The Markov Processes of Schrödinger

Benton Jamison*

Introduction

Let $\{X_t, t \in I\}$ be a stochastic process on a finite or semi-infinite interval I. For each $J \subset I$, let \mathscr{A}_J be the σ -field of events generated by $X_t, t \in J$, and \mathscr{B}_J be the σ -field generated by $X_t, t \in I \setminus J$. We say that $\{X_t, t \in I\}$ is a reciprocal process if, for any subinterval J = (s, t) of I,

$$P(A \cap B|X_s, X_t) = P(A|X_s) P(B|X_t), \quad A \in \mathscr{B}_I, \ B \in \mathscr{B}_J.$$
(1)

The concept was formulated in 1932 by Bernstein [2] in connection with the processes introduced in 1931 by Schrödinger [10]. Consider the transition q(s, x; t, y) for Brownian motion $\{Y_t, a \le t \le b\}$ on an interval [a, b]:

$$q(s, x; t, y) = \frac{1}{\sqrt{2\Pi(t-s)}} e^{-\frac{(y-x)^2}{2(t-s)}}, \quad a \le s < t \le b.$$
(2)

If we prescribe an initial distribution μ_a for Y_a , the finite dimensional distributions of $\{Y_t, a \leq t \leq b\}$ are determined by (2) and μ_a ; in particular the distribution of Y_b is so determined. Schrödinger asks the following question. Suppose we prescribe in advance not only a distribution μ_a of Y_a but an arbitrary distribution μ_b of Y_b as well, what is the most likely way for Y_t to evolve as t goes from a to b? His answer amounts to the construction of a new process $\{X_t, a \leq t \leq b\}$. He obtains from the original process the "intermediate probabilities"

$$P(s, x; t, y; u, z) = \frac{q(s, x; t, y) q(t, y; u, z)}{q(s, x; u, z)}, \quad a \le s < t < u \le b.$$
(3)

We see that p(s, x; t, y; u, z) is the value at y of the conditional density of Y_t given $Y_s = x$ and $Y_u = z$. Let μ be any two dimensional probability measure with marginals μ_a and μ_b . (There are in general many such measures.) The distribution μ is used as the joint distribution of X_a and X_b in the new process $\{X_t, a \le t \le b\}$, whose finite-dimensional distributions are as follows. Let $a < t_1 < \dots < t_n < b$. Let A, B, E_1, \dots, E_n be measurable sets in the state space. Let $E = \prod_{i=1}^n E_i, A = A \times E \times B$. Define

$$P_{\mu}(A) = \int_{A \times B} d\mu(x, y) \int_{E} p(a, x; t_1, x_1; b, y) p(t_1, x_1; t_2 x_2; b, y) \dots p(t_{n-1}, x_{n-1}; t_n, x_n; b, y) dx_1 \dots dx_n.$$
(4)

It follows from the results of [8] that (3) defines a consistent set of finite-dimensional distributions such that the stochastic process $\{X_t, a \leq t \leq b\}$ defined by them is a

^{*} Partially supported by National Science Foundation Grants GD-177-2, GU 3171.

B. Jamison

reciprocal process. Furthermore p(s, x; t, y; u, z) is the value at y of the conditional density of X_t given $X_s = x$ and $X_u = z$. We say that the process $\{X_t, a \le t \le b\}$ is derived from $\{Y_t, a \le t \le b\}$. All this goes through if the Brownian transition function (2) is replaced by any strictly positive Markov transition density q(s, x; t, y). Schrödinger's processes are not so general. Given marginals μ_a and μ_b , he uses as endpoint measure a particular μ with these marginals, one which can be written in the form

$$\mu(E) = \int_{E} q(a, x; b, y) \, v_a(dx) \, v_b(dy), \tag{5}$$

where E is an arbitrary two-dimensional Borel set and where v_a and v_b are σ -finite one-dimensional measures. Schrödinger's physical intuition convinced him of the existence of a unique such μ with the given marginals μ_a and μ_b . Indeed, a slight extension of a result of Beurling [3] yields existence and uniqueness (see [8]).

In [8], it is shown that it is precisely for those measures which have the representation (5) that the derived process $\{X_t, a \leq t \leq b\}$ has the Markov property. In this paper we show that these Markov processes of Schrödinger are *h*-path processes in the sense of Doob [5], where *h* is a space-time harmonic function for the original process $\{Y_t, a \leq t \leq b\}$. This fact is exploited to show that under certain conditions the sample paths of $\{X_t, a \leq t \leq b\}$ are almost surely continuous on [a, b]; in particular the $\{Y_t\}$ process "tied down" at t=a and t=b is well-defined. We then treat the case where $\{Y_t, a \leq t \leq b\}$ is a diffusion in Euclidean space. We show that if the coefficients of the diffusion equation satisfy some regularity conditions, the derived process $\{X_t, a \leq t \leq b\}$ turns out also to be a diffusion, with the same diffusion coefficients, plus an additional drift term.

§1

Let (S, d) be a σ -compact metric space, with Σ the σ -field generated by the open sets of S. Let [a, b] be a closed interval of real numbers. Let Ω, Ω_0 , and Ω_u be, respectively, the set of all functions from [a, b], [a, b), and $[a, \mu]$ into S (here $a < u \leq b$). We denote by X_t the coordinate function on Ω ; that is, $X_t(\omega) = \omega(t)$ for $\omega \in \Omega, t \in [a, b]$. We also use X_t to denote the coordinate functions on Ω_0 and Ω_u . The smallest σ -field \mathscr{G} on Ω relative to which X_t is $\mathscr{G} - \Sigma$ measurable for each $t \in [a, b]$ is denoted by \mathscr{I} . The σ -fields \mathscr{I}_0 and \mathscr{I}_u are defined in the same way on Ω_0 and Ω_u respectively. Let $Q(s, x; t, E), a \leq s < t \leq b, x \in S, E \in \Sigma$, be a Markov transition probability function. We assume that Q is given by a strictly positive density relative to some σ -finite measure λ on Σ ; that is, there is a strictly positive function q(s, x; t, y) defined for $a \leq s < t \leq b$ and $(x, y) \in S \times S$, Σ -measurable in (x, y) for each s and t, and for which

$$Q(s, x, t, E) = \int_{E} q(s, x; t, y) \,\lambda(dy), \quad a \leq t \leq b, \ x \in S, \ E \in \Sigma.$$
(6)

For each $a \le s < t < u \le b$ and $(x, y, z) \in S \times S \times S$ we define p(s, x; t, y; u, z) by (3). Now set $P(s, x; t, E; u, z) = \int p(s, x; t, y; u, z) \lambda(dy),$

$$P(s, x; t, E; u, z) = \int_{E} p(s, x; t, y; u, z) \lambda(dy),$$

$$a \leq s < t < u \leq b, \ (x, y) \in S \times S, \ E \in \Sigma.$$
(7)

324

It is observed in Section 3 of [8] that P(s, x; t, E; u, y) is a reciprocal transition function. Let μ be a probability measure on $\Sigma \times \Sigma$. Then μ and P(s, x; t, E; u, y)define a measure P_{μ} on \mathscr{I} relative to which $\{X_t, a \leq t \leq b\}$ is a reciprocal process. (See Theorem 2.1 of [8]. It is clear that 2.2 of [8] can be written as (4) of this paper.) We assume that there are σ -finite measures v_a and v_b on Σ for which (5) holds for $E \in \Sigma \times \Sigma$. Then, by virtue of Theorem 3.1 of [8], $\{X_t, a \leq t \leq b\}$ is a Markov process relative to the probability space $(\Omega, \mathscr{I}, P_{\mu})$. We denote by μ_a and μ_b the marginals of μ , that is, $\mu_a(E) = \mu(E \times S)$ and $\mu_b(E) = \mu(S \times E)$ for each $E \in \Sigma$. Let P be the probability measure on \mathscr{I} (constructed in the usual way) for which $\{X_t, a \leq t \leq b\}$ is a Markov process with initial distribution μ_a and transition function Q(s, x; t, E). We will show that P_{μ} can be obtained from P by means of a multiplicative functional; in fact we can use Doob's construction of an "h-path process" to go from P to P_{μ} . First, define h on $[a, b) \times S$ by

$$h(t, x) = \int q(t, x; b, y) v_b(dy) \qquad x \in S, \ t \in [a, b].$$
(8)

It is easily verified that h is space-time harmonic relative to Q; that is,

$$h(s, x) = \int Q(s, x; t, dy) h(t, y) \quad x \in S, \ a \le s < t < b.$$
(9)

Following Doob [5] we define a transition probability operator Q^h by

$$Q^{h}(s, x; t, E) = \frac{1}{h(s, x)} \int_{E} Q(s, x; t, dy) h(t, y), \quad a < s < t < b, \ x \in S, \ E \in \Sigma.$$
(10)

Let P^h be the measure on $(\Omega^0, \mathscr{I}^0)$ for which $\{X_t, a \leq t < b\}$ is a Markov process with initial distribution μ_a and transition probability operator $Q^h(s, x; t, E)$. Note that for $a \leq s < t < b$, $Q^h(s, x; t, E) = \int_E q^h(s, x; t, y) \lambda(dy)$, where

$$q^{h}(s, x; t, y) = \frac{q(s, x; t, y) h(t, y)}{h(s, x)}.$$
(11)

Let a < s < t < b. By (3), (4) and (5)

$$P_{\mu}(X_{s} \in E, X_{t} \in F)$$

$$= \iint v_{a}(dx) v_{b}(dy) \int_{F} \int_{E} q(a, x; s, z_{1}) q(s, z_{1}; t, z_{2}) q(t, z_{2}; b, y) \lambda(dz_{1}) \lambda(dz_{2})$$

$$= \int v_{a}(dx) \iint q(a, x; s, z_{1}) q(s, z_{1}; t, z_{2}) h(t, z_{2}) \lambda(dz_{1}) \lambda(dz_{2}).$$

But by (5),

$$\mu_a(A) = \int_A v_a(dx) \int q(a, x; b, y) \, v_b(dy) = \int_A v_a(dx) \, h(a, x),$$

so the last expression for $P_{\mu}(X_s \in E, X_t \in F)$ is equal to

$$\int \frac{\mu_a(dx)}{h(a,x)} \int_F \int_E q(a,x;s,z_1) q(s,z_1;t,z_2) h(t,z_2) \lambda(dz_1) \lambda(dz_2),$$

which is equal to $P^h(X_s \in E, X_t \in F)$. A similar argument shows that

$$P_{\mu}(X_a \in E, X_t \in F) = P^h(X_a \in E, X_t \in F) \quad \text{for } a < t < b.$$

B. Jamison

Since $P_{\mu}(X_a \in E) = P^h(X_a \in E) = \mu_a(E)$, and since $\{X_t, a < t < b\}$ is a Markov process relative to both P_{μ} and P^h , this shows that, if a < t < b, the restriction of P_{μ} to $\{X_s, a \leq s < t\}$ (that is, to \mathscr{I}_t) is given by P^h . If we define

$$M_s^t = \frac{h(t, X_t)}{h(s, X_t)} \qquad a \leq s \leq t < b, \tag{12}$$

 M_s^t is a multiplicative functional for the Markov process $\{X_t, a \le t < b\}$ relative to P and $P_{\mu}(=P_h)$ on each $\mathscr{I}_t, a < t < b$, is obtained from P via transformation by M_s^t [6]. This amounts to the same thing as observing, as does Doob [4], that

$$P_h(A) = \int_A k(t, X_t) \, dP, \quad A \in \mathscr{I}_t, \tag{13}$$

where $k(t, x) = h(t, x)/\int h(a, y) \mu_a(dy)$. The measure P_{μ} on \mathscr{I} , as distinct from the sub- σ -fields \mathscr{I}_t , may not be obtained from P by a multiplicative functional transformation, because we need not have $P_{\mu} \ll P$ on \mathscr{I} . For instance, the marginal distributions μ_b and $Q_b \mu_a$ of P_{μ} and P respectively, where

$$Q_b \mu_a(E) = \int_E Q(a, x; b, E) \mu_a(dx),$$

may be mutually singular, as they indeed are if μ_b and λ are mutually singular.

For each $x \in S$, we denote by P_x the measure on \mathscr{I} for which $\{X_t, a \leq t \leq b\}$ is a Markov process with initial measure δ_x (where $\delta_x(\{x\}) = 1$) and transition function Q(s, x; t, E).

Theorem 1. Suppose that for each $x \in S$, the set C of all continuous paths on [a, b] has outer measure one relative to P_x . Suppose in addition that for each $y_0 \in S$ the following holds: given $\delta > 0$ and $\varepsilon > 0$ there is a t_0 such that if $d(y, y_0) \ge \delta$ and $t_0 < t < b$, then $q(t, y; b, y_0) \le \varepsilon$. Then, for each probability measure μ on Σ , the measure P_u defined by (4) also assigns outer measure 1 to C.

Proof. It is clear that it suffices to prove the theorem for measures μ concentrating all their mass on an arbitrary pair $(x_0, y_0) \in S \times S$. Let μ be such a measure. Then $h(x, t) = q(t, x; b, y_0)$. Since $P_{\mu} = P_h \ll P_{x_0}$ on \mathscr{I}_t for each a < t < b by virtue of (11), it is clear that P_{μ} assigns outer measure 1 to the set of all paths on [a, b] which are continuous on [a, b). Observe with Doob [5] that $\{1/h(t, X_t): a \leq t < b\}$ is a martingale with respect to P^h -measure on \mathscr{I}^0 . It follows from the non-negativity of h that as $t \uparrow b \ 1/h(t, X_t)$ converges P^h -almost surely to a finite limit, hence $h(t, X_t) = q(t, X_t; b, y_0)$ converges to a non-zero limit. Now the assumption on q contained in the hypothesis of the theorem shows that, given $f: [a, b) \to S$, $q(t, f(t); b, y_0)$ cannot converge to a non-zero limit as $t \uparrow b$ unless f(t) converges to y_0 as $t \uparrow b$. It easily follows that P^h , hence P_{μ} , also assigns outer measure 1 to the set of all paths on [a, b] which have limit y_0 as $t \uparrow b$. Thus the P_{μ} -outer measure of C is 1, and the proof is complete.

We now consider the case where S is equal to d-dimensional Euclidean space E^d and Σ is the σ -field of Borel subsets of S. We assume that the underlying Markov

process is a diffusion in the sense of Stroock and Varadhan [11]. Let a_{ij} , i, j = 1, ..., dand b_i , i = 1, ..., d be real-valued functions on $E^d \times [a, b)$ such that the following hold

(D1) a_{ij} is continuous and bounded on $E^d \times [a, b-\varepsilon)$ for each $\varepsilon > 0$ and i, j = 1, ..., d. (D2) The matrix $((a_{ij}(x, t)))$ is positive definite for each $(x, t) \in E^d \times [a, b)$.

(D3) b_i is measurable and bounded on $E^d \times [a, b-\varepsilon]$ for each $\varepsilon > 0$ and i = 1, ..., d.

We denote the matrix $((a_{ij}))$ by α and the vector (b_i) by β . Let $\sigma = \alpha^{1/2}$ (see [11], p. 347). For each $s \in [a, b)$ let C[a, s] be the subclass of Ω^s consisting of all continuous real valued functions on [a, s], and let $\mathcal{M}^s = \{E \cap C[a, s]: E \in \mathscr{I}^s\}$. Then \mathcal{M}^s is a σ -field over C[a, s]: in fact if we consider C[a, s] as a metric space with metric given by the uniform norm, \mathcal{M}^s is the σ -field generated by the open spheres. Under conditions D1-D3, Stroock and Varadhan show that for each $(s, x) \in [a, b) \times E^d$ there is a probability measure $P_{s,x}$ on \mathcal{M}^s which solves what they call "the martingale problem." That $P_{s,x}$ is a solution to the martingale problem is equivalent to the existence of a Wiener process $\{W_t, a \le t \le s\}$ on $(C[a, s], \mathcal{M}^s, P_{s,x})$ for which

$$X_{t} = x + \int_{a}^{t} \beta(u, X_{u}) \, du + \int_{a}^{t} \sigma(u, X_{u}) \, dW_{u} \qquad a < t \le s,$$
(14)

where the second integral on the right is a stochastic integral in the sense of Ito. Relative to $P_{s,x}$, $\{X_t: a \le t \le s\}$ is a strong Markov process with a transition function denoted in [11] by P(t, x; u, E) for $a \le t < u \le s$. From the results of [11] and assumptions D1-D3 it is easy to see that the processes $\{X_t, a \le t \le s\}$, s < bcan be extended to a process $\{X_t, a \le t < b\}$ with transition function Q(s, x; t, E). We refer to $\{X_t, a \le t < b\}$ as the diffusion corresponding to the diffusion matrix α and drift vector β . Eq. (14) holds throughout [a, b]; that is, there is a Wiener process $\{W_t, a \le t < b\}$ constructed from $\{X_t, a \le t < b\}$ for which

$$X_{t} - X_{s} = \int_{s}^{t} \beta(u, X_{u}) \, du + \int_{s}^{t} \sigma(u, X_{u}) \, dW_{u}, \quad a \leq s < t < b.$$
(15)

We say that a function f on $E^d \times [a, b)$ is smooth if the partial derivatives $\frac{\partial f}{\partial t}$ and $\frac{\partial^2 f}{\partial x_i \partial y_j}$ exist and are continuous throughout $E^d \times [a, b)$, i, j = 1, ..., d.

Theorem 2. Let h be a smooth and everywhere positive space-time harmonic function for the process with diffusion matrix α and drift vector β . Then the process with diffusion matrix α and drift vector $\beta + \alpha \operatorname{grad}(\log h)$ has the transition density $q^{h}(s, x; t, E)$ given by (11).

Proof. The proof consists mainly of calculations based on Ito's lemma. From (15) and Ito's lemma (as stated in [11], p. 352) we have

$$h(t, X_t) - h(s, X_s) = \int_s^t G(u, X_u) \, du + \int_s^t H(u, X_u) \, dW_u \qquad a \le s < t < b \,, \tag{16}$$

B. Jamison

where G and H are defined on $[a, b) \times E^d$ by

$$G = \frac{\partial h}{\partial t} + \sum_{i} \frac{\partial h}{\partial x_{i}} b_{i} + \frac{1}{2} \sum_{i,j,k} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} \sigma_{ik} \sigma_{jk},$$

$$H = (H_{1}, ..., H_{d}), \qquad H_{k} = \sum_{i} \frac{\partial h}{\partial x_{i}} \sigma_{ik}, \qquad k = 1, ..., d.$$
(17)

The space-time process $\{(X_t, t), a \leq t \leq b\}$ can be considered a Markov process with state space $E^d \times [a, b]$. The process can be started out at any point (x, s) in its state space, and we use $P^{(s,x)}$ and $E^{(s,x)}$ to denote the corresponding probability functions expectation operators. Because h is space-time harmonic, we have

$$E_{(s,x)} h(t, X_t) = h(s, x) \quad (s, x) \in E^d \times [\dot{a}, b);$$
(18)

in fact, from the optional stopping theorem for martingales ([4], p. 376) we have

$$E_{(s,x)}h(\tau, X_{\tau}) = h(s, x) \tag{19}$$

for any stopping time τ with $s \leq \tau < b' < b$. Let $U = \{(s, x): a < s < b, G(s, x) > 0\}$. Suppose $U \neq \emptyset$, and $(s, x) \in U$. Let $b' \in (s, b)$ and define τ to be the first exit time after s of $\{X_i\}$ from U, or b', whichever is smaller. Because $\{X_i\}$ has continuous sample paths and U is open, $P_{(s,x)}[\tau > s] = 1$. Taking $t = \tau$ in (16), we have

$$h(\tau, X_{\tau}) - h(s, X_s) = \int_{s}^{\tau} G(u, X_u) \, du + \int_{s}^{\tau} H(u, X_u) \, dW_u.$$
(20)

Since $\{\int_{s}^{t} H(u, X_{u}) dW_{u}, t \in (s, b)\}$ is a martingale, $E_{(s,x)}[\int_{s}^{\tau} H(u, X_{u}) dW_{u}] = 0$, again by the optional stopping theorem for martingales. Applying $E_{(s,x)}$ to both sides of (20) and using (19) we obtain $E_{(s,x)}[\int_{s}^{\tau} G(u, X_{u}) du] = 0$. Since $G(u, X_{u}) > 0$ for $u \in (s, \tau)$, and since $P_{(s,t)}(\tau > s) = 1$, we have a contradiction. Thus $U = \emptyset$, so $G \leq 0$. A similar argument shows that $G \geq 0$, so G = 0. Since $a_{ij} = \sum_{k} \sigma_{ik} \sigma_{kj} = \sum_{k} \sigma_{ik} \sigma_{jk}$, (17) yields

$$\frac{\partial h}{\partial t} + \frac{1}{2} \sum_{i,j} a_{ij} \frac{\partial h}{\partial x_i \partial x_j} + \sum_i b_i \frac{\partial h}{\partial x_i} = 0$$
(21)

for any smooth space-time harmonic function h. Applying (15) and Ito's lemma to $\log h$ instead of h, we have

$$\log h(t, X_t) - \log h(s, X_s) = \int_s^t \overline{G}(u, X_u) \, du + \int_s^t \overline{H}(u, X_u) \, dW_u \quad a \leq s < t < b, \quad (22)$$

where \overline{G} and \overline{H} are defined on $E^d \times [a, b)$ by

$$\overline{G} = \frac{\partial(\log h)}{\partial t} + \sum_{i} \frac{\partial(\log h)}{\partial x_{i}} \beta_{i} + \frac{1}{2} \sum_{i,j,k} \frac{\partial^{2}(\log h)}{\partial x_{i} \partial x_{j}} \sigma_{ik} \sigma_{jk},$$
$$\overline{H} = (\overline{H}_{1}, \dots, \overline{H}_{d}), \qquad \overline{H}_{k} = \sum_{i} \frac{\partial(\log h)}{\partial x_{i}} \sigma_{ik}.$$

Using matrix multiplication and interpreting vectors as column vectors, we can write $\overline{H} = \operatorname{grad}(\log h)\sigma$. Simple computations together with an application of (21) yield $\overline{G} = -(1/2)\langle \overline{H}, \overline{H} \rangle$. Setting $\gamma = \operatorname{grad}(\log h)$ we have $\overline{G} = -(1, 2)\langle \sigma\gamma, \sigma\gamma\rangle$, and (22) becomes

$$\log h(t, X_t) - \log h(s, X_s) = \int \langle \sigma \gamma, dW_u \rangle - \frac{1}{2} \int \langle \sigma \gamma, \sigma \gamma \rangle du.$$
(23)

Since $dX_t = \sigma dW_t + \beta dt$, $\langle \gamma, dX_t \rangle = \langle \gamma, \sigma dW_t \rangle + \langle \gamma, \beta \rangle dt$, and since σ is symmetric, we have

$$\log h(t, X_t) - \log h(s, X_s) = \int_s^t \langle \gamma, dX_u \rangle - \int_s^t (\langle \gamma, \beta \rangle + \frac{1}{2} \langle \sigma \gamma, \sigma \gamma \rangle) du.$$
(24)

Let $Q_{s,x}$, $a \leq s < t < b$, $x \in E^d$ be the solution to the martingale problem with the same diffusion matrix α but with β replaced by $\delta = \beta + \alpha \operatorname{grad}(\log h) = \beta + \alpha \gamma$. To prove the theorem we must show that, for each $a \leq s < t < b$ and $x \in E^d$, the restriction $Q_{s,x,t}$ of $Q_{s,x}$ to \mathcal{M}_s^t is absolutely continuous with respect to the restriction $P_{s,x,t}$ of $P_{s,x}$ to \mathcal{M}_s^t and that

$$\frac{dQ_{s,x,t}}{dP_{s,x,t}} = M_s^t = \frac{h(t, X_t)}{h(s, X_s)}.$$
(25)

(Here \mathcal{M}_s^t is the sub-field of \mathcal{M}^t generated by the family $\{X_u; s \leq u \leq t\}$.) For this purpose, we introduce $R_{s,x}$, $a \leq s < t < b$, $s \in E^d$, the solution to the martingale problem with diffusion coefficient α and zero drift vector. On the one hand

$$\frac{dQ_{s,x,t}}{dP_{s,x,t}} = \frac{dQ_{s,x,t}}{dR_{s,x,t}} \cdot \frac{dR_{s,x,t}}{dP_{s,x,t}}.$$
(26)

On the other hand, by the Cameron-Martin formula (Lemma 6.1 of [11])

$$\frac{dQ_{s,x,t}}{dR_{s,x,t}} = \exp\left[\int_{s}^{t} \langle \alpha^{-1} \delta, dX_{u} \rangle - \frac{1}{2} \int_{s}^{t} \langle \delta, \alpha^{-1} \delta \rangle du\right]$$

$$\frac{dP_{s,x,t}}{dR_{s,x,t}} = \exp\left[\int_{s}^{t} \langle \alpha^{-1} \beta, dX_{u} \rangle - \frac{1}{2} \int_{s}^{t} \langle \beta, \alpha^{-1} \delta \rangle du\right].$$
(27)

From (26) and (27) it follows that

$$\frac{dQ_{s,x,t}}{dP_{z,x,t}} = \exp\left[\int_{s}^{t} \alpha^{-1}(\delta - \beta), dX_{u} - \frac{1}{2} \int_{s}^{t} (\langle \delta, \alpha^{-1} \delta \rangle - \langle \beta, \alpha^{-1} \beta \rangle) du\right].$$
(28)

But $\delta - \beta = \alpha \gamma$, and elementary algebra yields

$$\langle \delta, \alpha^{-1} \delta \rangle - \langle \beta, \alpha^{-1} \beta \rangle = 2 \langle \gamma, \beta \rangle + \langle \alpha \gamma, \gamma \rangle.$$

Since $\langle \alpha \gamma, \gamma \rangle = \langle \sigma \gamma, \sigma \gamma \rangle$, comparison of (28) and (24) yields

$$\frac{dQ_{s,x,t}}{dP_{s,x,t}} = \exp\left[\int_{s}^{t} \langle \gamma, dX_{u} \rangle - \int_{s}^{t} (\langle \gamma, \beta \rangle + \frac{1}{2} \langle \sigma \gamma, \sigma \gamma \rangle) du\right]$$

$$= \exp\left[\log h(t, X_{t}) - \log h(s, X_{s})\right]$$

$$= \frac{h(t, X_{t})}{h(s, X_{s})} = M_{s}^{t}$$
(29)

which establishes (25) and completes the proof of the theorem.

Since h is defined in terms of v_b , and since v_b can rarely be obtained explicitly, there is little possibility of applying this last theorem unless we can establish under rather general conditions that space-time harmonic functions h of the sort defined by (8) are indeed smooth. To this end, we now assume that the coefficients a_{ij} and b_i satisfy appropriate Hölder conditions, specifically, that there is a $\kappa > 0$ and an $\alpha \in [0, 1]$ for which

$$|a_{ij}(x,t) - a_{ij}(y,t)| \le \kappa |x - y|^{\alpha},$$

$$|b_i(x,t) - b_i(y,t)| \le \kappa |x - y|^{\alpha}$$

for each x and y in E^d and $t \in [a, b]$ and for which

$$|a_{ij}(x,s)-a_{ij}(x,t)| \leq \kappa |s-t|^{\alpha}$$

for each $x \in E^d$ and s, t in [a, b], these conditions holding for each $1 \leq i, j \leq d$. We also assume there is a $\gamma > 0$ such that

$$\sum_{i,j=1}^{d} a_{ij}(s,t) \lambda_i \lambda_j \ge \gamma \sum_{i,j=1}^{d} \lambda_i^2,$$

where $(x, t) \in E^d \times [a, b]$. These assumptions imply that conditions 0.23 B_1 , B_2 and B_3 on p. 227 of volume II of [6] hold in the strip $E^d \times [a, b]$. Eq. (8) shows that $h(t, x) = \int q(t, x; b, y) v_b(dy)$. The transition density q is the fundamental solution to Eq. (21) on the strip $E^d \times [a, b), \varepsilon > 0$ (see Section 0.23 of [6] vol. II for the terminology here). For each fixed $t \in [a, b)$ and $y \in E^d$, q(s, x; t, y) is a smooth function of $(s, x) \in (a, t) \times E^d$, and the inequalities (0.33)–(0.36) on p. 227 of [6], volume II imply that h(s, x) is smooth if v_b is a finite measure. This is a serious restriction, for in general v_b is merely σ -finite. However, we know that there are compact sets $C_m \uparrow E^d$ with $v_b(C_m) < \infty$, $m = 1, 2, \dots$ Let v_m be the restriction of v_b to $C_{m'}$ and let $h_m(t, x) = \int q(t, x; b, y) v_m(dy)$. Then h_m is smooth, and a solution to (21), and $h_m \uparrow h$. By virtue of Theorem 15 on p. 80 of [7], the smoothness of h follows once we show that h is bounded on sets of the form $D \times [a + \varepsilon, b - \varepsilon]$ where $\varepsilon > 0$ and D is a bounded open subset of E^d . If the coefficients a_{ij} are once continuously differentiable, with derivatives satisfying a Hölder condition in the space coordinate, (21) can be written as

$$\frac{\partial h}{\partial t} + \frac{1}{2} \sum_{i,j=1}^{\infty} \frac{\partial^2}{\partial x_i \partial x_j} (\tilde{a}_{ij}h) + \sum_i \tilde{b}_i \frac{\partial h}{\partial x_i} = 0,$$

and the Harnack inequalities of Moser [9] as extended by Aronson and Serrin [11] then imply that the convergence of h_m to h is uniform on sets $R \times [a + \varepsilon, b - \varepsilon]$, where R is a bounded rectangle in E^d . Thus h is bounded on sets $D \times [a + \varepsilon, b - \varepsilon]$, and is therefore smooth. (In applying results from the theory of parabolic equations to the analysis of Eq. (4.14), one usually reverses the direction of time: this is discussed in the footnote on p. 227 of volume II of [6].)

References

- 1. Aronson, D.G., Serrin, J.: Local behavior of solutions of quasilinear parabolic equations. Arc. Rational Mech. Anal. 25, 81-122 (1967)
- 2. Bernstein, S.: Sur les liasons entre les grandeurs aléatoires. Verh. des intern. Mathematikerkongr., Zurich, 1932, Band I

- 3. Beurling, A.: An automorphism of product measures, Ann. of Math. 72, 189-200 (1960)
- 4. Doob, J.L.: Stochastic processes. New York: Wiley 1953
- Doob, J.L.: A Markov chain theorem. Probability and Statistics (The Harald Cramér Volume). New York: Wiley 1959
- 6. Dynkin, E.B.: Markov processes, Vols. 1 and 2. New York: Academic Press 1965
- 7. Friedman, A.: Partial differential equations of parabolic type, Englewood Cliffs, N.J.: Prentice Hall 1964
- 8. Jamison, B.: Reciprocal processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 30, 65-86 (1974)
- 9. Moser, J.: A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 80, 931-954 (1958)
- Schrödinger, E.: Über die Umkehrung der Naturgesetze. Sitz, Ber. der Preuss. Akad. Wissen., Berlin Phys. Math. 144 (1931)
- 11. Stroock, D. W., Varadhan, S. R. S.: Diffusion processes with continuous coefficients. Comm. Pure Appl. Math. 22, I, 345-400; II, 479-530 (1969)

Benton Jamison State University of New York at Albany 1400 Washington Ave. Albany, New York 12222, USA

(Received September 27, 1974)