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Finite Abstract Random Automata 
By 

OeTAV 05;ICl~SCV and SILVIU GtrlASU 

w 1. Introduction 

The abstract  theory of automata  considered as a chapter of abstract  algebra 
has recently known a rather important  development. The principal results obtained 
are brought up in the synthesizing work [3]. Seen from the viewpoint of abstract  
algebra an automaton in its general form is an object 

Y, 

composed by  three abstract, nonempty sets : A, X, Y and two functions ~ : A • X 
---~A, 2 : A •  Y. 

A is the set of states, X the set of inputsignals, Y the set of outputsignals, d the 
transitionfunction and 2 the outputfunction of the automaton. Knowing the order 
ofinputsignals and the function d, it means the knowledge of a function d* : A • X 
-+ A • X effecting that  to a state and an inputsignal of the automaton,  there 
corresponds a certain state and a certain inputsignal of the next moment.  

But  automata  don' t  always act in accordance with the well defined law. The 
human brain as well as the calculating automata  are far from acting in a univocally 
determined manner. Disturbances (noises) of most differing nature alter univocally 
determined functioning of the automaton. At a first approximation one may leave 
aside the existance of such disturbances. But  going deeper into the mat ter  one 
cannot bar the existanee these disturbances, hence the necessity for introducing 
probabilities in automata  and exploring adequate ways as to reduce as much as 
possible the influence of disturbances. As disturbances are of a statistical character, 
the introducing of quantities specific for the probability theory is indispensable 
for the study of abstract  automata;  and first of all consider the results of the 
information theory. 

Let be 
A = {~*1 d* :A X X - + A  x X} 

and 
A={ l :AxX+r} 

In  the case of a nonrandom automaton, a certain d* ~ A and a certain 2 ~ A are 
corresponding to the automaton. In  the case of a random automaton these 
mappings are substituted by two random processes in which at  any moment  t and 
for any pair (a, x) correspond, with a determined probability, a mapping from 
A and A respectively. 

The disturbances being of complex nature we practically can get them by  
experimentally determining the probabilities of the above mentioned mappings. 

Our paper will deal but with finite abstract  au tomata  because, on one hand, 
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they are forming the most widespread class of automata and on the other hand, 
as they may represent a step towards the more general automata. 

In w 2 we shall define the finite abstract random automaton investigating the 
quantities that  are determining the functioning of the automaton and in w 3 we 
shall show a way to the reducing of disturbances i. e. the reducing of disturbances 
by passing from the current functioning schema to the schema of extended 
functioning. 

w 2. Finite abstract random automata. Definition and functioning '~ 

Definition 1. A finite abstract random automaton is an object 

{A, X, Y, P(~)• , pAxx(" I (a, x)), py(" I (a, x))} (1) 

composed by three nonempty sets A, X, Y and three probabilities P(~)xx, 
PA • I (a, x)), py(. I (a, x)). The set A will be denoted as the set of states of the auto- 
maton, the set X is the set of input signals, and Y the set of output  signals ; P(~)x x 
is the initial probability of states and input signals; PA x x (" [ (a, x)) the probability 
of transition and py  (. I (a, x)) the probability of output. 

P(~)xx is defined on the cartesian product A •  PAxX(" I(a, X)) is likewise a 
probability on A x X conditioned by a system (a, x ) e  A x X. This probability 
must be more completely written PA• x')l (a, x)) and represents the transi- 
tion probability of the automaton from its state a with the input signal x, in the 
state a' with the input signal x', in the next moment ; py  (y] (a, x)) is defined on the 
elements of set Y, conditioned by the system (a, x) and represents the probability 
of the outputsignal y, if in the previous moment the automaton was in the state a 
with the inputsignal x. 

An automaton has two distinctly different communication channels. The first 
one is A X X -> A X X and the second leads f~om A x X -> Y, the first being the 
transition channel, the latter the output  channel. The probabilities pA • (" [(a, x)) 
characterize the disturbances on the transition channel and PY('I (a, x)) the 
disturbances in the output  channel. IfpA • (" ](a, x)) takes the values 0 or 1 only, 
for each (a, x) e A • X and (a', x') e A x X, on the transitionel channel, there are 
no disturbances at all. Analogically for py (. I(a, x)). 

Theorem 1. The/unctioning o/ a finite random automaton is determined by the 
probabilities P (~x ,  PAxX(" I (a, x)), py(" [ (a, x)). 

Proof. The functioning schema of the automaton has the following structure 

[A x X, (a, x), p(2~x] ~Y(I(.,.)) [y, V, p(~)] 
I 

I P.4xX(" j(a, x)) 

[A x X, (a, x), P(~)~ x] ~(" I(~, z))  [y ,  ~," ~-(2)~ 

i Y 
/ [ A x X , ( a , x ) , p ( A ~ ) x ~ : ]  p Y ( . l ( a , x ) ) [ y , . , t t ,  l~y~(n§ 1)1] 

pAxX(.](a,x))  

[A x X, (a, x), ~(~+1)~ ~r(.l(~,~)) r y  o, ~(n+-%l 
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The transmission over the transit ion channel corresponds to a Marke r  chain, 
r  determined by the initial probabilities p~)~ x and respectively by the 
transit ion probabilities : PAx x (" I (a, x)). 

The probabil i ty fields determined by the set of  states arid by  the set of  output-  
signals are varying in time. 

The recurrence relations between these probabilities are, as it m a y  be seen in 
our schema 

p~+x~.(an+l, xn+l)= ~, p(n)x(an, xn)pAzx((an+l, xn+l) l(an, xn)) (2) 
(a%x'geA • X 

( n = 0 , 1 , 2  .... ) 

p(~+l)(yn+l)= ~ p~')xx(an, xn)py(ynI(a%xn)) (3) 
(a ~, x~)~A x X 

where a n s tand for a random state x n for a r andom inputsignal and yu for a random 
outpntsignal  at  the momen t  n. 

This recurrence relations yield tha t  p(OA)xX, pAx.V(" [(a, x)), py(" [(a, x)) deter- 
mined all other probabilities of  the schema. 

R e m a r k .  a. Let  us assume card. (A•  = m. I f  (a', x') is the event q and 
(a, x) the event r, we can write 

pA• x') I (a, x)) -~  7grq . (4) 

One m a y  easily calculate the probabil i ty that ,  the state of  the au tomaton  
should be a '  and the inputsignal x', if n steps before the state of  the au tomaton  was 
a and its inputsignal x, with other words one m a y  calculate 

p(An)X ( (~ ', x ' )  l (a  , x )  ) = 2~q ) . (5)  

Indeed,  let 41, 42 . . . . .  ks be the s distinct roots of  the characteristic equation 
A (2) = 0 of the matr ix  T = (Zrq)l _-<r =<m" 

Thus we shall have 1 < q < 

A (~)  = ]~ (~ - -  ~k)  n~ 
k = l  

where nk is the multiplici ty degree of  the root  4~. Put t ing  

~n m 

p ~ l  p ~ l  

denoting by Grq (2) the minor  of  the element ~rq in the determinant  I T - -  2 1 I, D~. 
being the derivation operator  of order p with respect to 2 and setting 

~J-  (v--g)~ 

we have according to Perron 's  formula 

~q) = (nj -- 1)i D~ ' - I  [ T - - ~ J x = ; ~ ,  " (7) 
]=1 
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b. These probabilities can be restricted within the states of  the au toma ton  by  
a simple summat ion  only:  

p.~ (a' l (~, x)) = N.pA• x') l (~, x)) , (S) 
:Y~EX 

i.e. the probabi l i ty  to find the au toma ton  in the state a',  f i a t  the  previous momeng 
its state was a, and the inputsignal x. 

Let  us now presume, there are no disturbances in the au toma ton  i. e. PA (a' I (a, x)) 
and PY(Yl (a, x)) take the values 0 or 1 only, whatever  m a y  be a '  ~ A, y ~ Y and  
(a, x) e A • X.  More precisely in this case only one a '  e A corresponds to the pair  
(a, z), as well as a single ou tpu t  y. Consequent]y there are in this case two map-  
pings : A transit ion mapping : ~ : A • X --> A and an ou tpu t  mapping  2 : A X X ---> Y, 
Thus  in this ease the abs t rac t  r andom au tomaton  reduces to a M~ALr au toma ton  : 

( a , x ,  r ,~ ,~}  
its functioning schema being 

A •  ~._~Y 

A •  ~_~Y 
/ o  

to which we must  add the initial state a0 for which p~) (a0) = ~. p(A0)~ X (a0, x) = 1.  

I n  this ease the functioning of  the au tomaton  is univocally determined by  the 
mappings 6 and ~ as it is defined by G. A. MnALY [4] and N. M. Gr.us~Kov [3]. 

w 3. The entropies and the extension ol the automaton 

The two entropies. Let  us consider the finite abst ract  r andom au tomaton  

{A, X, r ,  p ~  r ,  p~xx (') (a, x)), p r  (. 1 (~, x))}. 

The degree of  indeterminat ion -- the inputsignals - -  due to exterior causes - -  
and the outputsignals --  due to the disturbances in the channel --  are undergoing, 
is given by  the  respective entropies_ 

The transit ion ent ropy at  the moement  m is 

H(m)(AxX)  = -- ~ p~Oxx(am, xm) logp~'n)x~(a~ xm ~ = T(~)H(o)(AxX)  (9) 
(a~, ~ ) ~ A  x X 

where T(m) is m-iterate of the t ransformat ion T of matr ix  

(pA• ((~', x')l (a, x)))(~, ~)~ • x 
(a', ~;')EA x X 

while the ou tpu t  en t ropy  at the same momen t  is 

H(~) ( r )  = --  ~ p T  ) (y'O log p~)(y~) .  (10) 
y m e y  

The recurrence reIat ion (2) and  (3) show t h a t  these entropies H(m) (A •  
H( ,0 (Y)  are completely determined at  each momen t  m by  the probabilities 

The extension. The entropies above defined give as the clue to the following 
main  problem : Given a fitlite abs t rac t  random au toma ton  (1), wha t  could be done 
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in order to reduce the influence of  the disturbances to the utmost,  i.e. the entropies 
It(m) (A X X) ,  H(m) (Y)  should be at the moment  m reduced as much as possible. 
We are going to show now, tha t  the reducing of  the influence of  the disturbances is 
quite possible, by  substi tut ing to the au tomaton  a certain extension of  its. 

Definition 2. Given a finite abst ract  r andom au tomaton  

{A, X ,  Y,  P(~)x, pAXX{" ](a, x) ) ,py( . l  (a, x))} 

we shall denote the lengthextension n of  this au tomaton  --  the random auto- 
ma ton  - -  

{ ~ A  ~ X  ~ Y  ..,  ~-~ k, H k, l ~  k, P(O)(A~• , , PF[(A~• ( ' l  ( t~l' x l '  " an, Xn)) , 
k ~ l  k = l  k ~ l  k=l k=l 

P~iy ('](al, Xl . . . .  , an, xn)) t 

% 

k = l  J 

where Ak  = A,  X~ = X ,  Yk = Y ( k  = 1 ,2  . . . . .  n) and the conditional probabi- 
lities are given by  the equalities 

' ' I P ,, ((a]', x 1 . . . . .  an, x'n) (al, Xl . . . . .  an, Xn)) II (A k x X~) 
~=1 (11) 

�9 t t �9 

-~ PA•  (a 1, Xl) [ (al, Xl))"" " PA•  (a n, Xn) [ (an, Xn) ) 

P ~  y~ ((yl . . . .  , Yn) l (al, xl  . . . . .  an, xn)) ~- Pr  (Yl[ (al, x l ) ) ' " p y  (Yn I (an, Xn)) (12) 
k = 1  

because we are presuming tha t  we neither have on the transit ion-channel nor  on 
the outputchannel  any  memory ;  for the initial probabil i ty we have 

~(n-- 1) [~ p(O) (al, X l , . . . , a n ,  Xn) =~ p(~)x(a l ,  x l ) . . . t , A •  Xn). II (A ~ • XD 
k = l  

In  other  words, in the lengthextension n of  an au tomaton  a single state is sub- 
s t i tuted by  a sequence of  states having the length n, an inputsignal by  a sequence 
of  inputsignals of  length n and an outputsignal  by a sequence of  n outputsignals. 

~ A  ~ X  The elements of  the sets I-~ ~, 1-I ~, I - [  Yk are named state-words, input- 
k = l  k = l  k = l  

words and output-words  respectively, of length n. 
The functional element of the schema on the extension of length n of the 

au tomaton  is the following : 

k x X k )  , a l ,  Xl  . . . . .  an,  X n ) ,  

(m ~ ]P~ilz: '[(al,  x ...... a, , ,xn))[nT~.y , , l(m+l)] p . ,  | k=~ 
] 

P n (" (a,,x ...... an, x~)) 
II (A ~ x X,~) 

I k ~ l  

[ l ~ l  p( ,~+l)  ] 
(A~•  (al, xl  . . . . .  an, xn), n(A~xX,) " 

[k= ~=1 
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Theorem 2. Let be 

{A, X,  Y, .~(o) ~ ~ x , p ~ •  (" ](a, x)),p~,(. I(a, x))} 

a random automaton. 
Whatever e > 0 may  be, there is a natural number no (e) such that in  any extension 

o/ length n >: no (e) o / the  random automaton, the indetermination may  di]er  by less 
than s / t o m  the admissible m i n i m u m  o] indetermination. 

Proo/. F o r  s implyfying  le t  us denote  

H (~) H(m) " A ~ •  \ (13) 

O(m) = H(m) y~  (14) ** (n) 

~(") C** = inf  BI~' (15) C*~ : i n f  **(~, ; 
n n n 

The value  C*~ s t and  for the  smal les t  mean  inde t e rmina t ion  a t  ~he m o m e n t  m 
in the  first  channel ,  wi th  respect  to  all  extensions  of the  a u t o m a t o n  and  C~ *~ is the  
smal les t  mean  i nde t e rmina t i on  a t  the  m o m e n t  m in the  second channel ,  l ikewise 
wi th  respect  to  all extensions.  

W e  first ly show t h a t  

C~* = l im "(=) (16) 
n n--+oo 

Indeed  C.~ being a lower boundary ,  there  exists  for any  e > 0 a na tu ra l  
number  s, such t h a t  

'=) < O~ + s. 
8 

The proper t ies  of the  en t ropy  y ie ld  

~(m) < H(m) n ~ s ; ( r n - - 1 ) s  ~ n < rns  ~ ~(n) ~ (~==) 
hence 

~:~(m) ~ ~ ~ ( m )  
(n) ~ -n ~ (s) 

imply ing  

(=) < ' ~ " ' = )  < "~(9 < - ( O ~ + e )  
n ~ n ~ r n -  1 8 ~ r n - - - 1  

Making n to  t end  to  inf ini ty,  rn is l ikewise tending  to  inf in i ty  and  so we have  

~Cm) 
l ira sup "~ ('' ~ C~ ~- e 

for any  e. Thus  
//!~ ) 

l i m s u p  ~'t=) ~_ C ~ .  
n n 

On the  o ther  hand,  in accordance  wi th  the  defini t ion of  C~ 

n - -  

(17) 

( i s )  
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(17) and  (18) are y ie ld ing 
~ ( m )  

l im "" (~--~) = C 2 . 
n n--~oo 

Thus, for any  e > 0 there  exist  n~  (e) such t h a t  for n > n*  (e) 

~7(m) 

n 

I n  the  same manne r  one m a y  demons t r a t e  t h a t :  

~--+oo 

i .e.  for any  e > 0 there  exis t  n** (s) such t ha t  for n > n** (~) 

r~(m) 
0 < "" (~) U~ < e .  

The r andom a u t o m a t o n  has a finite l i fet ime [0, M].  
W e  are wri t ing 

no(s) -~ m a x  (n~(e), n*.Y(e)). 
1 <=m<~M 

Then we have,  in any  extension of  len th  n ~ no (s) 

H(~'(k~I(A~ x Xk) ) / / ( " ) (k~  1Y~) 

O <  - - C ~ < e ; O <  
n ~ n 

(19) 

(20) 

C'm*< s 

whateve r  m(1 ~ m ~ M) m a y  be. 
R e m a r k .  A r a n d o m  a u t o m a t o n  m a y  fulfill i ts  p rogramme when the  degree of  

i nde te rmina t ion  does no t  exceed a cer tain value  H.  Should  this  a u t o m a t o n  
respond "on the  f ly" to the  d is turbances  appear ing  in the  au toma ton ,  the  indeter-  
mina t ions  need to  be less t han  H.  A t  a n y  m o m e n t  an aux i l i a ry  device should 
record the  values  of  the  entropies  Htm)(A •  H(m)(y) .  Should  one of  these 
values go beyond  H,  one had  to ex tend  the  length  of  the  r andom a u t o m a t o n  
convenient ly .  
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