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Canonical Gibbs States, Their Relation to Gibbs States, 
and Applications to Two-Valued Markov Chains 

Hans-Otto Georgii 

0. Introduction 

We consider a countable set S of sites each of which may be occupied by a 
particle or not. A configuration of particles on S is described by an element co 
of the space • = {0, 1}s where x ~ S is meant to be occupied by a particle iff ~ = 1. 

is endowed with the a-field Y generated by the cylindric sets. A probability 
measure on (~, ~ )  is called a random field or shorter a state. The local interaction 
structure of particles in equilibrium leads to the system of Gibbs distributions 
the latter being conditional probabilities of the type: given a configuration out- 
side of a certain finite volume V c S, what are the probabilities of the configurations 
inside of V. A state whose local conditional probabilities are given by this pre- 
scribed system of nice versions is called Gibbsian [2, 12]. 

In the last few years, Gibbsian random fields have received a lot of attention 
so that they form a nice theory now, see [7, 14, 15, 18] for a survey. In particular, 
it is known that they are invariant measures (and under certain conditions all 
invariant measures) of certain Markovian interaction processes regulating the 
birth or death of a particle at x s S  according to the aim of minimizing the inter- 
action energy at x [11, e.g.]. More interesting for particle systems is another type 
of interaction process where the interaction induces jumps of the particles ~17]. 
These processes which under natural conditions preserve the particle density 
have as natural candidates for the invariant measures a considerably larger class 
of states than the corresponding set of Gibbs states [10, see also 13]. This class 
may be characterized by the fact that its local conditional probabilities look like 
the Gibbsian ones only if in addition to the configuration outside of V the particle 
number in V is given. If a random field has this property we call it a canonical 
Gibbs state. 

In this note we investigate the relation between Gibbs states and canonical 
Gibbs states. The basic technique is a comparison of variational principles. Our 
main result (Theorem (4.1)) may be understood as a generalization of the Finetti's 
theorem on exchangeable 0-1 variables [9] to interacting particle systems. 
Indeed, if there is no interaction then the canonical Gibbs states are nothing else 
than the symmetric states and the Gibbs states are product measures. From this 
point of view, our communication is a contribution to Spitzer's program of 
breaking away from the sphere of influence of stochastic independency ]-17]. 

What is the reason for the term "canonical"? The usual Gibbs states are 
characterized by an interaction potential describing the interaction of distinct 
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particles and a socalled chemical potential which measures the likelihood for 
the particles to exist at all. This corresponds exactly to the grand canonical de- 
scription of thermodynamic states. In the canonical thermodynamic ensemble 
the additional parameter to the interaction potential is the particle density. Our 
canonical Gibbs states are characterized by the interaction of distinct particles 
only. Hence if a random field has a particle density, its characterization by this 
density and the property of being a canonical Gibbs state is a canonical descrip- 
tion. 

The existence of particle densities necessitates some structure of the set S. 
Therefore, we shall restrict ourselves to the standard case when S is a d-dimensional 
cubic lattice, and we will concentrate most of our interest on the shift invariant 
states. 

After the basic definitions in Section 1, we shall establish in Section 2 some 
fundamental results on the set of canonical Gibbs states. Using the Legendre 
relation between the canonical and the grand canonical free energies we find a 
variational characterization of all shift invariant Canonical Gibbs states (Theorem 
(3.8)) and the characterization of the ergodic canonical Gibbs states as Gibbs 
states with respect to an appropriately chosen chemical potential (Theorem (4.1)). 
Section 4 contains a discussion of the consequences concerning phase transitions 
and the equivalence of ensembles. 

In Section 5 we investigate one-dimensional systems with nearest neighbour 
interactions. We prove that the corresponding canonical Gibbs states have a 
delicate symmetry property and are necessarily shift invariant. The application 
of the preceding results yields an extension of the Finetti's theorem to certain 
Markov chains. In the final section we use our method of comparison of free ener- 
gies for an investigation of the closed convex hull of all ergodic Markov states. 
This leads to a "microcanonical" description of states with a simple symmetry 
property via the particle density and the pair correlation. As a by-product we 
find that the ergodic Markov chains are most random in the class of all shift 
invariant states with the same expected particle density and expected pair correla- 
tion. 

Finally, let us remark that the results of Sections 1 to 4 have a straightforward 
extension to the case where each site is allowed to carry more than one particle 
up to a finite maximal number. 

Note. After this paper had been submitted for publication, I found out that R.L. Thompson has 
investigated the more general notion of states being defined by conditions on the energies with respect 
to certain potentials instead of conditions on the particle numbers: Equilibrium states on thin energy 
shells, Memoirs Amer. Math. Soe. 150 (1974). In the case of finite range potentials, Theorem (4.1) is 
contained in Thompson's theorem 3.1. The canonical Gibbs states, however, are much more easily 
and more completely treated by the methods below. 

1. Definitions 

As the set of sites we fix the d-dimensional lattice S = 2g a, d > 1. Then we may 
consider the shi f t  group  0 = (Ox)x~ s acting on D = {0, 1} s via 

(OxcO)y = %_~ (x, y~S) .  
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This definition extends obviously to configurations that are defined only on a 
subset of S. Furthermore, we may shift any V c S  by xeS  to V+x .  

We denote by 50 the set of nonempty subsets V of S with finite cardinality I VI, 
by ~ the a-field on • generated by the cylindric sets depending only on V c S, 
by Xv the projection of f2 onto Qv =  {0, 1} v (VcS) ,  ~ov=Xv(a)), and for disjoint 
subsets V, W of S and ~ e Q v ,  (e~2 w by e ) ( e Q v .  w the coupled configuration on 
VwW. 

First we give the definitions leading to the notion of a Gibbs state. 

(1.1) Definition. A specification A is a system 

of probability kernels from (O,~ss~v) to t2 v (i.e., for each ~EOv,  2v(O~]') is a 
o~s\v-measurable function on O, and for all t/~2, 2v('lt/) is a probability vector 
on ~2v) with the properties 

(S1) Consistency. If V = W e 5  ~, ~oEY2v, flaY2, then 

~e~v 

($2) Continuity. For any V~, ~Qv, the function 2v(~[') is continuous with 
respect to the product topology on O. 

($3) Shift Invariance. For all V~SP, coeY2v, tleY2 , x eS  

& + 

All relevant specifications A can be represented by an interaction potential 
(see [7, 14], e.g.) in the sense of 

(1.2) Definition. (a) An interaction potential is a map 

with the properties 

(Pl)  II~tl:= Z I(b(A)l < ~ ,  
OeAe5~ 

(P2) q~(A)=q~(A + x) (A~5 p, x6S). 

(b) The energy of~oe(2 in VeSP under # is defined by 

ev( o)= Z 
where CO A =  1-IxeA O)x" Ae~:Ac~V:#O 

(c) By A,  we denote the Gibbsian specification with respect to ~b defined by 

2v (o~ ] q) = Z v (q)- ~ exp [ - Ev (o~ ~ls ~ v)]. 

The normalizing constant Zv(q) is called the partition function. It is easily verified 
that A ,  is a specifiction, indeed [5, 7]. 

Now we consider states on (Y2, if).  Denote by ~ the set of states and by ~0 
the set of shift invariant states, i.e., of all states # such that 

#(0~ A) =#(A) ( A ~  ~, x~S). 
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(1.3) Definition. One says that # ~  is specified by A, and # is called a Gibbs 
state, if for all V ~  co~(2 v 

#[xv=col~s.v]=;~v(col.) #-a.s. 

The basic theorem by Dobrushin [-2] states that for all specifications A the 
set ff)(A) of all Gibbs states specified by A and the set ff)o(A)=ff)(A)~ ~ o are 
nonempty, convex, and weakly compact. Furthermore, they are simplices in the 
sense of Choquet, and their extreme points are characterized by the property of 
being trivial on the tail field 

V ~ 5  ~ 

and on the a-field J of shift invariant sets, respectively [-4, 5, 7, 12, 14, 15]. 

In complete analogy to the above we now introduce the concept of canonical 
Gibbs states. Denote by (2v, N the set of all co ~ s v whose particle number 

N(co)= Zcox=l{xe  v: cox= 1}l 
x e V  

is given by N, 0 < N < I V ] .  Sometimes we shall use the same symbol for the set 
{N(Xv)=N}. 

(1.4) Definition. A canonical specification F is a system 

(?v. N(co I ~))~+~v. ,+~. o + N ~ ivi. v+~ 

of probability kernels from ((J, ~s  \ v) to ~v with the properties 

(CS0) 7v, u(gJv, u ] q ) = l  for all q ~ ,  

(CS1) If V =  W ~  co~2 W, q6~2, 0 < N < [ W ] ,  then 

~W,N(CO]I1)=YV, N(,~v)(COVICOqS..W) ~, 7W,N(~Ow\v[q) 
~ETkV, N (o)V) 

i.e., ?v,.('l~/) is the conditional probability on ~2 v with respect to the measure 
7w, u(" I~/) under the condition 

{N(Xv)=n, Xw..v=qw..v} if n+N(qw, v)=N. 

(CS2) For all V ~  0_-<N<IVI, cO~Qv, u the function ?v,u(co]') is continuous. 

(CS 3) If V ~  co6(Jv, r/6Q, 0_-<N-<_IVI, x~S, then 

?~, N(o I ~) = ?v+ ~, ~(0~ col 0~ ~). 

(1.5) Remark. If a specification A has the property 

2v(f2v, N l ' ) > 0  for all V~5~, 0<N=<IVI, 

one obtains a canonical specification F a by setting 

?v,N('l~)=~-v('/f2v,, , l~) (Ve~,~eO, O<N<lVl). 

Proof The properties (CS 0), (CS 2), and (CS 3) are evident. To show (CS 1) it 
is sufficient to consider the case N(co)-- N. Then (CS 1) follows easily from (S 1). [~ 
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Mainly we are interested in canonical Gibbs specifications F~ with respect to 
some potential ~ obtained from Ae as in (1.5). F~ is given by 

(1.6) ";v'N(c~ Zv'N(fl)-lexp[-Ev(c~ otherwise, if C0Ef2V'N 

The normalizing constant Zv,N(fl) is called the canonical partition function, and 
YV, N(']~/) is the canonical Gibbs distribution on Ov, N under the boundary condi- 
tion f t .  

(1.7) Remark. In (1.6) the value ~o:=-4~(A)(]A[=I) cancels out andtherefore 
has no effect if we consider canonical Gibbs specifications. Therefore, in the 
canonical context we make the convention that ~o = 0. We call such a potential a 
canonical potential. Each potential can be uniquely represented by a canonical 
potential and its so-called chemical potential ~o. 

Consider now the a-field ~v 0 / ~ )  of all sets of the form 

{ N ( X v ) = N } ~ A  (Aeo~s..v, 0<N<IVI) .  

Note that for any canonical specification F the function 

~)V(('O I ~ ) :  = '~V, N(Xv) ( (DI  " ) = l~v, , , ,~ ,  7 v ,  u(,o)(co I ") 

is Nv-measurable, and for all t/Es 7v(" [q) is a probability vector on ~?v. Hence 
7v(" ]') plays the same role for the a-field ~v as 2v('[ ') for the a-field ~ s ,  v. This 
leads to the definition 

(1.8) Definition. /ae~ is said to be canonically specified by F and is called a 
canonical Gibbs state for F if for any VE~, (0~s 

uEXv=col(Cv] = 7v(CO I ") ~t-a.s., 

that is, if for all A ~ s ,  v the equality 

(1.91 ~d~t l[xv=o] = ~ d/~ 7V,N(~o)(C0 [ ") 
A A r ~ v , N ( c o  ) 

is true. ~ = ~ ( F )  denotes the set of all canonical Gibbs states for F, and ~0= 
~o(F) :=  ~ ( F )  ~ G 0. 

(1.10) Remark. In the situation of (1 .5 ) ,  

ffi(A) c E(FA). 

Proof. For all V~, ,  o~(2v, A~o~s~v, #~(5(A) we have 

J" lt,,:~ =~, ~ d,u = j" ~v(co I ' )  d# = j' ~v, N(o,)(co I ' )  ;~v(O,, N(~,, I ") d# 
A A A 

= ~E, fvv, N(o~,(co I ") l~ , . . ,o ,  lo%.v] du 
A 

= ~l~.m~,Tv,  N(o~(a)l')d#. [7 
A 

Consequently, if F =  F A for some A then the existence theorem for Gibbs states 
implies that Eo(F) is non-empty. But the existence problem for canonical Gibbs 
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states is by far easier. Consider the unit masses eo and ~1 on the constant con- 
figurations 0 and 11, respectively, Where Ox= 0 (xeS) and 11 x = 1 (xeS). 

(1.11) Remark. If a system f '  has property (CSO), the random fields e o and el 
belong to go(F). 

Proof (1.9) is verified for eo, e.g., by observing that [~v, o l= l ,  and therefore 
7v, o(0v[ ' )= 1. rl 

2. The Simplices [s and ~o 

We fax a canonical specification F and consider g = g ( F ) .  First we observe 
that canonical specifications fit into the most general setting of specified random 
fields which has been considered by F611mer [4] and, in the sequel, by Preston 
[15, Section 10]. 

Define probability kernels roy(', A) from (O, ~v) to (O, ~ )  by 

Xv(t/, IX  v = co] n A) = 1A(q) 7v(OO I t/) = 1 a ~ ev, ~,(q) 7v, N(CO I q) 

where V e ~  qeO, A s k s \ v ,  and cOeQv, N. 

(2.1) Lemma. The kernels rc v (VeSe) have the following properties- 

(a) I f  V c  WeSe then nw 7rv =rOw. 
(b) I f  f is a continuous function on g2, then ~z v f is continuous as well. 
(c) # e g  if and only if prcv=# for any V s ~  

Proof (a) and (b) are easily derived from (CS 1) and (CS 2) and (c) from (1.9). D 

Furthermore, observe that for all V~5 ~ the a-field Nv consists of all events 
in f f  which are invariant under permutations of the sites in V. Accordingly, 

(2.2) Remark. If V c  W~5 ~ then fqv~fqw. 
The observations (2.1) and (2.2) show that we are exactly in the situation of [4] 

and [15, Section 10]. From there we deduce a collection of results which we list 
now. 

(2.3) Theorem (from [15]). The sets ~ and go are convex and weakly compact. 
More precisely, they are simplices in the sense of Choquet. 

The next theorem states that g coincides with a certain set g~ which has been 
introduced in [10] as the set of equilibrium states for particle jump processes. 
~ is defined as the set of all weak limits of states/~k whose marginal distributions 
in Ov~ are of the form 

~k [x , ,~  = ~o3 = )" d ~,~ ~,~(~, I" ) 

with certain probability measures v k and a sequence (Vk)k in ~ increasing to S. 

(2.4) Theorem (from [15-]). g=go0-  

For the characterization of the extremal points of g the a-field 

(~o = ( ~ v  
VaS" 
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plays an essential role. No0 contains the tail field ~ o  and the information on the 
asymptotic behaviour of the particle number in large volumes. We denote by 
ex K the set of extreme points of a convex set K. 

(2.5) Theorem (from [4, 15]). (a) # ~ g  is extremal in g if and only if #(A)=0 or 1 
for all A6Noo. 

(b) Let/*, r eg .  Then/*=v if and only if /*= v on ~oo. 
(c) Distinct extreme points of g are mutually singular. 

Statement (a) shows that we cannot expect that ex qi(A) is a subset of ex g(FA) 
whenever we are in the situation of (1.10). 

We have to distinguish between nice extreme points of g ("phases") and 
exceptional extreme points which we cannot exclude in general. 

(2.6) Corollary. I f  #6  ex g, then for any sequence V T S either 

/* [ 1 ~  N (Xv)/I V[ exists] = 0, 

or there is some pc[0 ,  1] such that 

/* [-lim N (Xv)/I V[ = p] = 1. 
~v~s 

Proof. The events {lim sup N(Xv)/J V[ > ~} and {lim infN(Xv)/] V[ < fl} belong 
to N~, hence they have/*-measure 0 or 1. The result follows by letting ~ and fl 
vary over the rational numbers. D 

Furthermore, we see that a phase with particle density p can be approximated 
by canonical Gibbs distributions in finite volumes V and a particle number nearly 
equal to plV[. As in [-6, 4, 15] one proves 

(2.7) Corollary. Each/*6ex g is the weak limit of states/*v with marginal distri- 
butions 7V, N(,v)(" It/) in f2 v where VT S. t 1 can be chosen from a set of/*-measure 1. 

From [4] we obtain the following explicit integral representation of any/*Eg. 
Fix some sequence VTS. Then for/,-a.a, t/eO the weak limit v" of 7v, N(,v)(" [~/) 
(more precisely, of ~v(tl, �9 )) exists, belongs to ex g, and 

(2.8) # = 5 v"/* [ ~  (d~/). 

Now we consider go and the a-field ~ of shift invariant sets. Then an analogue 
of (2.8), with ~q~ replaced by J ,  is true [4] whence we obtain 

(2.9) Theorem. /*eg o is extremal in go, if and only if/* is ergodic (i.e.,/,(,4)=0 
or 1 for A ~ J ) .  

This can be proved, too, by using the fact that for a shift invariant state/* the 
a-field J is a.s. contained in ffoo (see [6] for a proof, e.g.) and hence in ~oo and 
the trivial fact that if # e g ,  h is Noo-measurable, and h /*s~  then h#~g.  

Using Hunt's extension of the martingale convergence theorem one derives 
from (2.9) as in [6, 4] : 

(2.10) Corollary. Each /*6exgo is the weak limit of states /*v whose marginal 
distributions in 0 v are given by 

/*V[-Xv=cO]=lwl-* Y~ ~'v+v+~,~(..~+v,(xv=colO~,7) 
x E V  
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where V runs through a sequence of cubes to S. rl can be chosen from a set of 
It-measure 1. 

Notice that N(~lv+ v)/I V+ VI has an a.s. constant limit p. Since in the situation 
of (1.10) ex (50(A)cex ~0(FA), (2.10) provides some information in addition to the 
fact that each/zs ex ffio(A) can be approximated by 

IV1-1 ~ ,~v+v(Xv--col ox~) 
x~V 

as proved in [6]. 

We leave it to the interested reader to give a direct proof of the theorems in 
this section by a slight modification of the methods in [7, 14]. 

3. A Variational Characterization of  t[ o 

Let us fix a canonical potential (b and consider the set E0(~b)= E0(F~). We are 
going to define a certain function c(., ~b) on C0 vanishing exactly on E0(qs). c is 
defined as a specific quantity per volume, i.e., by a limiting process VT S where 
we have to require that V increases in a nice way. Hence, we fix some sequence 
of "cubes" increasing to S, and throughout this section we mean by "VTS" that 
V runs through this sequence. 

First let us recall what is known about the variational characterization of 
(50(T) for any potential 7 j. If # is shift invariant, the specific entropy 

(3.1) s(~) = lim I Vl- 1 ~ ~(dco) log # [Xv = COy] 
vTS 

exists [3, 5, 7, e.g.], s(') is an affine upper semicontinuous function on C0, for a 
proof see E7], e.g. The specific energy of # with respect to ~F is defined by 

~U(A) 
e(#, 70=S/~(dr ) ~, ~o a 

o ~ A ~  IAI 

and the specific free energy of # with respect to tp by 

f(/~, 70=e(/t, 70-s(#).  

The theorem of Lanford and Ruelle [12, 3] states that any I~E~o belongs to 
~o(7 j) if and only if f ( ' ,  70 attains its minimal value - P ( ~ )  at #. P(70 is called 
the pressure or the specific free Gibbs energy and is obtained as the limit of the 
logarithms of the partition functions for (P: 

P(70 =l im ]V1-1 log Zv(tl; 7 j) 
v T s  

where q runs through an arbitrary sequence in (2. 

Now let us consider the corresponding canonical quantities. First we need 
the existence of the Helmholtz free energy per volume g(p)=g(p, q~) first proved 
by van Hove and some properties due to Ruelle, Fisher, Dobrushin, and Minlos. 

(3.2) Lemma. I f  VT S and N tends to infinity such that N/IV] has a limit pc[O, i], 
then for any choice of a sequence of boundary conditions ~ EY2 the limit 

g(p, 4~)= lim IV[ -1 log Zv, N((, cb) 
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exists, g(', ~) is concave and has a continuous derivative decreasing from ~ to - o9, 
if p increases from 0 to 1. Furthermore, for any cp ~ the Legendre relation 

(3.3) P(~b, cp)= max [g(p, ~b)+q~p] 
o__<p<l 

holds. 

Proof If ,~ is a pair potential (i.e., ~b(A)=0 if IA[>2) and ~=0, a complete 
proof is given in [5]. This proof can be extended in a straightforward way to 
general q~. The only thing that has to be replaced is the symmetry argument in 
[5, Section 2.1] leading from the uniform convergence of the functions gv(P) 
(see [5, Section 1.1] for the definition) on each interval [0, e] (e < 1) to the uniform 
convergence on [0, 1]. Obviously, this can be achieved also by showing that for 
all e> 0 there is an a < 1 such that for sufficiently large V and e IV[ < N <IVI the 
inequality 

I[ Vt-1 log Zv, N(0)-- IV[-1 log Zv, Ivl (0) 1 < ~ 

holds. To show this observe that 

IV1-1 log Zv, N(0) zv, fvl(~ =lVl -I log Z exp[ ~ ~ (A) -  Z ~(A)]. 
r N A ~ V  A={x: r } 

For the terms under the summation use the bound 

I ~ ~b(A)[<=([VI-N)ll~bll ___[VJ(1-~)H~bH (o~Ov, ~, N>a[V[), 
A c V  

A \ { x :  COx=l}*0 

and the cardinality of ~2v, N can be handled by Stirling's formula showing that 
[V[- 1 log 1~2v, u[ has a limit smaller than 

- ~ l o g  a - ( 1  - a) log (1 - ~) 

if IV[--. ~ and N>~[VI, ~>�89 This implies the uniform convergence of gv(P) on 
[0, 1] to the continuous extension of g(p) from [0, 1[ to [0, 1]. This is all that is 
needed for the proof of (3.3) along the lines of [5, Section 3.2]. 

Finally we have to remark that the limit g(p) does not depend on the special 
choice of the boundary condition ~ =0. Indeed, for any ~ 2  we have 

lo zv, N(0 __<~(v)..= Z I~(A)[, 
g ZVV, N(O)- A~V*O 

A \ V # : O  

and it is known that lim [V[-1A(V)=O (for a proof see [3], e.g.). D 
VTS 

Consider now the particle density 

p (~) = limv SsUP X(~ov)/] VI 

of a configuration co~2. I f / ~  ~0 then the d-dimensional ergodic theorem (cf. [5], 
e.g.) asserts that for a.a. coE(2 p(~o) is in fact a limit and defines a version of 
E, [Xo lY] (~o). 
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Now we are in the position to define for any #~ ~0 the excess canonical free 
energy of# with respect tO ~ by 

c (#, r = e(#, oh) - s(#) - E u [g (p(,), ~)]. 

Note that ~ is a canonical potential so that there is no one-particle term in e(#, ~b). 
The following remark implies that the function c ( ' , ~ )  attains its minimum 

on a convex compact subset of ~0. We shall see below that this set coincides 
with ~0(~), indeed. 

(3.4) Remark. The function c(.,  ~) on ~0 is affine and lower semicontinuous. 

Proof Clearly, c( o, ~) is affine, e( ' ,  q~) is the expectation of a continuous 
function and thereby continuous. The entropy is upper semicontinuous. In order 
to show that E,  [g(p('), ~)] is a lower semicontinuous function of # consider the 
cubes V,= [0, 2 " -11%5 a and the continuous functions 

p,,(co)=IV.[ -1 ~ (.ox 
x ~ V n  

on f2. P,+:I is the arithmetic mean of the functions p,o 0, where the d coordinates 
of x are equal to 0 or 2". Using the concavity of g(-, ~) we see that for any shift 
invariant # 

E, [g(P,+l ('), ~)]_-__E, [g(p.( '),  ~)] 

showing that the function # ~ E,  [g (p ('), ~)] is the pointwise limit of an increasing 
sequence of continuous functions. D 

(3.5) Lemma. For any # ~ o  

c(#, ~ ) =  lira I Vl-1 S # (d~o)log # [Xv = mvIN(Xv)= N(mv)] 
v~s 7v, N<~v~(COvfO ' 

where ( runs through an arbitrary sequence in ~2. 

PrOof Let us write 

~ovIN (Xv)= N (~ov)] 
IV[-1 ~ , ( do )  log U[Xv ~v,N(,ov,(mvl~ ) 

= IV [-1 S #(do9) log # IX v = Ogv] -]Vh-1 ~ #(do9) log (f2v, N(ov,) 

+[VI-1 ~ #(do~) Ev(oo v (s.  v) + ~ #(dco) I Vl-I  log Zv, ~(,~v)g). 

If v'[s the first term tends to -s(#).  The second term can be written as an entropy 

Ivl 
LVI -~ Z ~(Qv,~)log ~(Ov,~) 

N = 0  

being bounded by IV] -1 log (IVI + 1) and thereby tending to zero. The third term 
converges to e(#, q~), see [3] for a proof. Lemma (3.2) guaranties that the integrand 
in the fourth term converges a.s. to g(p(m), ~). Hence we have only to show that 
the functions IVI -~ log ZV, N~X~(~ ) are uniformly bounded. But obviously 

e-lVl IlOll <Zv, N(~)= ~ exp[_Ev(~O~s..v)]<=21VlelVl Ila~ll. 
r , N 
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(3.6) Proposition. For all #e~0 ,  c(#, ~):>0. I f  #eEo(r then c(#, ~ ) = 0 .  

Proof For any coe~2v, (,tte~2 we have 

IEv(co rls.. v) - Ev(co (s.. v)l < A (V) 
and therefore 

e -  2 ~ <v~ __< yv, N <~) (co['/)/~v, N (~) (col () < e 2 A <v). 

Furthermore, if we wish to estimate 

# [Xv = coy ]N(Xv) = N (coy)] 
#(dco) log 

~v,N(~v)(covl~) 

for some #c~0(~) it is sufficient to consider only those co,g2 for which 

# [ N (Xv)= N (cov)] >0.  

For these co we may write 

7v, N(~,v)(covlrl) 
# [Xw =Yv, N(,ov) (COY I ( ) C O V  I N(Xv) = N (cov)] _ ~ #(drllf2v, N (o~v)) Yv, N (~,~)(coy [#) 

and obtain 

[log # [Xv = coy [N(Xv) = N(cov)J/yv, N(,ov)(covl0] < 2 A (V). 

Now apply Lemma (3.5)and the fact that lim A (V)/I VI = 0 to deduce that c (#, ~ ) =  0 
for #~ fi;0(4)), v~s 

To show that c ( . , r  is nonnegative write its approximation term introduced 
in (3.5) as 

IVl 
Ig1-1 F~ #(~?v,~) F~ #[Xv=colN(Xv) =N] log #[Xv=co[N(Xv)=g] 

The inner sum has the form of a relative entropy which is known to be non- 
negative [3, 7]. G 

(3.7) Theorem. Let #~ ~o and - o o  < q~ < + oo. Then the following statements are 
equivalent: 

(a) #e~0(~b, ~o) 

(b) e(p, ~ ) = 0  and 0-~-g(p('), r  #-a.s. 

Proof First we consider the case where the chemical potential q~ is real. Assume 
that #e  (50({b, ~o). Then from (1.10) and (3.6) we obtain that c(#, (b) =0. The second 
assertion is known [5], but let us give another argument. Observe that 

0 = f (# ;  r (p)+ P(r (p)-- c(#, ~) 
= E. [P(~ ,  rp)- ~op ( ' ) - g ( p  ('), ~)] 

and apply (3.3) to see that 

g(p( ' ) ,  ~ ) + ~ o ~ ( ' ) =  omax 1 Eg(p, ~ ) + ~ o A  a.s. 



2 8 8  H . - O .  G e o r g i i  

This implies the second statement. Conversely, if (b) is true then the same argument 
shows that 

f (# ;  4~, ~p)= -p(qb,  q~) 

proving (a) according to Lanford/Ruelle's variational principle. If (p = - o o  then 
A(~, ~) is given by 

{~ if N(co)=O 
2v(COl') = otherwise 

so that qi(~, ~o)= {Co}. On the other hand ~-o g(p, ~ ) =  +oo if and only if p=0 .  

Now the statement follows from the fact that So is the unique shift invariant state 
with particle density 0. Similarly, the case q) = + oo leads to the unit mass el- 

(3.8) Theorem. Let # be any shift invariant state. Then c(#, ~b)=0 /f and only if 
#~o(~).  

Proof The "if" part is done in (3.6). Suppose now that c(#, ~ ) =  0. We represent 
# as the gravicenter of a probability measure Qu on the ergodic states: 

#= ~ vQU(dv). 
ex ~o 

Since c( ' ,  ~) is affine and semicontinuous we conclude that 

O--c (# ,~)=  ~ c(v,~)Q"(dv) 
ex ~o 

and thereby c(v, ~ ) = 0  for Q"-a.a.v. 
Furthermore, for any ergodic v the particle density p( ')  is a.s. constant. Hence 

the preceding theorem guaranties that Q"-a.a. v belong to the subset 

~) ex (50(~, q~) of ex ~0(~). 
-- oo_--<q~--< Qo 

Thus #e~(q~). 

In a more special situation the "only if" part can also be deduced from [10]. 

Note that we have proved the relation 

ex ~0(~b) c ex G0 

a second time, and furthermore, that the representing measure of any #e~0(~) 
on the ergodic states is carried by ex ff0(~). Accordingly, ff0(~) is a simplex since 
G0 is a simplex. 

Jensen's inequality combined with (3.7) and (3.8) or the Lanford and Ruelle 
theorem combined with (3.3) yield 

(3.9) Corollary. Suppose that a state #eGo has expected particle density 
#[Xo = 1] =p.  Then 

s(#)-e~, O)< g(p, q~). 

Equality holds if and only if #~(So (~, - ~ p  g(p, q~)) . 
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The corollary may be understood as an extension of a standard result on the 
randomness of product measures. Indeed, if ~---0, then e( ' ,  ~ )=0 ,  

g(p, 4))= - p  log p - (1  - p ) l o g  (1 - p )  

and (5 ~, - ~ - g ( p ,  ~b) consists of the product measure ( l - p ,  p)S. 

4. On the Equivalence of Ensembles 

The relation between shift invariant Gibbs states and shift invariant canonical 
Gibbs states is completely described by 

(4.1) Theorem. For any canonical potential ~b 

ex ~0(~) = ~J ex %0 (q~, ~P). 

Proof Apply (1.10), (2.10), (3.6), and (3.7) and observe that the extreme points 
of ~0 and (5o are ergodic and therefore extremal in G0. D 

Because of their homogeneity properties, ergodic states are often called 
pure states, and pure states that describe a particle system with interaction ~b are 
called (canonical or grand canonical) pure phases. According to Dobrushin [2] 
we say that the parameters �9 and q) induce a (grand canonical, G) phase transition 
if lex ~0(~, q~)l > 1. We see two possibilities of defining a "canonical phase tran- 
sition"_ First, let us speak of a C-I phase transition with parameters �9 and p if 
the canonical description of a pure state by means of 4~ and p is not unique, i.e., 
if the set 

~o(~b, p) = {#eex fi;0(~): p( ')  = p/~-a.s.} 

contains at least two elements. Examples of C-I phase transitions are easily 
constructed via periodic potentials, see [6]. 

Theorem (3.7) shows that a C-I phase transition at r and p implies a G phase 

transition at ~ and -~-~-g(p, ~). The converse is not true since there are models 

that exhibit a G phase transition in the manner that there are exactly two pure 
phases of distinct particle density, for instance the Ising model [5, 7], some 
disturbed Ising interactions [1], and some even attractive potentials [16]. These 
models are characterized by the fact that for some ps]0 ,  1[ there is no pure phase 
with density p. Thus if we want to have a notion of canonical phase transition which 
is more strongly related to a G phase transition we shall have to consider phe- 
nomena like 

1~0(r P)[ + 1 

which we call a C-II phase transition at q~ and p. It seems to be hard to find examples 
for a potential q~ admitting a G phase transitiota at some ~o but not a C-II phase 
transition at any p. However, even for this weaker notion we have 

(4.2) Proposition. A C4I  phase transition at q~ and p implies a G phase transition 

at q) and (p= - ~ - - g ( p ,  ~). 
ap 
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Proof Assume that ~o(~b,p)=J~. Then O < p < l .  Denote by p_ the smallest 

and by p+ the largest r such that ~ g(r, ~ ) =  -~o. Then Theorem (3.7) asserts 

that the particle density of any #~ff~o(q), q~) falls in the interval [p_, p+]. Since 
ex ~i 0 (~, ~p) is nonempty, the assumption p_ = p+ would lead to a contradiction 
to our hypothesis. Thus p_ < p + ,  that is, g(.,  ~) has a linear segment in its graph. 
This fact which often serves as a definition of a phase transition (of first kind) is 
known to imply a G phase transition at �9 and ~0, see 1-5] for a proof. [3 

Concerning the equivalence of the canonical and the grand canonical descrip- 
tion, the results above may be formulated as follows. The Legendre transformation 
(3.3) Theorem (4.1) is based on asserts that the thermodynamic functions of ~b 
and q~ may be expressed in terms of the thermodynamic functions of ~b and p, 

0 
and vice versa, at least in regions where ~-o g(. , ~) is strictly decreasing. For 

attractive pair potentials these regions coincide with the regions where no grand 
canonical phase transition occurs [5, 7, 14, 15]. Correspondingly, our theorem 
states that a pure phase may be described equivalently canonically by ~ and p 
or grand canonically by Ace , ~,) and that both descriptions are unique everywhere 
that no G phase transition occurs. But we have seen from examples that sometimes 
a pure phase may be uniquely identified canonically but not grand canonically. 
On the other hand, it seems to be a very exceptional case that a G phase transition 
cannot be recognized in the canonical description, and (4.2) excludes the possibility 
of a false alarm. So in general the canonical description contains at least as much 
information on the pure phases of a particle system as the grand canonical. 

Consider now the class cg of all canonical potentials ~ that do not admit a 
C-! phase transition for any density p. ~ encloses all canonical potentials that do 
not exhibit a G phase transition as, for instance, all ~ such that 

(IAI- 1)I~(A)[ < 1, 
0~Ae5 e 

and, in the one-dimensional case, all # such that 

(diam A)[~(A)I < 
0EAE5 a 

[2, 7]. Furthermore, (d contains some potentials which allow a G phase transition 
as noted above. If r ~ cd, then there is a one-to-one correspondence p ~ v p between 
a subset of the interval [0, 1] and the extreme points of r Thus the integral 
representation of a state #~E0(~) by a probability measure on ex E0(#) may be  
transformed into a representation via the particle density. More precisely: 

(4.3) Remark. Let 4)~cd. Then any #~o((I)) has a representation 

#= ~ vPPU(dP) 
[0, 11 

where P" is the distribution of p (') under #. 

Proof. The remark can easily be deduced from the general integral represen- 
tation mentioned in Section 2, but let us sketch a direct argument. Standard con- 
structions concerning the conditional probabilities # [-A I P (") = P] (A ~ ~,  0 < p < 1) 
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lead to the existence of shift invariant states ?P concentrated on the set {p(.)=p} 
such that 

By (3.8), ~~ ) for PU-a.a.p. Now apply (3.7) to see that for these p ~o= v p. D 

Since the existence of a particle density is basic for the comparison of canonical 
and grand canonical Gibbs states it is not clear whether in general the sets ex E(~) 

and U ex ffi(~, go) 

are comparable by inclusion. In particular, it is an open problem to decide whether 
the equality E(~) =E0(~) is true if and only if for all go ffi((b, go)= ffi0(4) , go). In the 
next section, we give a positive answer to this question in the case of a one-dimen- 
sional nearest neighbour potential ~b. 

5. Application to Markov Chains and de Finetti% Theorem 

In this section we investigate canonical Gibbs states with respect to a one- 
dimensional nearest neighbour interaction. We show that these are necessarily 
shift invariant and obtain as an application of the preceding results the characteri- 
zation of their extreme points as certain Markov chains. This is an extension of de 
Finetti's theorem (see (5.6) below) to probability measures with a more subtle 
symmetry property. 

Let S=7/. Fix some a>0 .  We consider the canonical nearest neighbour 
potential ~o defined as 

~a(A)=~--loga if diam A =  1 
(Ae~) .  lo otherwise 

The specification F~o is given by 

where I =  [n, r n ] s ~  and 
m--1 

x = n  

denotes the number of pairs of particles in co. 
First we characterize E(~a) by a symmetry property. 

(5.1) Proposition. Let # ~ .  Then # ~ ( ~ , )  if and only if for all intervals I~5f  
the quantity 

depends only on N (~o) and the value of o) at the endpoints of I. 

Proof The "only if" part results immediately from the definition. Conversely, 
let I be an interval in S and J any interval that contains I and its neighbours. 
Then there is a function zn(. ) such that for all (~EO~, r/~O 

[Xs = ~ r / s .  i ]  a -  L(~,~ . , )  = zu ( ,o ) ( r / s ,  r ) .  



2 9 2  H . - O .  G e o r g i i  

If ZN(~ (~/S-. t) > 0, this implies that 

[2 C X t  = (DIXJ... I = llJ ... I ,  N ( X I )  = N ( ~ o ) ]  = 7 i ,  N(~) ( ~ 1 1 / )  

and, in the limit J'rS, that 7i(~o[.) is a version of #[Xi=o~l~t] .  Now let ITS in 
order to see that # e ~ ( ~ a ) = ~ ( ~ . ) .  [l 

We use the established symmetry property for a proof that ~(~.)--~0(~ba). 
This is done on the base of two lemmas the first of which is probably known. 

(5.2) L e m m a .  Denote by FFV, L the number of configurations co on an interval of r 
consecutive sites such that N(oo)=N and L(~o)=L. Then E r - 1  and, if N >  1, o , o -  

Since we have no reference we give a proof. 

Proof It is well-known and easily checked that s o as the N particle part of the 

r-th Fibonacci number is given by (r-NN+ l ) .  Obviously, if N >  l then F~,L=O 

unless L > N -  1 and r + 1 > 2 N -  L. Now we claim that if 1 < L_< N -  1 < r -  1 
then 

r __ r - - 1  LFFv, L--(N--1) F~_I,L_t. 

Indeed, from any configuration counted by F, ' -1 u-1,z-1 we get a configuration ~o 
of F~,L as follows: Pick one of its ( N - 1 )  particles and split it and its site into a 
pair of particles on two adjacent sites. Since each of the L pairs in ~o may be the 
result of this doubling process, this transformation is L to 1. Now by induction 
we obtain 

N - 1  N - 2  N - L  ~ L 
E . . . .  ~ FFvEL, o. [] 
N,L-- L L - 1  

(5.3) Lemma. Suppose that # ~  has the property that for all intervals I ~  the 
marginal distributions #[Xt=co]  depend only on N(co), L(o~), and the values of o) 
at the ends of I. Fix some n> l and a configuration ~Oto ,~- l l  with ~o=(,_1 =1.  
Then for any k >=O there are configurations oJ and 62 (O<=j<=k) on the interval 
I ( n, k) = [ - k, n + k] such that N ( (9 J) = N(69 j) = N ( () + k, L( (n j) = L(69 j) = L( () + k - j, 
o~J - ~,~J - 1  "j "j =1, and - k  - -  ~n+l~--  ~ ('O-k"~-(Dn+k 

# [ x ~  1, . l  = 01 ~] - / ~  [ x t  o, . -  11 = (] 

Proof. For the induction proof we need as an additional property that ~oJ~= 
(Dn+k- -O , "  J - -  O)n+k--O)_k--J -- -J --1 if j is even and the same with 0 and 1 interchanged if j 
is odd. We start with the equation 

# [ x t l , . ~  = 01 ~3 - # [ X t o , . _ l ~  = ~3 
= # [ X t o  ,.] = 0 (01 ( ) ]  + # [ X t o  ' .~ = 1(01 $)]  

- # [ X t  o, .~ = ~ 0 ]  - # I X  t o, .~ = ~ 1 ] .  
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The second and the fourth term cancel owing to our assumptions. This settles the 
case k=O. Now assume that for some k>O the refined statement is true. For any 
co ~ f2~(.,i,) we write 

#[Xi(.,k)=co] = #[X~(.,k+~) = 0 ~ 0 ]  + #[x~(.,k+~)= 1 col] 

+#[Xi(.,k+~) = 0 ~  1] + #[Xi(., k+ 1)= 1 coO] 

and deduce from the symmetry hypothesis that 

# [ x ~ ( . .  i,, = co J] - # [x~( . , , , )  = a / ]  

=~lFXl (n , k+l )  -'~ I COJo1 - #[X~(.,k+O =Od) /1 ]  

+ #[X~(.,k+l)= OcoJ 1] -#[X~(.,k+ 1)= 1 cSJO] 

and for even j < k 

# [  Z1(n,k  + l ) = 1 coJ0] =#[  XI(,,I, +1 ) = 1 ~o j+ x 0] 

and similar identities ifj  is odd or d is replaced by 5) j. Setting 

[0 coJ 1 if j even <_k 

j ] lco~0 i f j  odd _<k 

:~-]Ocok 1 if j = k + l  even 

(1 o)kO if j = k + l  odd 

and similarly &J with 0 and 1 exchanged we see that ~J and &J (O__<j__< k + 1) are of 
the required form, and with the abbreviation 

#~ = #[X~(.,~ + ~)=~J]  -#[X~(.,k+l)=~] 
we have 

) 
j=o i=o \ J #J" 

(5.4) Theorem. (a) E(r consists only of shift invariant and thereby reversible 
states. 

(b) For any pc[0,  l] there is one and only one v~ with a.s. constant 
particle density p. v p is the ergodic Markov measure for the transition matrix 

M = ( 1 - p / b  p/b 
\ (1 -p ) /b  1 - ( 1 - p ) / b !  

where b = � 8 9  [�88 - p ) ( a -  1)] t/2. 

(c) Any #E~(r has a representation 

#= ~ vPW(dP), 
[o, 11 

where pu is the distribution of p (') under tz. 
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Proof (a) Let #O$(~ba). Then (5,1) and (5.3) show that for all n, k >  1 and all 
~f2io, , -1]  with ~o = ~,-1 = 1 and N(~)= N, L(~)= L 

I#[X[1,  n] = 0 ,  ~] --  # [ X [ o  , . _a ]  = ~]1 

j = 0  . f2r(n ,  k ) ,  i~ + k 

Setting a .  = max(a, 1/a) we see that the maximum under the integral is bounded by 

a2 aL+k-J/a- 2 ~L(og) ~ rt4 / l~n+ 2k + l 
* ~ :~ Z ~ ~ * / ~ N + k , L + k - j "  

~OE~l(n, k ) ,  2V + k 

Now apply (5.2) and observe that since 0_-< N -  L - 1 __< N - i and N - L - i __< n - N 
the right-hand side may be estimated by 

Thus the difference under consideration has the upper bound 

2a4, ~ (k+2~ - t  

j = 0 U + l !  
vanishing in the limit k ~ ~ .  

Summing up over ~ we see that for all A~Se and x e S  

]2 I X  A .-~ 11"] ~- [,2 I X  a + x = I " ] .  

Now the shift invariance of ~t follows from the inc lus ion-  exclusion formula 

kt[Xv = co ] = ~ ( -  1)la"v(~ # [ X a = l  ] (o~ef2 v, Ve5 e) 
V ( ~ ) ~ A c V  

where V(~) = {x" ~G = 1}. If V is an interval, a reversing of the order of coordinates 
of co entails on the right-hand side only shifts of the sets A proving the reversibility 
of/~. 

(b) An application of part (a) and Theorem (3.7) yields that for any kt ~ ex ff(~a) 
with particle density p there is a ~p uniquely determined by p such that 

#~ex ~i0(q~ ., ~o). 

Since for all q~ Iffi(~,, qg)l=l (see [2, 7]) it is enough to show that the Markov 
measure described in the statement is well defined, has density p, and is a Gibbs 
state for 4~, and some q~. It is easily checked that M is a stochastic matrix and 
admits ( 1 - p ,  p) as an invariant probability vector. To prove that it is a Gibbs 
state it suffices to realize that # has the right one-point conditional probabilities 
2~)(" I') for an appropriate q~ [2, 7]. This is done by an elementary calculation 
of the ratios M(i, 1)M(1,j)/M(i,O)M(O,j) (i, je{0,  1}) 

which we omit here. The proper ~o is given by 

(5.5) q9 = - l o g  [(b -- p)2/p(1 -- p)]. 

Part (c) is an application of (4.3). [3 
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Theorem (5.4) is an extension of de Finetti's theorem concerning exchange- 
able 0-1 variables to Markov chains. Indeed, if a = 1 then by (5.1) ~(~1) consists 
exactly of all symmetric states. Furthermore, if a = 1 then b = 1 so that v p is the 
product measure (1 - p ,  p)s. So in this case (5.4) reads as follows: 

(5.6) Corollary (de Finetti). Any probability measure # on {0, 1} e which is in- 
variant under permutations of finitely many coordinates can be obtained from the 
product measures ( 1 - p ,  p)Z (0 < p  < 1) by a randomization of the parameter p. 

6. "Microcanonical" Markov States 

In this section we proceed in investigating one-dimensional nearest neighbour 
systems, but now we go one step further and treat, in addition to the particle 
density p, the nearest neighbour coupling constant a as a free parameter. The 
resulting set 9)1 of states is determined only by the property that only nearest 
neighbours interdepend. 

If the particle density and the pair correlation of a state # in TJI are a.s. con- 
stant then it is possible to associate with # a fixed coupling constant a, and a 
determines already the interaction energy of #. For this reason a description of a 
state by p, a, and the property of belonging to 9)l is similar to that in the micro- 
canonical thermodynamic ensemble. 

Proposition (5.1) asserts that for any #e  U a> 0 fi;(~,) the marginal distribution 
#[Xx=co ] in an interval I depends only on N(co), L(co) and the values of co at 
the ends of I. By the reversibility of #, in fact only the sum of the values of co at 
the ends of I is essential. Let us give a more intuitive description of this symmetry 
property. We say that a configuration co on a finite interval I is of the type (N, L, l) 
if its particle number, its number of pairs of particles and of pairs of blanks are 
given by N, L, and l, respectively, i.e., if N(co) = N, L(co) = L, and L(ll - co) -- I. 

(6.1) Remark. Two configurations co, ~ on an interval Ira, n]~5 P are of the same 
type if and only if N(co) = N((), L(co) = L((), and co,. + co, = ~,. + ~,. 

Proof This follows immediately from the equation 

2 N(co) = - L(~ - co) + L(CO) + (n - m) + co,, + co 

which is a consequence of the definit ionof L(.). 

In this section we investigate the set ~J~ of all states # e ~  whose marginal 
distributions #[X~=co] in all finite intervals / depend only on the type of co. We 
call any # ~  a microcanonical Markov state. 

(6.2) Remark. (a) ~ is convex and weakly compact. 

(b) 9 J ~  G 0. 
(c) Any shift invariant Markovian probability measure is an extreme point 

of gJ~. 

Proof (a) is evident. To prove (b), apply (6.1) and (5.3) and observe that the 
configurations co J, c7/in (5.3) are of the same type. This implies the shift invariance 
of any #egJ~ just as in the proof of (5.4). Finally, it is easily checked that every 
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shift invariant Markov chain belongs to ~R. They are ergodic, that is, extremal 
in the larger set C 0. D 

Our aim is to prove the converse of (c): that the extreme points of 9Jl are 
shift invariant Markov measures. The methods are similar to those in Section 3. 
Fix again a sequence V of intervals in 5 P .whose length tends to infinity. 

Now let us introduce the 0-1 pair correlation function 

a(m) =l im sup IVI -a ~ ~o~(1 -r 
V~;S x e V  

=l imsup[V l -a[X(mv) -L (o~v ) ]  (o~f2). 
v'r s 

This is a more convenient parameter than the 1-1 correlation function p(a))- 
a(co). If P ~ o ,  then for /~-a.a. o)6f2 a(m) is in fact a limit and coincides with 
E u [Xo (1 -X1 ) l J ] ( co  ). The role of the Helmholtz free energy is played by the 
function 

m ( p , a ) = ( p - a ) l o g  P + a l o g p ( 1 - P )  
p - - a  a 2 

1--p (O<a<p;a<=l- -p) .  + ( 1 - - p - a )  log 1 - - p - - a  

(6.3) Lemma. m( ' , ' )  is a strictly concave function. 

Proof. According to [8] this can be proved by calculating the second deri- 
vatives of m(', ") and observing that they form a negative definite matrix since 

02 1 2 1 
- -  < 0 ,  Oa 2 m(p, a) = p -- a a 1 -- p -- 

(~2 02 [ 0 2  ]2 2p (1 - -p )+ l  
re(p, a) p(1 --p)(p--a)(1 --p--cr) >0. c3a2 m(p, a) ~ re(p, a)-- = 

(6.4) Lemma. re(p, a) is the limit of r-  1 log F~,L f r --~ oe and N/r  ~ p, ( N -  L)/r ~ a 
such that eventually Fly,L>----_ 1. In particular, m(',')>-->_O. 

Proof This is a straightforward application of (5.2) and Stirling's formula. [] 

The variational characterization of 931 is based on the affine functional 

re(u)= E,  [re(p('), - s( . )  
on C 0. 

(6.5) Proposition. For any P ~ o ,  m(#)>O. I f  #~gJ~ then re(p)=0. 

Proof. For any interval V= [m, n]~5 ~ and i,j~{O, 1} consider the set 

(2v, N, L(ij) = {CO e (2 v : N(cn) = N, L(o~) = L, co m = i, co, =j}. 

Its cardinality ZV, N,L(ij) plays the role of a microcanonical partition function. 
Obviously, we have 

FIn~r4j, L <=Zv,N,L(ij)<=FlnV, lL (N>=i+j). 
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Thus we conclude from (6.4) that if N/IVI ~ p, (N-L)/IV] ~ a, then 

I gl-1 log Zv,N,L(ij) 

tends to re(p, a) independently of i and j. 

For any #~ ~0 consider now the expression 

#[Xv = ~Tv] Zv, N~,~). L(.,.~(~. ~.) mv(#) = S #(dr/) log 

If #~gJ~, then the ratio under the logarithm a.s. equals 1 so that my(#)=0. For 
arbitrary # we may write mv(#) as 

1 IVl N-t 
~ ~ .u[Xv~2v.u.L(ij)3 ~ #[Xv=~Olnv.N.r(ij)] 

i,j=0 N=I L~O r 

�9 log #[Xv=CS[QV'N'L(ij)] 
Zv, N, L(ij)- 1 

The inner sum has the form of a relative entropy and is therefore nonnegative. 
Hence it is enough to show that IV] -1 mv(~O converges to re(p). To this end write 
the logarithm of the product as the sum of the logarithms. Then the first term 
tends to -s(#). Since IV[ -11OgZv, N,L(" ) is bounded uniformly in V, N, and L, 
the ergodic theorem guaranties that 

S #(d~l) l V[ -1 log ZV, N(,w),L(,w)(~lm ~.) 

tends to ~ #(dq) m(p(rl), aOl)). The remaining term can be written in the form of an 
entropy 

-IV1-1 ~ #[XveY2V,N,L(ij)] Iog #[Xv6Y2V, N,L(ij)] 
i , j ,N,L 

and has therefore the bound [V[ -1 log [2[V[([V[+I)] vanishing in the limit 
Iv[~oo. D 

Now we study states #e~0 with the properties m(#)=0, p( . )=p,  a(-)--~ 
/~-a.s. It is natural to guess that such a state is the unique Markovian probability 
measure with density p and 0-1 correlation ~ having the stochastic ma t r ix  

1 - a / ( 1  - p )  

a/p 
M p ,  f f ~  

(I; ;) 
1-a/p ] if 0 < p < l  

if pc{0, 1} 

( . s  

as transition matrix. We denote this Markov measure by vP'L Obviously, 
V p'p(1 --P) =(1  --p, p)S. 

(6.6) Proposition. Suppose that .for some # ~ o  m(#)=0 and p ( ' )=p ,  a(.)=o- 
#-a.s. Then#~-v p,r In particular, # is ergodic. 

Proof Consider first the main case 0<o-<p,  o-< 1 - p .  Then we may find 
some a > 0  and ~o~IR such that {v ~ = (fi(~,, (p). Indeed, setting 

a= l + ( p - a - p 2 )  a-2>O 
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and defining r from a and p via (5.5), namely 

~ - - - l ~ 1 6 2 1 7 6  ~ ] ~  

we find that M p'~ coincides with the matrix M considered in (5.4). Now observe 
that P(<b~, ~0)= - f ( v O , ~ ;  4~, q))= - l o g  [ 1 -  o- i l l -  p)] (see [7]). Furthermore, with 
this definition of (p and a we have 

0 = m(p, a) - s(#) = - ~o p - (p - a) log a + P ( ~ a ,  qg) - -  S(#) = f ( # ;  #, ,  e) + e (~ , ,  ~0) 

proving that # ~ i ( # , ,  ~o). 

Consider now the exceptional cases. If p ~ {0, 1}, then a = 0 and # = ep = v p, ~. If 
a=O then for all re<n ,  p = # [ X t , ~ , , l = ~ - l = l - # [ X f , , , n l = O ]  so that # = p q +  
(1 - p ) e  0. Since p(-)=const  #-a.s. we must have p=O or 1. Some more work 
will be necessary for the case 0 < a = p < 1 which is non-trivial, but has infinite 
specific energy since then a = O. So we have to argue more carefully. First observe 
that # is carried by 

Qo = {n ~f2: L(nt . . . .  1) =0  for all n>O}. 

For n > 0 consider now 

p 1 # [Xto ,.j = r/to ,.~] 
sn(#l vP" ) = n ~ -  ~#(dq)log 

=nlo,.l] 
If qEf2 o then 

[ P ~m'~","0(1--2p~ L0-'~t~ 
v~176 = v P '~  \ 1 - p  ] ~ /  >0. 

The formula in the proof of (6.1) therefore shows that for #-a.a. n 

1 
n + ~  log v ~' p [Xto ,.~ = ~/to,.l] 

converges (boundedly) to - m(p, p) if n --* oo. Thus 

s.(#] vP'P) -* - s(#) + m(p, p) = O. 

But writing s.(#[ v p'') in the form 

1 S#(dn) ~ l o g  vp,.[Xj__njl~o,~_al](n ) n + l  j=o 

we see just as in [3, Prop. 3.2] that its vanishing limit is given by 

j'#(dn) Z #[-Xo=~o ~-~o j ( n ) l ~  # [x~176  0[] (~) 
o,o~{o} MO'O(n-l' c~ 

From this we get that # is Markovian with transition matrix M ~176 and thereby 
that # = v ~ ~ 

The final case 0 < a =  1 - p  < 1 can be reduced to the preceding one by the 
"spin flip" co ~ 11 - co. D 
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(6.7) Theorem. (a) A state l ~ o  is a microcanonical Markov state if and only if 
m(~)=o. 

(b) Any lz~Jl is uniquely determined by the common distribution W of (p('), 
a(.)) under #. More precisely, # has a representation 

IX= f vP"W(dp, da). 
[0, i I  2 

In particular, ex 9Jl = { v p, ~: 0--< a <_ p; a__< 1 - p }. 

(e) Suppose that .for some # ~ o E ~ [ p ( ' ) ] = p  and E u [ a ( - ) ] = a .  Then s(#)< 
m(po a). The maximum value re(p, or) of the entropy is attained exactly by the Markov 
measure v p' a 

Proof. Fix some #~ C 0 with m( /0=0.  Then  the condit ional  probabil i ty kernel 
H[AIp( ')=p,  a ( ' ) = a ]  yields for W-a.a. (p, a) states v P " ~ o  with ~P'~[p( . )= 
p, a(.  ) = a] = 1 and/~ = ~ ~P'" PU(dp, da). Since 

0 = m(/2) = ~ m(~ p' ~) P~(dp, da) 

we have m03 p' ~)=0 and thereby ~3 p ' ' =  v p' ~ PU-a.s. Combined  with (6.5) this proves 
(a) and (b). The first part  of (c) follows from (a) and (6.3) by Jensen's inequality. 
If 0 < m(#) < re(p, a) - s(/~) = 0, then again Jensen's inequality asserts that p( .)  = p, 
a ( ' ) =  a #-a.s. Now apply (6.6). 
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