A Convexity Theorem for Positive Operators

By
M. A. Akcoglu* and R. V. Chacon^*

The purpose of this note is to prove the following
Theorem 1. Let (X, \mathfrak{F}, μ) be a σ-finite measure space, $1<p_{0}$, and let T be a positive linear operator on $L_{p}=L_{p}(X, \mathfrak{F}, \mu), \mathbf{1} \leqq p \leqq p_{0}$, such that $\|T\|_{p} \leqq 1$ for $1 \leqq p \leqq p_{0}$, and such that T is regular as an operator on L_{1}. Then T may be extended in such a way that $\|T\|_{p} \leqq 1$ for $1 \leqq p \leqq \infty$.

Definition. A positive contraction on L_{1} is regular if for some $f>0$ in L_{1}, $\sum_{k=0}^{\infty} T^{k} f=+\infty$ almost everywhere.

We remark that it follows from [1] and it was first proved by E. Hopf, that an operator which is regular with respect to one strictly positive f, is regular with respect to all strictly positive functions.

We obtain as a corollary of Theorem 1 the following:
Corollary 1. Let (X, \mathfrak{F}, μ) be a σ-finite measure space, $1<p_{0}$, and let T be a positive linear operator on $L_{p}=L_{p}(X, \mathfrak{F}, \mu), \mathbf{1} \leqq p \leqq p_{0}$, such that $\|T\|_{p} \leqq 1$, for $1 \leqq p \leqq p_{0}$. Then for any $f \in L_{1}$,

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{\nu=0}^{n-1} T^{v} f(x)\right)
$$

exists and is finite almost everywhere.
If $p_{0}=\infty$, this result is a special case of the Dunford-Schwariz Theorem [4]. On the other hand, if $p_{0}=1$, then the assertion of Corollary 1 is not necessarily true [3]. A weaker form of Corollary 1 , assuming that the measure space is finite, is proved by Y. Іто [5], using a different argument.

The proof of the corollary follows from Theorem 1 and from the following result obtained in [2]:

Theorem 2. Let $\left\{p_{n}\right\}$ be a sequence of non-negative measurable functions and let T be a linear operator of L_{1} to L_{1} with $\|T\|_{1} \leqq 1$ and with $|T g(x)| \leqq p_{n+1}(x)$ almost everywhere whenever $|g(x)| \leqq p_{n}(x)$ almost everywhere and $g \in L_{1}$. Then for any $f \in L_{1}$,

$$
\lim _{n \rightarrow \infty} \frac{\sum_{v=0}^{n} T^{\nu} f(x)}{\sum_{v=0}^{n} p_{v}(x)}
$$

exists and is finite a.e. on $\left\{x \mid 0<\sum_{p=0}^{\infty} p_{\nu}(x) \leqq+\infty\right\}$.

[^0]The proof of Theorem 1 will depend on the following two lemmas.
Lemma 1. Let $1<p_{0}$, and T be a positive linear operator on L_{p} such that $\|T\|_{p} \leqq 1$ for $1 \leqq p \leqq p_{0}$. Let, for any measurable set $A, L_{p}(A)$ denote the subset of L_{p} consisting of functions whose supports are contained in A. Then there exists a positive linear operator T_{A} such that
a) $T_{A}: L_{p}(A) \rightarrow L_{p}(A)$ and $\left\|T_{A}\right\| p \leqq 1$ for $1 \leqq p \leqq p_{0}$.
b) For any $f \in L_{p}(A), f \geqq 0$ and for any $n \geqq 0$

$$
\sum_{\nu=0}^{n} T^{\nu} f(x) \leqq \sum_{\nu=0}^{n} T_{A}^{v} f(x) \quad \text { for } \quad \text { a. a. } x \in A
$$

Proof. Let $f \in L_{p}(A), f \geqq 0$ and define two sequences of positive functions

$$
\begin{aligned}
f_{1} & =\chi T f & g_{1} & =\chi^{\prime} T f \\
f_{n+1} & =\chi T g_{n} & g_{n+1} & =\chi^{\prime} T g_{n}, \quad n \geqq 1
\end{aligned}
$$

where χ and χ^{\prime} are the characteristic functions of A and of the complement of A respectively.

Let

$$
T_{A} f(x)=\sum_{i=1}^{\infty} f_{i}(x)
$$

which is defined for a. a. $x \in A$. Now we prove that $T_{A} f \in L_{p}(A)$, hence the linear extension of T_{A} to all $L_{p}(A)$-functions defines a transformation on $L_{p}(A)$. To this end consider the relation

$$
T\left(f+\sum_{i=1}^{n-1} g_{i}\right)=\sum_{i=1}^{n} f_{i}+\sum_{i=1}^{n} g_{i}, \quad n \geqq 2
$$

which follows from the definition of f_{i} and g_{i}. Since the f_{i} 's and the g_{i} 's have disjoint supports and since $\|T\|_{p} \leqq 1$, we have

$$
\begin{gathered}
\int\left(\sum_{i=1}^{n} f_{i}\right)^{p}+\int\left(\sum_{i=1}^{n} g_{i}\right)^{p}=\int\left(\sum_{i=1}^{n} f_{i}+\sum_{i=1}^{n} g_{i}\right)^{p}=\int\left[T\left(f+\sum_{i=1}^{n-1} g_{i}\right)\right]^{p} \\
\leqq \int\left(f+\sum_{i=1}^{n-1} g_{i}\right)^{p}=\int f^{p}+\int\left(\sum_{i=1}^{n-1} g_{i}\right)^{p}
\end{gathered}
$$

which implies that

$$
\int\left(\sum_{i=1}^{n} f_{i}\right)^{p} \leqq \int f^{p}, \quad \text { for all } n=1,2, \ldots
$$

or, by the Lebesgue monotone convergence theorem, that

$$
\int\left(\sum_{i=1}^{\infty} f_{i}\right)^{p}=\int\left(T_{A} f\right)^{p} \leqq \int f^{p}
$$

Hence $T_{A} f \in L_{p}(A)$ and $\left\|\dot{T}_{A}\right\|_{p} \leqq 1$. This proves a).
The linearity and positiveness of T_{A} are obvious. To prove b) note that this inequality is trivial for $n=1$ and for all $f \in L_{p}(A), f \geqq 0$. Now assume that the assertion is proved for $n \leqq N-1$. Since

$$
T f=f_{1}+g_{1} \quad T g_{n}=f_{n+1}+g_{n+1}
$$

one obtains

$$
\chi^{T^{n}} f=\chi T^{n-1} f_{1}+\chi^{T^{n-2} f_{2}+\cdots+\chi f_{n},}
$$

or,

$$
\chi \sum_{n-1}^{N} T^{n} f=\chi \sum_{n=0}^{N-1} T^{n} f_{1}+\chi \sum_{n=0}^{N-2} T^{n} f_{2}+\cdots+\chi f_{N}
$$

which gives, by the induction hypothesis and by the positiveness of individual terms

$$
\begin{aligned}
\chi \sum_{n=1}^{N} T^{n} f & \leqq \sum_{n=0}^{N-1} T_{A}^{n} f_{1}+\chi \sum_{n=0}^{N-2} T_{A}^{n} f_{2}+\cdots+\chi f_{N} \\
& \leqq \chi \sum_{n=0}^{N-1} T_{A}^{n}\left(f_{1}+\cdots+f_{N}\right) \leqq \chi \sum_{n=1}^{N} T_{A}^{n} f .
\end{aligned}
$$

This, essentially, is the required inequality for $n=N$.
Lemma 2. Let T be an operator satisfying the hypotheses of Theorem 1. Then for any $f \in L_{1} \cap L_{\infty}$,

$$
\|T f\|_{\infty} \leqq\|f\|_{\infty}
$$

Proof. 1. First assume that the measure space is finite. Then it suffices to show that $T 1 \leqq 1$ almost everywhere, where 1 denotes the function which is identically 1 on X. Let

$$
T 1(x)=1+\alpha(x), \quad \text { where } \quad-1 \leqq \alpha
$$

Since the dissipative part [1] of T has measure zero

$$
\int T \mathbf{l}=\int \mathbf{1}
$$

which implies that

$$
\int \alpha=0
$$

Now assume that $\alpha(x)>0$ on a set Q of positive measure and let $1<p \leqq p_{0}$. Then $\|T 1\|_{p}^{p}=\int(T 1)^{p}=\int(1+\alpha)^{p}>\int(1+p \alpha)=\int 1+p \int \alpha=\int 1=\|1\|_{p}^{p}$ where the inequality follows from the fact that, for any $p>1$ and $-1<\alpha$, $0 \neq \alpha$

$$
(1+\alpha)^{p}>1+p \alpha
$$

But $\|T 1\|_{p}^{p}>\|1\|_{p}^{p}$ contradicts the condition $\|T\|_{p} \leqq 1$. Therefore the measure of Q must be zero.
2. Now consider the general case. Assume that there exists a function $f \in L_{1} \cap L_{\infty}, f \geqq 0$, such that

$$
a<T f(x), \quad \text { with } a=\|f\|_{\infty},
$$

on a set Q of positive, and necessarily finite, measure. Let A be any set of finite measure which includes Q, and such that

$$
\int_{A^{\prime}} f<\int_{Q}(T f-a)
$$

where A^{\prime} is the complement of A. Then it is easy to see that

$$
\|\chi f\|_{\infty}<T \chi f(x)
$$

on a subset of Q, with positive measure. Here χ denotes the characteristic function of A. Therefore, by Lemma 1,

$$
1<T_{A} \chi(x)
$$

on a subset of A with positive measure. But this is a contradiction to the first part of the proof. In fact, again by Lemma 1, T_{A} is conservative [1] on almost all A, which has a finite measure.

Proof of Theorem 1: Let $E_{1} \subset E_{2} \subset \ldots$ be an increasing sequence of sets of finite measure such that $X=\cup_{i=1}^{\infty} E_{i}$. Let χ_{i} be the characteristic function of E_{i}. Then, for any $f \in L_{p}$, with $1 \leqq p \leqq \infty, f \geqq 0$ we have, for a.a. $x \in X$,

$$
f(x)=\lim _{i \rightarrow \infty} f_{i}(x),
$$

where $f_{i}=f \chi_{i} \in L_{1}$. Let

$$
\widetilde{T} f(x)=\lim _{i \rightarrow \infty} T f_{i}(x)
$$

which is defined for a. a. $x \in X$. If f is not positive, let

$$
\widetilde{T} f=\widetilde{T} f^{+}-\widetilde{T} f^{-}
$$

Also, if $\mathbf{l} \leqq p \leqq p_{0}$, then T is continuous as an operator on L_{p} and it is easy to see that $\widetilde{T} f=T f$ for all $f \in L_{p}, \mathrm{l} \leqq p \leqq p_{0}$. Then we can conclude the proof noticing that $\|\widetilde{T}\|_{\infty} \leqq 1$ by virtue of Lemma 2 and applying the Riesz convexity theorem to \widetilde{T}.

Proof of Corollary 1: Let the conservative and dissipative parts of T be C and D and let χ denote the characteristic function of C. Theorem 1, together with the fact that C is an invariant set [1], shows that $p_{n}=\chi ; n=0,1,2, \ldots$ is an admissible sequence to apply Theorem 2. Therefore, by this theorem, for any $f \in L_{1}$ and for almost all $x \in C$.

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\nu=0}^{n-1} T^{v} f(x)=\lim _{n \rightarrow \infty} \frac{\sum_{\nu=0}^{\nu-1} T^{v=0}}{\sum_{\nu=0}^{v-1} p_{\nu}(x)}
$$

exists and is finite. On the other hand, for almost all $x \in D$,

$$
\left|\sum_{\nu=0}^{\infty} T^{\nu} f(x)\right|<\infty,
$$

i.e.

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\nu=0}^{n-1} T^{v} f(x)=0
$$

almost everywhere on D.

332 M. A. Akcogle and R. V. Chacon: A Convexity Theorem for Positive Operators

References

[1] Cracon, R. V.: Identification of the limit of operator averages. J. Math. Mech. 11, 961 to 968 (1962).
[2] - Operator averages. Bull. Amer. math. Soc. 68, 351-353 (1962).
[3] - A class of linear transformations. Proc. Amer. Math. Soc. 15, 560-564 (1964).
[4] Dunford, N., and J. T. Schwartz: Convergence almost everywhere of operator averages. J. Math. Mech. 5, 129-178 (1956).
[5] Iто, Y.: Uniform integrability and the pointwise ergodic theorem. To appear.
University of Toronto
Dept. of Mathematics
Toronto 5, Ontario (Canada)

[^0]: * Corinna Borden Keen Research Fellow at Brown University.
 ** The work of this author was carried out under a grant from the National Science Foundation.

