
Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 323- 331 (1975) 
�9 by Springer-Verlag 1975 

The Markov Processes of Schr/Sdinger 

Benton Jamison* 

Introduction 

Let {Xt, t e l }  be a stochastic process on a finite or semi-infinite interval I. 
For  each J c I ,  let d j  be the a-field of events generated by X t, t6J ,  and Hj be the 
a-field generated by Xt, t 6 I \ J .  We say that {Xt, t e l }  is a reciprocal process if, 
for any subinterval J = (s, t) of 1, 

P(Ac~BIXs ,  X , )=P(AIX~)P(BIX , ) ,  A ~ H , ,  B ~ H  s. (1) 

The concept was formulated in 1932 by Bernstein [2] in connection with the 
processes introduced in 1931 by SchrSdinger [10]. Consider the transition 
q(s, x; t, y) for Brownian motion { Y, a =< t__< b} on an interval [a, b] : 

1 (y_x)2 
q ( s , x ; t , y ) =  2 ] / ~ - s )  e a(r-s), a<=s<t<=b. (2) 

If we prescribe an initial distribution #, for Y,, the finite dimensional distributions 
of {Y t, a_< t__< b} are determined by (2) and/~,; in particular the distribution of Yb 
is SO determined. Schr/Adinger asks the following question. Suppose we prescribe 
in advance not only a distribution #, of Y~ but an arbitrary distribution #b of Yb 
as well, what is the most likely way for Y~ to evolve as t goes from a to b? His 
answer amounts to the construction of a new process {Xt, a =< t =< b}. He obtains 
from the original process the "intermediate probabilities" 

P(s, x; t, y; u, z) = q(s, x; t, y) q(t, y; u, z) 
q( s , x ;u , z )  , a < s < t < u < b .  (3) 

We see that p(s, x; t, y; u, z) is the value at y of the conditional density of Y~ given 
Y~ = x and I1, = z. Let # be any two dimensional probability measure with marginals 
~t, and #b. (There are in general many such measures.) The distribution # is used 
as the joint distribution of X, and Xb in the new process {Xt, a<=t<b}, whose 
finite-dimensional distributions are as follows. Let a < t l < . . . < t n < b .  Let 
A, B, El,  ..., E, be measurable sets in the state space. Let E = F[7= 1 Ei, A =A x E x B. 
Define 

Pu(A) = ~ d l ~ ( x , y ) ~ p ( a , x ; q , x l ; b , y ) P ( q , x l ; t 2 x 2 ; b , Y ) . . .  
A •  ~ (4 )  

p(tn_l, xn_ a ; t,, x,; b, y) dx  1 ... dx , .  

It follows from the results of [8] that (3) defines a consistent set of finite-dimensional 
distributions such that the stochastic process {X,  aN t__< b} defined by them is a 
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reciprocal process. Furthermore p(s, x; t, y; u, z) is the value at y of the conditional 
density of X, given Xs=x and X,=z.  We say that the process {X, ,a<t<b} is 
derived from {Y t, aNt<b}.  All this goes through if the Brownian transition 
function (2) is replaced by any strictly positive Markov transition density q(s, x; t, y). 
Schr6dinger's processes are not so general. Given marginals #a and #b, he uses as 
endpoint measure a particular # with these marginals, one which can be written 
in the form 

#(E) = ~ q(a, x; b, y) v,(dx) %(dy), (5) 
E 

where E is an arbitrary two-dimensional Borel set and where v, and v b are o--finite 
one-dimensional measures. Schr6dinger's physical intuition convinced him of 
the existence of a unique such # with the given marginals #a and #b. Indeed, 
a slight extension of a result of Beurling [3] yields existence and uniqueness 
(see [8]). 

In [8], it is shown that it is precisely for those measures which have the rep- 
resentation (5)that the derived process {X,a<=t<=b} has the Markov property. 
In this paper we show that these Markov processes of Schr6dinger are h-path 
processes in the sense of Doob [5], where h is a space-time harmonic function for 
the original process { Yt, a < t < b}. This fact is exploited to show that under certain 
conditions the sample paths of {X, aN t__< b} are almost surely continuous on 
[a, b]; in particular the { Yt} process "tied down" at t = a  and t =b is well-defined. 
We then treat the case where { Yt, a < t < b} is a diffusion in Euclidean space. We 
show that if the coefficients of the diffusion equation satisfy some regularity 
conditions, the derived process {Xt, a <= t < b} turns out also to be a diffusion, with 
the same diffusion coefficients, plus an additional drift term. 

w 

Let (S, d) be a a-compact metric space, with S the a-field generated by the 
open sets of S. Let [a, b] be a closed interval of real numbers. Let f2, s and f2,, be, 
respectively, the set of all functions from [a, b], [a, b), and [a, #] into S (here 
a<u<b). We denote by Xt the coordinate function on s that is, Xt(c~)=e)(t) for 
co,Q, t~ [a, b]. We also use Xt to denote the coordinate functions on f2 o and ~?u. 
The smallest a-field ff on O relative to which X~ is i f - S  measurable for each 
te[a, b] is denoted by J .  The a-fields Jo and J ,  are defined in the same way on 
Oo and Q, respectively. Let Q(s,x;t,E), a<s<t<b,  xeS, EeS,  be a Markov 
transition probability function. We assume that Q is given by a strictly positive 
density relative to some a-finite measure 2 on S; that is, there is a strictly positive 
function q(s, x; t,y) defined for a < s < t < b  and (x, y)eS x S, Z-measurable in 
(x, y) for each s and t, and for which 

Q(s,x,t,E)=~q(s,x;t,y)2(dy), a<_t<_b, xcS, E~S.  (6) 
E 

For each a < s < t < u < b  alad ( x , y , z ) e S x S x S  we define p(s,x;t,y;u,z) by (3). 
Now set 

P(s, x; t, E; u, z)= ~ p(s, x; t, y; u, z) 2(dy), 
e (7) 

a < s < t < u < b ,  (x,y)eSxS~ E~Z. 
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It is observed in Section 3 of [8] that P(s, x; t, E; u, y) is a reciprocal transition 
function. Let # be a probability measure on N x Z. Then # and P(s, x; t, E; u, y) 
define a measure P, on J relative to which {X~, a N t < b }  is a reciprocal process. 
(See Theorem 2.1 of [8]. It is clear that 2.2 of [8] can be written as (4) of this 
paper.) We assume that there are a-finite measures v o and v b on Z for which (5) 
holds for E e Z x Z .  Then, by virtue of Theorem3.1 of [8], {Xt, a<t<=b } is a 
Markov process relative to the probability space ((2, J ,  P,). We denote by #a 
and #b the marginals of #, that is, #~(E)=#(E x S) and #b(E)=#(S • E) for each 
E ~ Z. Let P be the probability measure on ~r (constructed in the usual way) for 
which {Xt, a < t < b} is a Markov process with initial distribution #, and transition 
function Q(s, x; t, E). We will show that P, can be obtained from P by means of a 
multiplicative functional; in fact we can use Doob's construction of an "h-path 
process" to go from P to P,. First, define h on [a, b) x S by 

h(t,x)=~q(t,x;b,y)Vb(dy ) x~S,  te[a,b). (8) 

It is easily verified that h is space-time harmonic relative to Q; that is, 

h(s,x)=~Q(s,x; t ,  dy)h(t,y) xES, a < s < t < b .  (9) 

Following Doob [5] we define a transition probability operator Qh by 

1 
Qh(s 'x; t 'E)=h(s ,x)  ~Q(s,x; t ,  dy)h(t,y), a < s < t < b ,  x~S,  E6Z .  (10) 

Let ph be the measure on (~2 ~ j o )  for which {X,, a N t < b }  is a Markov process 
with initial distribution #, and transition probability operator Qh(s, X; t, E). Note 
that for a< s <t  <b, Qh(s, x; t, E)=~Eqh(s, X; t, y) 2(dy), where 

qh(s, X; t, y)= q(s, X; t, y) h(t, y) (11) 
h(s, x) 

Let a < s < t < b. By (3), (4) and (5) 

P.(X eE, X, F) 
= ~  va(dx ) Vb(dy ) ~ ~ q(a, x; s, z,) q(s, z~ ; t, z2) q(t, z 2; b, y) 2(dzl) ,~.(dz2) 

F E  

= f  va(dx)~ ~ q(a, x; s, Zl) q(s, z a ; t, z2) h(t, z2) 2(dza) 2(dz2). 

But by (5), 
#a(A) = ~ va(dx) ~ q(a, x; b, y)Vb(dy ) = ~ v~(dx) h(a, x), 

A A 

so the last expression for P~(XseE, X~eF) is equal to 

#a(dx) f ~ q(a, x; s, zl) q(s, z 1 ; t, z2) h(t, z2) 2(dZl) 2(dz2) , 
h(a, x) ~ E 

which is equal to ph(Xs~E , XtEF ). A similar argument shows that 

P,(X~6E, X t~F)=ph(X ,~E ,X ,  eF) for a<t  <b. 
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Since Pu(X, eE) =ph(XaeE ) =/~a(E), and since {X,, a < t < b} is a Markov process 
relative to both Pu and ph, this shows that, if a < t < b, the restriction of Pu to 
{Xs, a < s < t} (that is, to ~ )  is given by ph. If we define 

h(t, X3 
Ms-  h(s, Xt ) a<_s<_t <b, (12) 

M~ is a multiplicative functional for the Markov process {Xt, a < t<b} relative 
to P and P~(=Ph) on each ~ ,  a<t<b,  is obtained from P via transformation by 
M~ [6]. This amounts to the same thing as observing, as does Doob [4], that 

P~(A) = ~ k(t, X,) dP, A ~ ,  (13) 
A 

where k(t, x)=h(t, x)/~h(a, y)kt,(dy). The measure P, on J ,  as distinct from the 
sub-a-fields Jr, may not be obtained from P by a multiplicative functional trans- 
formation, because we need not have P~ ~ P  on J .  For  instance, the marginal 
distributions #b and Qb #, of P, and P respectively, where 

Qb #,(E)= ~ Q(a, x; b, E) #,(dx), 
E 

may be mutually singular, as they indeed are if #b and 2 are mutually singular. 

For  each x e S, we denote by P~ the measure on J for which {X t, a < t < b} is a 
Markov process with initial measure 6x (where 6x({x})= 1) and transition function 
Q(s, x; t, E). 

Theorem 1. Suppose that for each xeS, the set C of all continuous paths on 
[a, b] has outer measure one relative to P~. Suppose in addition that for each yo~S 
the following holds: given 6 > 0  and e > 0  there is a t o such that if d(y, yo)> 6 and 
to<t<b, then q(t,y;b, yo)<e. Then, for each probability measure t~ on N, the 
measure P, defined by (4) also assigns outer measure 1 to C. 

Proof It is clear that it suffices to prove the theorem for measures/~ concen- 
trating all their mass on an arbitrary pair (Xo, yo)eS x S. Let # be such a measure. 
Then h(x,t)=q(t,x;b, yo). Since P~=Ph~P~o on ~ for each a < t < b  by virtue 
of (11), it is clear that P~ assigns outer measure 1 to the set of all paths on [a, b] 
which are continuous on [a, b). Observe with Doob [5] that { 1/h(t, X~): a < t < b} 
is a martingale with respect to ph-measure on j o .  It follows from the non-negativity 
ofh that as tTb 1/h(t, X,) converges ph-almost surely to a finite limit, hence h(t, X,) = 
q(t, X,; b, Yo) converges to a non-zero limit. Now the assumption on q contained 
in the hypothesis of the theorem shows that, given f :  [a,b)~S, q(t,f(t); b, yo) 
cannot converge to a non-zero limit as tTb unless f(t)  converges to Yo as tTb. It 
easily follows that ph, hence P~, also assigns outer measure 1 to the set of all paths 
on [a, b) which have limit Yo as t'[b. Thus the Pu-outer measure of C is 1, and the 
proof is complete. 

w 
We now consider the case where S is equal to d-dimensional Euclidean space 

E ~ and S is the a-field of Borel subsets of S. We assume that the underlying Markov 
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process is a diffusion in the sense of Stroock and Varadhan [11]. Let aij, i, j = 1,. . . ,  d 
and bi, i= 1, ..., d be real-valued functions on E e x [a, b) such that the following 
hold 

(D 1) aij is continuous and bounded on E d x [a, b - e) for each e > 0 and i, j = 1 . . . .  , d. 

(D2) The matrix ((a~j(x, t))) is positive definite for each (x, t)e E d x [a, b). 
(D3) b~ is measurable and bounded on E d x [a, b - e ]  for each e > 0  and i=  1, ..., d. 

We denote the matrix ((ai~)) by e and the vector (bi) by ft. Let o- = eJ/2 (see [11], 
p. 347). For  each se[a, b) let C[a, s] be the subclass of f2 ~ consisting of all con- 
tinuous real valued functions on [a, s], and let J//S={Ec~ C[a, s] 'E~J~}.  Then 
~/g~ is a o--field over C [a, s]: in fact if we consider C [a, s] as a metric space with 
metric given by the uniform norm, J/gs is the o--field generated by the open spheres. 
Under conditions D l -D3 ,  Stroock and Varadhan show that for each 
(s, x)e [a, b) x E d there is a probability measure Ps,x on j l s  which solves what they 
call "the martingale problem." That P~,x is a solution to the martingale problem 
is equivalent to the existence of a Wiener process {W~,a<t<s} on (C[a,s], 
~/s, p~,~) for which 

X t = x + ~ f l ( u , X , ) d u +  o-(u,X,)dW~ a < t < s ,  (14) 
a a 

where the second integral on the right is a stochastic integral in the sense of Ito. 
Relative to Ps.x, {X~:a<t<s}  is a strong Markov process with a transition 
function denoted in [11] by P(t, x; u, E) for a < t < u < s .  From the results of [-11] 
and assumptions D l - D 3  it is easy to see that the processes {Xt, a < t< s}, s <b 
can be extended to a process {X~, a N t < b }  with transition function Q(s, x; t, E). 
We refer to {X,, a N t < b }  as the diffusion corresponding to the diffusion matrix 
and drift vector ft. Eq. (14) holds throughout [a, b); that is, there is a Wiener 
process { Wt, a__< t < b} constructed from {Xt, a < t < b} for which 

t t 

X t - X s = ~ f l ( u ,  Xu)du+~o-(u, Xu)dW., a < s < t < b .  (15) 
s $ 

g f  
We say that a function f on E d x [a, b) is smooth if the partial derivatives ~ and 

O2f exist and are continuous throughout E d x [a, b), i,j = 1,..., d. 
U L  

3xi~yj 

Theorem 2. Let h be a smooth and everywhere positive space-time harmonic 
function for the process with diffusion matrix ~ and drift vector ft. Then the process 
with diffusion matrix ~ and drift vector fi + ~ grad(logh) has the transition density 
qh(s, x; t, E) given by (11). 

Proof The proof consists mainly of calculations based on Ito's lemma. From 
(15) and Ito's lemma (as stated in [11], p. 352) we have 

t t 

h(t, Xt)-h(s ,  Xs)= ~ G(u, Xu) du+ ~ H(u, X,) dW, 
s s 

a < s < t < b ,  (16) 
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where G and H are defined on [a, b) x E d by 

t?h ~ Oh b, 1 ~, 02h  

Z i , j ,  k t T X i O X j  

(17) 

H = (H~ . . . .  , Hd), Ilk = ~ t? h 
- -  tTik , k = 1, . . . ,  d .  

�9 ~ X  i 

The space-time process {(X,, t), aN t<b} can be considered a Markov process 
with state space E d x [a, b). The process can be started out at any point (x, s) in its 
state space, and we use Pt='~) and E (='x) to denote the corresponding probability 
functions expectation operators. Because h is space-time harmonic, we have 

E(=,x) h(t, X,)=h(s, x) (s, x )eE a x [a, b); (18) 

in fact, from the optional stopping theorem for martingales ([4], p. 376) we have 

E~=,~) h(z, X~)=h(s, x) (19) 

for any stopping time z with s<z<b '<b .  Let U={(s ,x ) :a<s<b,G(s ,x )>O}.  
Suppose U~eIl, and (s, x)e U. Let b'e(s, b) and define z to be the first exit time" 
after s of {X,} from U, or b', whichever is smaller. Because {X,} has continuous 
sample paths and U is open, P~=,=)[z > s] = 1. Taking t = z in (16), we have 

h(z, Xr - h(s, X=) = [. G(u, X.) du + ~ H(u, X,,) dW,,. (20) 
s s 

Since {Ss t H(u, Xu) dWu, te(s, b)} is a martingale, E(s,x ) [S]H(u, X.)dW.] =0, again 
by the optional stopping theorem for martingales. Applying ECs ' ~) to both sides 
of (20) and using (19) we obtain Er X.)du]=O. Since G(u,X.)>O for 
ue(s,z), and since P~=,0(z>s)= 1, we have a contradiction. Thus U=~,  so G<0.  
A similar argument shows that G > 0, so G = 0. Since a~j = ~.k aik akj = ~.k a~k ajk, 
(17) yields 

1 ~h Oh 
Oh + 2-  ~ aij -k- ~ bi =0  (21) 
~t Oxlgx j . Ox~ 

for any smooth space-time harmonic function h. Applying (15) and Ito's lemma 
to logh instead of h, we have 

t t 

logh(t, Xt ) - logh(s ,X=)=~G(u,X, , )du+~H(u,X.)dW~ a<=s<t<b, (22) 
s s 

where g and H are defined on E ~ x [a, b) by 

~ _  t~(logh) ~3 (log h) 1 ~2(logh) 
& +~ ~x, ~'+2,~k ~x,~xj 'r'k~j~' 

-- c3(logh) H =z 
-7 
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Using matrix multiplication and interpreting vectors as column vectors, we can 
write H--grad(log h)a. Simple computations together with an application of (21) 
yield G = - (1/2) (H, /q ) .  Setting 7 = grad(log h) we have G = - (1, 2) (o- 7, a 7), 
and (22) becomes 

logh(t, X t ) -  logh(s, Xs)=S (a?, dW~) -�89 @7, a?) du. (23) 

Since dXt =r dWt + fl dt, (7, dXt) = (7, a dWt) + (7, fl) dt, and since a is symmetric, 
we have , 

logh(t, Xt)- logh(s,  X s ) = i ( 7 ,  d X u ) - ~ ( ( 7 ,  f i)+�89 a?))du.  (24) 
S S 

Let Q .... a < s < t < b ,  x e E  d be the solution to the martingale problem with the 
same diffusion matrix ~ but with fl replaced by 6 =fl  + cr grad(logh)--fl + c~ 7. To 
prove the theorem we must show that, for each a < s < t < b and x e E  ~, the restriction 
Q .... , of Qs,x to ~/g~ is absolutely continuous with respect to the restriction P~,x,t 
of P~,x to ~ and that 

dQ .... t - M ~ -  h(t,X,) (25) 
dPss,x,t h(s, Xs) " 

(Here ~/~ is the sub-field of J//' generated by the family {X,; s<uNt} . )  For this 
purpose, we introduce R .... a < s < t < b ,  seE ~, the solution to the martingale 
problem with diffusion coefficient cr and zero drift vector. On the one hand 

dQ .... t _ d O  .... t dR .... t 
(26) 

des,x,t dRs,~ dP~,~,,t 

On the other hand, by the Cameron-Martin formula (Lemma 6.1 of [11]) 

dRsx~t -exp  (e-16,  dXu) - �89  cc-16) du 
' ' ~ ( 2 7 )  

dP~,x,t - e x p  ( e - l  fl, d X , ) - � 8 9  ~ (fl, oc-l,5) du . 
dR .... t 

From (26) and (27) it follows that 

dP~,~ = exp c~-~(6 -fl),  dX,-�89 ((6, ~-~ 6) - (fi, or -~ fl)) du . (28) 

But 6 -  fl = c~ 7, and elementary algebra yields 

(a, o~ -~ 6 ) -  (fi, ~-* fi) =2 (7, fl) + (~7, 7). 

Since (~ 7, 7) = (o- 7, a 7), comparison of (28) and (24) yields 

dp~,x, t =exp (7, d X , ) -  ~I((7' f l)+�89 

= exp [log h(t, X,) - log h(s, Xs)] (29) 

h(t, Xt) 
h(s, X~) 

which establishes (25) and completes the proof of the theorem. 
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Since h is defined in terms of Vb, and since v b can rarely be obtained explicitly, 
there is little possibility of applying this last theorem unless we can establish 
under rather general conditions that space-time harmonic functions h of the sort 
defined by (8) are indeed smooth. To this end, we now assume that the coefficients 
a~-j and b i satisfy appropriate HSlder conditions, specifically, that there is a ~c > 0 
and an ~ [ 0 ,  1] for which 

]a~j(x, t)--aij(Y, 0]------- ~c I x -  yl ~, 

Ibi(x, t ) -b i (y ,  t)l ~ ~c I x -  yl ~ 

for each x and y in E d and te  [a, b] and for which 

[aij(x, s)-ai j (x ,  t)l < ~c I s - t l  ~ 

for each x e E  d and s, t in [a, b], these conditions holding for each l < i , j < d .  We 
also assume there is a 7 > 0  such that 

d d 

aij(S, t) ~i/~j~) ~, ,~2, 
i , j = l  i,j=l 

where (x, t )~Edx [a, b]. These assumptions imply that conditions 0.23 B1, B 2 

and B3 on p. 227 of volume II of [6] hold in the strip E d x [a, b]. Eq. (8) shows that 
h(t, x)~-~q(t, x; b, y)Vb(dy). The transition density q is the fundamental solution 
to Eq. (21) on the strip E a x [a,b), e > 0  (see Section 0.23 of [6] vol. II for the 
terminology here). For  each fixed t s  [a, b) and y e E  d, q(s, x; t, y) is a smooth func- 
tion of(s, x)e(a, 0 x E d, and the inequalities (0.33)-(0.36) on p. 227 of [6], volume II 
imply that h(s, x) is smooth if Vb is a finite measure. This is a serious restriction, 
for in general Vb is merely a-finite. However, we know that there are compact sets 
CmTE ~ with Vb(Cm)< O% m= 1, 2, .... Let Vm be the restriction of Vb to Cm' and let 
h,~(t, x)=~q(t, x; b, y) vm(dy). Then hm is smooth, and a solution to (21), and hinT h. 
By virtue of Theorem 15 on p. 80 of [7], the smoothness of h follows once we show 
that h is bounded on sets of the form D x [a + e, b - e] where e > 0 and D is a bounded 
open subset of E a. If the coefficients a~j are once continuously differentiable, with 
derivatives satisfying a HSlder condition in the space coordinate, (21) can be written 
a s  

Oh 1 ~ ,  ~32 (?tijh)+~'Di Oh =O ~ -  

and the Harnack inequalities of Moser [9] as extended by Aronson and Serrin [11] 
then imply that the convergence of h~ to h is uniform on sets R x [a + ~, b - e ] ,  
where R is a bounded rectangle in E e. Thus h is bounded on sets D x [a + e, b -  el, 
and is therefore smooth. (In applying results from the theory of parabolic equations 
to the analysis of Eq. (4.14), one usually reverses the direction of time: this is 
discussed in the footnote on p. 227 of volume II of [6].) 
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