*-valued random variables such that 

P(~t = ills, s <  t)= P( . . . i t - a ,  ~t-~; i), 

i. e., P is the transition function of the process. 
F o r  any Cr)=(i 1, ...,ir)e(N*) r, reN*, and w=(  .... i_, ,  ..., i_1, i0)eW, denote 

by w+i ~) the "pa th"  (..., i ; , ,  . . . ,  i'_~, i~)e W for which i '_,= i_,+,,  heN. A set of 
conditions ensuring the existence of an N*-valued chain of infinite order with 
given transition function P is as follows. There exist a 6 > 0  and a jeN* such 

6 Interes t ingly  enough ,  the po in t s  (x, (k x - 1)/(k + 1)), 1/k =< x =< 1, k => 2, are poin ts  of nondifferentiabi l i ty 
of  4.  The  doub le  inequal i ty  tha t  follows shows  tha t  the  points  (x, x), 0_<_x_< 1, are po in t s  of  nondif-  
ferentiability,  too. 

W e  conjec ture  tha t  em=~)(Cm_l/Cm, Cm/Cm_l_l), m e N * .  
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that P(w; j) > 6 for any w e W. Next, ~ e', < o% where 
tl~N* 

e',=2 -1 sup ~, [P(w'+i(r); i)-P(w"+i(r); i)[, 
i~N* 

the supremum being taken over all w', w"eW, and all i (r), r>n, containing j at 
least n times. 

Moreover, under these conditions, the chain of infinite order is mixing in the 
sense that 

[ P (BIA)- P(B)I <r(t)  

for any Aeago, such that P(A)~=0 and any B e a g  t where r(t), that depends on 6 
and the ~',, tends to 0 as t ~  oo. Here ago and agt are the o--algebras generated by 
the random variables ~s, s < 0, and i , ,  u > t, respectively. 

3.2. The results in Section 2 enable us to establish the existence of N 'va lued  
chains of infinite order under different conditions. A (weak) variant of mixing 
will be proved to hold, too. The basic device is to interpret a path 

w=(  .... i_,, ..., i_1, io)eW 

as the continued fraction expansion (read inversely) of a y e  Y and to define 
functions Pi by pi(y)=P(w; i) if y and w are connected as before (that is y =  
(io, i_1, ...)). In this context the em defined by (7) will be expressed as 

em = sup d((P(w; i))i~N*, (P(w'; i))i~N.), meN.  
(w,w'),, ,  

Here the notation (w, W')m means the last m components in the path w are the 
same as the last m components in the path w'. Next, Condition U amounts to the 
uniform convergence with respect to we W of the series ~ P(w; i). 

The existence theorem is as follows. ~N* 

Theorem 9. Assume that Conditions H and U hold and that P(... ,  i, i; i)<1 for 
any ieN*. Then 

i) There exists a strictly stationary, doubly infinite sequence (it)t~z on a proba- 
bility space ((2, ag, P) such that 

P (it = il Cs, s < t) =P( . . . ,  4,-2, i t - ,  ; i) (28) 

P-almost surely for any teZ,  ieN*. 
ii) This is the only doubly infinite sequence for which (28) holds. 

Proof. i) On account of Theorem 6 we can construct a Y-valued strictly sta- 
tionary Markov chain (t/t)t~z on a suitable probability space (~2, ag, P), with 
stationary absolute distribution given by the limiting F, that is 

P (qt =<x)-=f(x), t e Z ,  

and transition probability function given by 
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Define the function h on Y by 

h (y)-f i rs t  digit in the continued fraction expansion of y. 

We shall prove that the random variables it defined by 

~t=h(th+l) ,  t e Z  
satisfy (28). 

First, for any t e Z we have 

( ) ( 1)  1 
P t i t+~- 1 = ~ P t i ,+~- = 2 I p i ( y ) d F ( y ) = l ,  

whence ~ + qt i~N* i-t-tit i~N* o 

~ s _ l . ~ _ t i s _ l  ,S~,-~t = 1 .  
(29) 

Next, it is clear that to prove (28) it is sufficient to show that for any l~N*,  #~N* ,  
l_<r_</, we have 

P(~t=i ,~ t_r=i~ , l<=r<l )  = ~ P(  . . . .  ~ t _ t _ ~ , ~ t _ i , . . . , ~ t _ l ; i ) d P .  (30) 
(~t-~=i~,l <_-rNl) 

Put 
/ ~ J §  11 i 11 1[ 11 

and for any rational x in (0, 1) 

(p (x) = rain (a'oo (x), bl (x)), 0 (x) = max (a" (x), b i (x)). 

(a~o and b' 1 have been defined on p. 207.) Then by making use of (29) we can write 

P(~t= i, ~,_~= i~, 1 <r_-< l)= e ((p (xl)<tit+ 1 <~  (xl)) 
1 qJ(xl) 

= ~ P(~o(xl)<tit+l <O(xl)] t i t=y)dF(y)  = ~ Pi(y)dF(y) �9 
0 ~o(xO 

On the other hand we have 

.f P( . . . .  ~ t - l - l ,~ t -1  . . . . .  ~t-1; i) d p  
(~t ~=ir,l<=r<=l) 

O(x~) 

= ~ p , ( ( i l , . . . , i t , ~ t _ , _ l , . . . ) ) d P =  ~ p,(y)dF(y) .  
(q~ (xz) < ~h < q~ (xz)) q, (xz) 

Therefore (30) holds so that the proof of i) is complete. 

ii) It follows from the above that 

P(~t_~=ir, 1 < r <  1)=F(O(x;) ) -F(p(x;) ) ,  t e Z .  (31) 

Therefore, the finite dimensional distributions of (~t)t~z are completely determined 
by F. Thus uniqueness of (~t)t~z satisfying (28) follows from that of F. (See Pro- 
position 7.) q.e.d. 
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Remark. It is well known (28) implies that 

lira P(~a =ilk_r,  0 < r < / ) =  P(. . . ,  i - a ,  30; i) 
l ~ a o  

P-almost surely. It is easily proved that if Pi is continuous on [0, 1] then 

lim P(~I = i l ~ _ , = i _ , ,  O<=r<=l)=P(..., i_~, io; i) 
l~oO 

for any ( .... i_a, io)e W, provided the left side is defined for each IeN*. 

3.3. Next, we have 

Theorem 10. Assume the conditions in Theorem 9. Let 2U o denote the a-algebra 
generated by the random variables ~s, s <=0. Then 

lim n -a ~ P (~t_~= i~, 1 <r=< llA)= P (~_~= it, 1 <r=< l) 
n ~  oo t =  1 

uniformly with respect to leN*, i~eN*, 1 <_r<_l and Ae~C o such that P(A)#0. 

Proof It is sufficient to prove that 

lim n -a ~ P(~,_~=i~, l<r<I[~_m=i'~, l<m<_k) = P(~_r=ir ,  1 <r<l)  (32) 
n~Go t = a  

uniformly with respect to leN*, ireN*, l <r<l,  and keN*, i 'eN*,  l <_m<k, 
such that P (4 _,, = ira, 1 < m < k) 4 = 0. 

We have 

n -a ~ P(~,_r=i~, l<r<ll~_m=i'~, l<m<-k) 
t = l  

n -a ~ P(~t_~=i,, l<r<l,~_m=i'm, l < m < k  
t = a  

P(~_m= i~,, l < m < k )  

n a ~, p (~o (x,) < r h < ~ (x,), ~o (x~) < r/o < ~ (x~,) 
t = l  

P (q~ (x'k) < rio < ~ (x'k)) 
n O(xl,) 

n-a Z ~ P(~~ <O(x,)lrlo=y)dF(Y) 
t = a  ~p (M,) 

P (9 (x~,) < r/o < ~ (x~,)) 
O(xD 

j" (F. (y; 0 (x3) - F. (y; q~ (xz))) dF(y) 
~o (xl,) 

Now (32) follows on account of Theorem 6, continuity of F and Eq. (31), q.e.d. 

3.4. To conclude, we notice that Theorems 9 and 10 can be viewed as properties 
of the continued fraction expansion of numbers y e Y. As well known if y =  
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(il(Y),iz(y), ...), t h e n  the  i , ( . )  a re  r a n d o m  va r i ab le s  on  the  m e a s u r a b l e  space  

cons i s t i ng  o f  Y a n d  the  o--algebra o f  B o r e l  m e a s u r a b l e  sets in Y. T h e  s e q u e n c e  
(i,(.)),~s, b e c o m e s  a s t r ic t ly  s t a t i o n a r y  o n e  w h e n  we c h o o s e  as m e a s u r e  t h a t  

g e n e r a t e d  by  any  l imi t ing  F in T h e o r e m  6 8. T h e  d o u b l y  inf in i te  s e q u e n c e  (~t)t~z 
c o n s t r u c t e d  in T h e o r e m  9 is n o t h i n g  bu t  a t w o - s i d e d  ve r s i on  o f  such  a s t r ic t ly  

s t a t i o n a r y  (i,(.)),~N,. (See [3] ,  p. 456.) 
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