The Markov Processes of Schrödinger

Benton Jamison*

Introduction

Let $\left\{X_{t}, t \in I\right\}$ be a stochastic process on a finite or semi-infinite interval I. For each $J \subset I$, let \mathscr{A}_{J} be the σ-field of events generated by $X_{t}, t \in J$, and \mathscr{B}_{J} be the σ-field generated by $X_{t}, t \in I \backslash J$. We say that $\left\{X_{t}, t \in I\right\}$ is a reciprocal process if, for any subinterval $J=(s, t)$ of I,

$$
\begin{equation*}
P\left(A \cap B \mid X_{s}, X_{t}\right)=P\left(A \mid X_{s}\right) P\left(B \mid X_{t}\right), \quad A \in \mathscr{B}_{I}, B \in \mathscr{B}_{J} \tag{1}
\end{equation*}
$$

The concept was formulated in 1932 by Bernstein [2] in connection with the processes introduced in 1931 by Schrödinger [10]. Consider the transition $q(s, x ; t, y)$ for Brownian motion $\left\{Y_{t}, a \leqq t \leqq b\right\}$ on an interval $[a, b]$:

$$
\begin{equation*}
q(s, x ; t, y)=\frac{1}{\sqrt{2 \Pi(t-s)}} e^{-\frac{(y-x)^{2}}{2(t-s)}}, \quad a \leqq s<t \leqq b . \tag{2}
\end{equation*}
$$

If we prescribe an initial distribution μ_{a} for Y_{a}, the finite dimensional distributions of $\left\{Y_{t}, a \leqq t \leqq b\right\}$ are determined by (2) and μ_{a}; in particular the distribution of Y_{b} is so determined. Schrödinger asks the following question. Suppose we prescribe in advance not only a distribution μ_{a} of Y_{a} but an arbitrary distribution μ_{b} of Y_{b} as well, what is the most likely way for Y_{t} to evolve as t goes from a to b ? His answer amounts to the construction of a new process $\left\{X_{t}, a \leqq t \leqq b\right\}$. He obtains from the original process the "intermediate probabilities"

$$
\begin{equation*}
P(s, x ; t, y ; u, z)=\frac{q(s, x ; t, y) q(t, y ; u, z)}{q(s, x ; u, z)}, \quad a \leqq s<t<u \leqq b . \tag{3}
\end{equation*}
$$

We see that $p(s, x ; t, y ; u, z)$ is the value at y of the conditional density of Y_{t} given $Y_{s}=x$ and $Y_{u}=z$. Let μ be any two dimensional probability measure with marginals μ_{a} and μ_{b}. (There are in general many such measures.) The distribution μ is used as the joint distribution of X_{a} and X_{b} in the new process $\left\{X_{t}, a \leqq t \leqq b\right\}$, whose finite-dimensional distributions are as follows. Let $a<t_{1}<\cdots<t_{n}<b$. Let $A, B, E_{1}, \ldots, E_{n}$ be measurable sets in the state space. Let $E=\prod_{i=1}^{n} E_{i}, A=A \times E \times B$. Define

$$
\begin{array}{r}
P_{\mu}(A)=\int_{A \times B} d \mu(x, y) \int_{E} p\left(a, x ; t_{1}, x_{1} ; b, y\right) p\left(t_{1}, x_{1} ; t_{2} x_{2} ; b, y\right) \ldots \tag{4}\\
p\left(t_{n-1}, x_{n-1} ; t_{n}, x_{n} ; b, y\right) d x_{1} \ldots d x_{n} .
\end{array}
$$

It follows from the results of [8] that (3) defines a consistent set of finite-dimensional distributions such that the stochastic process $\left\{X_{t}, a \leqq t \leqq b\right\}$ defined by them is a

[^0]reciprocal process. Furthermore $p(s, x ; t, y ; u, z)$ is the value at y of the conditional density of X_{t} given $X_{s}=x$ and $X_{u}=z$. We say that the process $\left\{X_{t}, a \leqq t \leqq b\right\}$ is derived from $\left\{Y_{t}, a \leqq t \leqq b\right\}$. All this goes through if the Brownian transition function (2) is replaced by any strictly positive Markov transition density $q(s, x ; t, y)$. Schrödinger's processes are not so general. Given marginals μ_{a} and μ_{b}, he uses as endpoint measure a particular μ with these marginals, one which can be written in the form
\[

$$
\begin{equation*}
\mu(E)=\int_{E} q(a, x ; b, y) v_{a}(d x) v_{b}(d y) \tag{5}
\end{equation*}
$$

\]

where E is an arbitrary two-dimensional Borel set and where v_{a} and v_{b} are σ-finite one-dimensional measures. Schrödinger's physical intuition convinced him of the existence of a unique such μ with the given marginals μ_{a} and μ_{b}. Indeed, a slight extension of a result of Beurling [3] yields existence and uniqueness (see [8]).

In [8], it is shown that it is precisely for those measures which have the representation (5) that the derived process $\left\{X_{t}, a \leqq t \leqq b\right\}$ has the Markov property. In this paper we show that these Markov processes of Schrödinger are h-path processes in the sense of Doob [5], where h is a space-time harmonic function for the original process $\left\{Y_{t}, a \leqq t \leqq b\right\}$. This fact is exploited to show that under certain conditions the sample paths of $\left\{X_{t}, a \leqq t \leqq b\right\}$ are almost surely continuous on [a,b]; in particular the $\left\{Y_{i}\right\}$ process "tied down" at $t=a$ and $t=b$ is well-defined. We then treat the case where $\left\{Y_{t}, a \leqq t \leqq b\right\}$ is a diffusion in Euclidean space. We show that if the coefficients of the diffusion equation satisfy some regularity conditions, the derived process $\left\{X_{t}, a \leqq t \leqq b\right\}$ turns out also to be a diffusion, with the same diffusion coefficients, plus an additional drift term.

§1

Let (S, d) be a σ-compact metric space, with Σ the σ-field generated by the open sets of S. Let $[a, b]$ be a closed interval of real numbers. Let Ω, Ω_{0}, and Ω_{u} be, respectively, the set of all functions from $[a, b],[a, b)$, and $[a, \mu]$ into S (here $a<u \leqq b)$. We denote by X_{t} the coordinate function on Ω; that is, $X_{t}(\omega)=\omega(t)$ for $\omega \in \Omega, t \in[a, b]$. We also use X_{t} to denote the coordinate functions on Ω_{0} and Ω_{u}. The smallest σ-field \mathscr{G} on Ω relative to which X_{t} is $\mathscr{G}-\Sigma$ measurable for each $t \in[a, b]$ is denoted by \mathscr{I}. The σ-fields \mathscr{I}_{0} and \mathscr{I}_{u} are defined in the same way on Ω_{0} and Ω_{u} respectively. Let $Q(s, x ; t, E), a \leqq s<t \leqq b, x \in S, E \in \Sigma$, be a Markov transition probability function. We assume that Q is given by a strictly positive density relative to some σ-finite measure λ on Σ; that is, there is a strictly positive function $q(s, x ; t, y)$ defined for $a \leqq s<t \leqq b$ and $(x, y) \in S \times S, \Sigma$-measurable in (x, y) for each s and t, and for which

$$
\begin{equation*}
Q(s, x, t, E)=\int_{E} q(s, x ; t, y) \lambda(d y), \quad a \leqq t \leqq b, x \in S, E \in \Sigma \tag{6}
\end{equation*}
$$

For each $a \leqq s<t<u \leqq b$ and $(x, y, z) \in S \times S \times S$ we define $p(s, x ; t, y ; u, z$) by (3). Now set

$$
\begin{array}{r}
P(s, x ; t, E ; u, z)=\int_{E} p(s, x ; t, y ; u, z) \lambda(d y), \tag{7}\\
a \leqq s<t<u \leqq b,(x, y) \in S \times S, E \in \Sigma .
\end{array}
$$

It is observed in Section 3 of [8] that $P(s, x ; t, E ; u, y)$ is a reciprocal transition function. Let μ be a probability measure on $\Sigma \times \Sigma$. Then μ and $P(s, x ; t, E ; u, y)$ define a measure P_{μ} on \mathscr{I} relative to which $\left\{X_{t}, a \leqq t \leqq b\right\}$ is a reciprocal process. (See Theorem 2.1 of [8]. It is clear that 2.2 of [8] can be written as (4) of this paper.) We assume that there are σ-finite measures v_{a} and v_{b} on Σ for which (5) holds for $E \in \Sigma \times \Sigma$. Then, by virtue of Theorem 3.1 of [8], $\left\{X_{t}, a \leqq t \leqq b\right\}$ is a Markov process relative to the probability space $\left(\Omega, \mathscr{I}, P_{\mu}\right)$. We denote by μ_{a} and μ_{b} the marginals of μ, that is, $\mu_{a}(E)=\mu(E \times S)$ and $\mu_{b}(E)=\mu(S \times E)$ for each $E \in \Sigma$. Let P be the probability measure on \mathscr{I} (constructed in the usual way) for which $\left\{X_{t}, a \leqq t \leqq b\right\}$ is a Markov process with initial distribution μ_{a} and transition function $Q(s, x ; t, E)$. We will show that P_{μ} can be obtained from P by means of a multiplicative functional; in fact we can use Doob's construction of an " h-path process" to go from P to P_{μ}. First, define h on $[a, b) \times S$ by

$$
\begin{equation*}
h(t, x)=\int q(t, x ; b, y) v_{b}(d y) \quad x \in S, t \in[a, b) . \tag{8}
\end{equation*}
$$

It is easily verified that h is space-time harmonic relative to Q; that is,

$$
\begin{equation*}
h(s, x)=\int Q(s, x ; t, d y) h(t, y) \quad x \in S, a \leqq s<t<b \tag{9}
\end{equation*}
$$

Following Doob [5] we define a transition probability operator Q^{h} by

$$
\begin{equation*}
Q^{h}(s, x ; t, E)=\frac{1}{h(s, x)} \int_{E} Q(s, x ; t, d y) h(t, y), \quad a<s<t<b, x \in S, E \in \Sigma \tag{10}
\end{equation*}
$$

Let P^{h} be the measure on $\left(\Omega^{0}, \mathscr{I}^{0}\right)$ for which $\left\{X_{t}, a \leqq t<b\right\}$ is a Markov process with initial distribution μ_{a} and transition probability operator $Q^{h}(s, x ; t, E)$. Note that for $a \leqq s<t<b, Q^{h}(s, x ; t, E)=\int_{E} q^{h}(s, x ; t, y) \lambda(d y)$, where

$$
\begin{equation*}
q^{h}(s, x ; t, y)=\frac{q(s, x ; t, y) h(t, y)}{h(s, x)} \tag{11}
\end{equation*}
$$

Let $a<s<t<b$. By (3), (4) and (5)

$$
\begin{aligned}
& P_{\mu}\left(X_{s} \in E, X_{t} \in F\right) \\
& \quad=\iint v_{a}(d x) v_{b}(d y) \int_{F} \int_{E} q\left(a, x ; s, z_{1}\right) q\left(s, z_{1} ; t, z_{2}\right) q\left(t, z_{2} ; b, y\right) \lambda\left(d z_{1}\right) \lambda\left(d z_{2}\right) \\
& \quad=\int v_{a}(d x) \iint q\left(a, x ; s, z_{1}\right) q\left(s, z_{1} ; t, z_{2}\right) h\left(t, z_{2}\right) \lambda\left(d z_{1}\right) \lambda\left(d z_{2}\right)
\end{aligned}
$$

But by (5),

$$
\mu_{a}(A)=\int_{A} v_{a}(d x) \int q(a, x ; b, y) v_{b}(d y)=\int_{A} v_{a}(d x) h(a, x),
$$

so the last expression for $P_{\mu}\left(X_{s} \in E, X_{t} \in F\right)$ is equal to

$$
\int \frac{\mu_{a}(d x)}{h(a, x)} \int_{F} \int_{E} q\left(a, x ; s, z_{1}\right) q\left(s, z_{1} ; t, z_{2}\right) h\left(t, z_{2}\right) \lambda\left(d z_{1}\right) \lambda\left(d z_{2}\right)
$$

which is equal to $P^{h}\left(X_{s} \in E, X_{t} \in F\right)$. A similar argument shows that

$$
P_{\mu}\left(X_{a} \in E, X_{t} \in F\right)=P^{h}\left(X_{a} \in E, X_{t} \in F\right) \quad \text { for } a<t<b
$$

Since $P_{\mu}\left(X_{a} \in E\right)=P^{h}\left(X_{a} \in E\right)=\mu_{a}(E)$, and since $\left\{X_{t}, a<t<b\right\}$ is a Markov process relative to both P_{μ} and P^{h}, this shows that, if $a<t<b$, the restriction of P_{μ} to $\left\{X_{s}, a \leqq s<t\right\}$ (that is, to \mathscr{I}_{t}) is given by P^{h}. If we define

$$
\begin{equation*}
M_{s}^{t}=\frac{h\left(t, X_{t}\right)}{h\left(s, X_{t}\right)} \quad a \leqq s \leqq t<b \tag{12}
\end{equation*}
$$

M_{s}^{t} is a multiplicative functional for the Markov process $\left\{X_{t}, a \leqq t<b\right\}$ relative to P and $P_{\mu}\left(=P_{h}\right)$ on each $\mathscr{I}_{t}, a<t<b$, is obtained from P via transformation by M_{s}^{t} [6]. This amounts to the same thing as observing, as does Doob [4], that

$$
\begin{equation*}
P_{h}(A)=\int_{A} k\left(t, X_{t}\right) d P, \quad A \in \mathscr{F}_{t} \tag{13}
\end{equation*}
$$

where $k(t, x)=h(t, x) / \int h(a, y) \mu_{a}(d y)$. The measure P_{μ} on \mathscr{I}, as distinct from the sub- σ-fields $\mathscr{\mathscr { I }}_{t}$, may not be obtained from P by a multiplicative functional transformation, because we need not have $P_{\mu} \ll P$ on \mathscr{I}. For instance, the marginal distributions μ_{b} and $Q_{b} \mu_{a}$ of P_{μ} and P respectively, where

$$
Q_{b} \mu_{a}(E)=\int_{E} Q(a, x ; b, E) \mu_{a}(d x)
$$

may be mutually singular, as they indeed are if μ_{b} and λ are mutually singular.
For each $x \in S$, we denote by P_{x} the measure on \mathscr{I} for which $\left\{X_{t}, a \leqq t \leqq b\right\}$ is a Markov process with initial measure $\delta_{x}\left(\right.$ where $\left.\delta_{x}(\{x\})=1\right)$ and transition function $Q(s, x ; t, E)$.

Theorem 1. Suppose that for each $x \in S$, the set C of all continuous paths on $[a, b]$ has outer measure one relative to P_{x}. Suppose in addition that for each $y_{0} \in S$ the following holds: given $\delta>0$ and $\varepsilon>0$ there is a t_{0} such that if $d\left(y, y_{0}\right) \geqq \delta$ and $t_{0}<t<b$, then $q\left(t, y ; b, y_{0}\right) \leqq \varepsilon$. Then, for each probability measure μ on Σ, the measure P_{μ} defined by (4) also assigns outer measure 1 to C.

Proof. It is clear that it suffices to prove the theorem for measures μ concentrating all their mass on an arbitrary pair $\left(x_{0}, y_{0}\right) \in S \times S$. Let μ be such a measure. Then $h(x, t)=q\left(t, x ; b, y_{0}\right)$. Since $P_{\mu}=P_{h} \ll P_{x_{0}}$ on \mathscr{I}_{t} for each $a<t<b$ by virtue of (11), it is clear that P_{μ} assigns outer measure 1 to the set of all paths on $[a, b]$ which are continuous on $[a, b)$. Observe with Doob [5] that $\left\{1 / h\left(t, X_{t}\right): a \leqq t<b\right\}$ is a martingale with respect to P^{h}-measure on \mathscr{I}^{0}. It follows from the non-negativity of h that as $t \uparrow b 1 / h\left(t, X_{t}\right)$ converges P^{h}-almost surely to a finite limit, hence $h\left(t, X_{t}\right)=$ $q\left(t, X_{t} ; b, y_{0}\right)$ converges to a non-zero limit. Now the assumption on q contained in the hypothesis of the theorem shows that, given $f:[a, b) \rightarrow S, q\left(t, f(t) ; b, y_{0}\right)$ cannot converge to a non-zero limit as $t \uparrow b$ unless $f(t)$ converges to y_{0} as $t \uparrow b$. It easily follows that P^{h}, hence P_{μ}, also assigns outer measure 1 to the set of all paths on [a,b) which have limit y_{0} as $t \uparrow b$. Thus the P_{μ}-outer measure of C is 1 , and the proof is complete.

§ 2

We now consider the case where S is equal to d-dimensional Euclidean space E^{d} and Σ is the σ-field of Borel subsets of S. We assume that the underlying Markov
process is a diffusion in the sense of Stroock and Varadhan [11]. Let $a_{i j}, i, j=1, \ldots, d$ and $b_{i}, i=1, \ldots, d$ be real-valued functions on $E^{d} \times[a, b)$ such that the following hold
(D1) $a_{i j}$ is continuous and bounded on $E^{d} \times[a, b-\varepsilon)$ for each $\varepsilon>0$ and $i, j=1, \ldots, d$.
(D2) The matrix $\left(\left(a_{i j}(x, t)\right)\right)$ is positive definite for each $(x, t) \in E^{d} \times[a, b)$.
(D3) b_{i} is measurable and bounded on $E^{d} \times[a, b-\varepsilon]$ for each $\varepsilon>0$ and $i=1, \ldots, d$.
We denote the matrix $\left(\left(a_{i j}\right)\right)$ by α and the vector $\left(b_{i}\right)$ by β. Let $\sigma=\alpha^{1 / 2}$ (see [11], p. 347). For each $s \in[a, b)$ let $C[a, s]$ be the subclass of Ω^{s} consisting of all continuous real valued functions on $[a, s]$, and let $\mathscr{M}^{s}=\left\{E \cap C[a, s]: E \in \mathscr{I}^{s}\right\}$. Then \mathscr{M}^{s} is a σ-field over $C[a, s]$: in fact if we consider $C[a, s]$ as a metric space with metric given by the uniform norm, \mathscr{M}^{s} is the σ-field generated by the open spheres. Under conditions D1-D3, Stroock and Varadhan show that for each $(s, x) \in[a, b) \times E^{d}$ there is a probability measure $P_{s, x}$ on \mathscr{M}^{s} which solves what they call "the martingale problem." That $P_{s, x}$ is a solution to the martingale problem is equivalent to the existence of a Wiener process $\left\{W_{i}, a \leqq t \leqq s\right\}$ on $(C[a, s]$, $\mathscr{M}^{s}, P_{s, x}$) for which

$$
\begin{equation*}
X_{t}=x+\int_{a}^{t} \beta\left(u, X_{u}\right) d u+\int_{a}^{t} \sigma\left(u, X_{u}\right) d W_{u} \quad a<t \leqq s, \tag{14}
\end{equation*}
$$

where the second integral on the right is a stochastic integral in the sense of Ito. Relative to $P_{s, x},\left\{X_{t}: a \leqq t \leqq s\right\}$ is a strong Markov process with a transition function denoted in [11] by $P(t, x ; u, E)$ for $a \leqq t<u \leqq s$. From the results of [11] and assumptions D 1-D3 it is easy to see that the processes $\left\{X_{t}, a \leqq t \leqq s\right\}, s<b$ can be extended to a process $\left\{X_{t}, a \leqq t<b\right\}$ with transition function $Q(s, x ; t, E)$. We refer to $\left\{X_{t}, a \leqq t<b\right\}$ as the diffusion corresponding to the diffusion matrix α and drift vector β. Eq. (14) holds throughout $[a, b$); that is, there is a Wiener process $\left\{W_{t}, a \leqq t<b\right\}$ constructed from $\left\{X_{t}, a \leqq t<b\right\}$ for which

$$
\begin{equation*}
X_{t}-X_{s}=\int_{s}^{t} \beta\left(u, X_{u}\right) d u+\int_{s}^{t} \sigma\left(u, X_{u}\right) d W_{u}, \quad a \leqq s<t<b \tag{15}
\end{equation*}
$$

We say that a function f on $E^{d} \times[a, b)$ is smooth if the partial derivatives $\frac{\partial f}{\partial t}$ and $\frac{\partial^{2} f}{\partial x_{i} \partial y_{j}}$ exist and are continuous throughout $E^{d} \times[a, b), i, j=1, \ldots, d$.

Theorem 2. Let h be a smooth and everywhere positive space-time harmonic function for the process with diffusion matrix α and drift vector β. Then the process with diffusion matrix α and drift vector $\beta+\alpha \operatorname{grad}(\log h)$ has the transition density $q^{h}(s, x ; t, E)$ given by (11).

Proof. The proof consists mainly of calculations based on Ito's lemma. From (15) and Ito's lemma (as stated in [11], p. 352) we have

$$
\begin{equation*}
h\left(t, X_{t}\right)-h\left(s, X_{\mathrm{s}}\right)=\int_{s}^{t} G\left(u, X_{u}\right) d u+\int_{s}^{t} H\left(u, X_{u}\right) d W_{u} \quad a \leqq s<t<b, \tag{16}
\end{equation*}
$$

where G and H are defined on $[a, b) \times E^{d}$ by

$$
\begin{align*}
& G=\frac{\partial h}{\partial t}+\sum_{i} \frac{\partial h}{\partial x_{i}} b_{i}+\frac{1}{2} \sum_{i, j, k} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} \sigma_{i k} \sigma_{j k}, \tag{17}\\
& H=\left(H_{1}, \ldots, H_{d}\right), \quad H_{k}=\sum_{i} \frac{\partial h}{\partial x_{i}} \sigma_{i k}, \quad k=1, \ldots, d .
\end{align*}
$$

The space-time process $\left\{\left(X_{t}, t\right), a \leqq t \leqq b\right\}$ can be considered a Markov process with state space $E^{d} \times[a, b)$. The process can be started out at any point (x, s) in its state space, and we use $P^{(s, x)}$ and $E^{(s, x)}$ to denote the corresponding probability functions expectation operators. Because h is space-time harmonic, we have

$$
\begin{equation*}
E_{(s, x)} h\left(t, X_{t}\right)=h(s, x) \quad(s, x) \in E^{d} \times[\dot{a}, b) ; \tag{18}
\end{equation*}
$$

in fact, from the optional stopping theorem for martingales ([4], p. 376) we have

$$
\begin{equation*}
E_{(s, x)} h\left(\tau, X_{\tau}\right)=h(s, x) \tag{19}
\end{equation*}
$$

for any stopping time τ with $s \leqq \tau<b^{\prime}<b$. Let $U=\{(s, x): a<s<b, G(s, x)>0\}$. Suppose $U \neq \emptyset$, and $(s, x) \in U$. Let $b^{\prime} \in(s, b)$ and define τ to be the first exit time after s of $\left\{X_{t}\right\}$ from U, or b^{\prime}, whichever is smaller. Because $\left\{X_{t}\right\}$ has continuous sample paths and U is open, $P_{(s, x)}[\tau>s]=1$. Taking $t=\tau$ in (16), we have

$$
\begin{equation*}
h\left(\tau, X_{\tau}\right)-h\left(s, X_{s}\right)=\int_{s}^{\tau} G\left(u, X_{u}\right) d u+\int_{s}^{\tau} H\left(u, X_{u}\right) d W_{u} \tag{20}
\end{equation*}
$$

Since $\left\{\int_{s}^{t} H\left(u, X_{u}\right) d W_{u}, t \in(s, b)\right\}$ is a martingale, $E_{(s, x)}\left[\int_{s}^{\tau} H\left(u, X_{u}\right) d W_{u}\right]=0$, again by the optional stopping theorem for martingales. Applying $E_{(s, x)}$ to both sides of (20) and using (19) we obtain $E_{(s, x)}\left[\int_{s}^{\tau} G\left(u, X_{u}\right) d u\right]=0$. Since $G\left(u, X_{u}\right)>0$ for $u \in(s, \tau)$, and since $P_{(s, t)}(\tau>s)=1$, we have a contradiction. Thus $U=\emptyset$, so $G \leqq 0$. A similar argument shows that $G \geqq 0$, so $G=0$. Since $a_{i j}=\sum_{k} \sigma_{i k} \sigma_{k j}=\sum_{k} \sigma_{i k} \sigma_{j k}$, (17) yields

$$
\begin{equation*}
\frac{\partial h}{\partial t}+\frac{1}{2} \sum_{i, j} a_{i j} \frac{\partial h}{\partial x_{i} \partial x_{j}}+\sum_{i} b_{i} \frac{\partial h}{\partial x_{i}}=0 \tag{21}
\end{equation*}
$$

for any smooth space-time harmonic function h. Applying (15) and Ito's lemma to $\log h$ instead of h, we have

$$
\begin{equation*}
\log h\left(t, X_{t}\right)-\log h\left(s, X_{s}\right)=\int_{s}^{t} \bar{G}\left(u, X_{u}\right) d u+\int_{s}^{t} \bar{H}\left(u, X_{u}\right) d W_{u} \quad a \leqq s<t<b \tag{22}
\end{equation*}
$$

where \bar{G} and \bar{H} are defined on $E^{d} \times[a, b)$ by

$$
\begin{gathered}
\bar{G}=\frac{\partial(\log h)}{\partial t}+\sum_{i} \frac{\partial(\log h)}{\partial x_{i}} \beta_{i}+\frac{1}{2} \sum_{i, j, k} \frac{\partial^{2}(\log h)}{\partial x_{i} \partial x_{j}} \sigma_{i k} \sigma_{j k}, \\
\bar{H}=\left(\bar{H}_{1}, \ldots, \bar{H}_{d}\right), \quad \bar{H}_{k}=\sum_{i} \frac{\partial(\log h)}{\partial x_{i}} \sigma_{i k}
\end{gathered}
$$

Using matrix multiplication and interpreting vectors as column vectors, we can write $\bar{H}=\operatorname{grad}(\log h) \sigma$. Simple computations together with an application of (21) yield $\bar{G}=-(1 / 2)\langle\bar{H}, \bar{H}\rangle$. Setting $\gamma=\operatorname{grad}(\log h)$ we have $\bar{G}=-(1,2)\langle\sigma \gamma, \sigma \gamma\rangle$, and (22) becomes

$$
\begin{equation*}
\log h\left(t, X_{t}\right)-\log h\left(s, X_{s}\right)=\int\left\langle\sigma \gamma, d W_{u}\right\rangle-\frac{1}{2} \int\langle\sigma \gamma, \sigma \gamma\rangle d u . \tag{23}
\end{equation*}
$$

Since $d X_{t}=\sigma d W_{t}+\beta d t,\left\langle\gamma, d X_{t}\right\rangle=\left\langle\gamma, \sigma d W_{t}\right\rangle+\langle\gamma, \beta\rangle d t$, and since σ is symmetric, we have

$$
\begin{equation*}
\log h\left(t, X_{t}\right)-\log h\left(s, X_{s}\right)=\int_{s}^{t}\left\langle\gamma, d X_{u}\right\rangle-\int_{s}^{t}\left(\langle\gamma, \beta\rangle+\frac{1}{2}\langle\sigma \gamma, \sigma \gamma\rangle\right) d u . \tag{24}
\end{equation*}
$$

Let $Q_{s, x}, a \leqq s<t<b, x \in E^{d}$ be the solution to the martingale problem with the same diffusion matrix α but with β replaced by $\delta=\beta+\alpha \operatorname{grad}(\log h)=\beta+\alpha \gamma$. To prove the theorem we must show that, for each $a \leqq s<t<b$ and $x \in E^{d}$, the restriction $Q_{s, x, t}$ of $Q_{s, x}$ to \mathscr{M}_{s}^{t} is absolutely continuous with respect to the restriction $P_{s, x, t}$ of $P_{s, x}$ to \mathscr{M}_{s}^{t} and that

$$
\begin{equation*}
\frac{d Q_{s, x, t}}{d P_{s, x, t}}=M_{s}^{t}=\frac{h\left(t, X_{t}\right)}{h\left(s, X_{s}\right)} . \tag{25}
\end{equation*}
$$

(Here \mathscr{M}_{s}^{t} is the sub-field of \mathscr{M}^{t} generated by the family $\left\{X_{u} ; s \leqq u \leqq t\right\}$.) For this purpose, we introduce $R_{s, x}, a \leqq s<t<b, s \in E^{d}$, the solution to the martingale problem with diffusion coefficient α and zero drift vector. On the one hand

$$
\begin{equation*}
\frac{d Q_{s, x, t}}{d P_{s, x, t}}=\frac{d Q_{s, x, t}}{d R_{s, x t}} \cdot \frac{d R_{s, x, t}}{d P_{s, x, t}} \tag{26}
\end{equation*}
$$

On the other hand, by the Cameron-Martin formula (Lemma 6.1 of [11])

$$
\begin{align*}
\frac{d Q_{s, x, t}}{d R_{s, x, t}} & =\exp \left[\int_{s}^{t}\left\langle\alpha^{-1} \delta, d X_{u}\right\rangle-\frac{1}{2} \int_{s}^{t}\left\langle\delta, \alpha^{-1} \delta\right\rangle d u\right] \\
\frac{d P_{s, x, t}}{d R_{s, x, t}} & =\exp \left[\int_{s}^{t}\left\langle\alpha^{-1} \beta, d X_{u}\right\rangle-\frac{1}{2} \int_{s}^{t}\left\langle\beta, \alpha^{-1} \delta\right\rangle d u\right] \tag{27}
\end{align*}
$$

From (26) and (27) it follows that

$$
\begin{equation*}
\frac{d Q_{s, x, t}}{d P_{z, x, t}}=\exp \left[\int_{s}^{t} \alpha^{-1}(\delta-\beta), d X_{u}-\frac{1}{2} \int_{s}^{t}\left(\left\langle\delta, \alpha^{-1} \delta\right\rangle-\left\langle\beta, \alpha^{-1} \beta\right\rangle\right) d u\right] \tag{28}
\end{equation*}
$$

But $\delta-\beta=\alpha \gamma$, and elementary algebra yields

$$
\left\langle\delta, \alpha^{-1} \delta\right\rangle-\left\langle\beta, \alpha^{-1} \beta\right\rangle=2\langle\gamma, \beta\rangle+\langle\alpha \gamma, \gamma\rangle
$$

Since $\langle\alpha \gamma, \gamma\rangle=\langle\sigma \gamma, \sigma \gamma\rangle$, comparison of (28) and (24) yields

$$
\begin{align*}
\frac{d Q_{s, x, t}}{d P_{s, x, t}} & =\exp \left[\int_{s}^{t}\left\langle\gamma, d X_{u}\right\rangle-\int_{s}^{t}\left(\langle\gamma, \beta\rangle+\frac{1}{2}\langle\sigma \gamma, \sigma \gamma\rangle\right) d u\right] \\
& =\exp \left[\log h\left(t, X_{t}\right)-\log h\left(s, X_{s}\right)\right] \tag{29}\\
& =\frac{h\left(t, X_{t}\right)}{h\left(s, X_{s}\right)}=M_{s}^{t}
\end{align*}
$$

which establishes (25) and completes the proof of the theorem.

Since h is defined in terms of v_{b}, and since v_{b} can rarely be obtained explicitly, there is little possibility of applying this last theorem unless we can establish under rather general conditions that space-time harmonic functions h of the sort defined by (8) are indeed smooth. To this end, we now assume that the coefficients $a_{i j}$ and b_{i} satisfy appropriate Hölder conditions, specifically, that there is a $\kappa>0$ and an $\alpha \in[0,1]$ for which

$$
\begin{aligned}
\left|a_{i j}(x, t)-a_{i j}(y, t)\right| \leqq \kappa|x-y|^{\alpha} \\
\left|b_{i}(x, t)-b_{i}(y, t)\right| \leqq \kappa|x-y|^{\alpha}
\end{aligned}
$$

for each x and y in E^{d} and $t \in[a, b]$ and for which

$$
\left|a_{i j}(x, s)-a_{i j}(x, t)\right| \leqq \kappa|s-t|^{\alpha}
$$

for each $x \in E^{d}$ and s, t in $[a, b]$, these conditions holding for each $1 \leqq i, j \leqq d$. We also assume there is a $\gamma>0$ such that

$$
\sum_{i, j=1}^{d} a_{i j}(s, t) \lambda_{i} \lambda_{j} \geqq \gamma \sum_{i, j=1}^{d} \lambda_{i}^{2},
$$

where $(x, t) \in E^{d} \times[a, b]$. These assumptions imply that conditions $0.23 B_{1}, B_{2}$ and B_{3} on p. 227 of volume II of [6] hold in the strip $E^{d} \times[a, b]$. Eq. (8) shows that $h(t, x)=\int q(t, x ; b, y) v_{b}(d y)$. The transition density q is the fundamental solution to Eq. (21) on the strip $E^{d} \times[a, b), \varepsilon>0$ (see Section 0.23 of [6] vol. II for the terminology here). For each fixed $t \in[a, b)$ and $y \in E^{d}, q(s, x ; t, y)$ is a smooth function of $(s, x) \in(a, t) \times E^{d}$, and the inequalities $(0.33)-(0.36)$ on p. 227 of [6], volume II imply that $h(s, x)$ is smooth if v_{b} is a finite measure. This is a serious restriction, for in general v_{b} is merely σ-finite. However, we know that there are compact sets $C_{m} \uparrow E^{d}$ with $v_{b}\left(C_{m}\right)<\infty, m=1,2, \ldots$ Let v_{m} be the restriction of v_{b} to $C_{m^{\prime}}$ and let $h_{m}(t, x)=\int q(t, x ; b, y) v_{m}(d y)$. Then h_{m} is smooth, and a solution to (21), and $h_{m} \uparrow h$. By virtue of Theorem 15 on p. 80 of [7], the smoothness of h follows once we show that h is bounded on sets of the form $D \times[a+\varepsilon, b-\varepsilon]$ where $\varepsilon>0$ and D is a bounded open subset of E^{d}. If the coefficients $a_{i j}$ are once continuously differentiable, with derivatives satisfying a Hölder condition in the space coordinate, (21) can be written as

$$
\frac{\partial h}{\partial t}+\frac{1}{2} \sum_{i, j=1} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\tilde{a}_{i j} h\right)+\sum_{i} \tilde{b}_{i} \frac{\partial h}{\partial x_{i}}=0,
$$

and the Harnack inequalities of Moser [9] as extended by Aronson and Serrin [11] then imply that the convergence of h_{m} to h is uniform on sets $R \times[a+\varepsilon, b-\varepsilon]$, where R is a bounded rectangle in E^{d}. Thus h is bounded on sets $D \times[a+\varepsilon, b-\varepsilon]$, and is therefore smooth. (In applying results from the theory of parabolic equations to the analysis of Eq. (4.14), one usually reverses the direction of time: this is discussed in the footnote on p. 227 of volume II of [6].)

References

1. Aronson, D. G., Serrin, J.: Local behavior of solutions of quasilinear parabolic equations. Arc. Rational Mech. Anal. 25, 81-122 (1967)
2. Bernstein, S.: Sur les liasons entre les grandeurs aléatoires. Verh. des intern. Mathematikerkongr., Zurich, 1932, Band I
3. Beurling, A.: An automorphism of product measures, Ann. of Math. 72, 189-200 (1960)
4. Doob, J.L.: Stochastic processes. New York: Wiley 1953
5. Doob, J.L.: A Markov chain theorem. Probability and Statistics (The Harald Cramér Volume). New York: Wiley 1959
6. Dynkin, E.B.: Markov processes, Vols. 1 and 2. New York: Academic Press 1965
7. Friedman, A.: Partial differential equations of parabolic type, Englewood Cliffs, N.J.: Prentice Hall 1964
8. Jamison, B.: Reciprocal processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 30, 65-86 (1974)
9. Moser, J.: A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 80, 931-954 (1958)
10. Schrödinger, E.: Über die Umkehrung der Naturgesetze. Sitz, Ber. der Preuss. Akad. Wissen., Berlin Phys. Math. 144 (1931)
11. Stroock, D. W., Varadhan, S.R.S.: Diffusion processes with continuous coefficients. Comm. Pure Appl. Math. 22, I, 345-400; II, 479-530 (1969)

Benton Jamison
State University of New York at Albany
1400 Washington Ave.
Albany, New York 12222, USA

[^0]: * Partially supported by National Science Foundation Grants GD-177-2, GU 3171.

