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§ 1. Introduction

The abstract theory of automata considered as a chapter of abstract algebra
has recently known a rather important development. The principal results obtained
are brought up in the synthesizing work [3]. Seen from the viewpoint of abstract
algebra an automaton in its general form is an object

{4,X,7,6,1}

composed by three abstract, nonempty sets: 4, X, ¥ and two functions §: 4 x X
—-A,1:4AxX—~>7Y.

A is the set of states, X the set of inputsignals, Y the set of outputsignals, é the
transitionfunction and 1 the outputfunction of the automaton. Knowing the order
of inputsignals and the function d, it means the knowledge of a function §*: 4 x X
-—> A x X effecting that to a state and an inputsignal of the automaton, there
corresponds a certain state and a certain inputsignal of the next moment.

But automata don’t always act in accordance with the well defined law. The
human brain as well as the calculating automata are far from acting in a univocally
determined manner. Disturbances (noises) of most differing nature alter univocally
determined functioning of the automaton. At a first approximation one may leave
aside the existance of such disturbances. But going deeper into the matter one
cannot bar the existance these disturbances, hence the necessity for introducing
probabilities in automata and exploring adequate ways as to reduce as much as
possible the influence of disturbances. As disturbances are of a statistical character,
the introducing of quantities specific for the probability theory is indispensable
for the study of abstract automata; and first of all consider the results of the
information theory.

Let be

A={0*|6*: Ax X >Ax X}
and

A={1:AxX—>7}

In the case of a nonrandom automaton, a certain * € A and a certain 4 € /1 are
corresponding to the automaton. In the case of a random automaton these
mappings are substituted by two random processes in which at any moment ¢ and
for any pair (a, x) correspond, with a determined probability, a mapping from
A and A respectively.

The disturbances being of complex nature we practically can get them by
experimentally determining the probabilities of the above mentioned mappings.

Our paper will deal but with finite abstract automata because, on one hand,
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they are forming the most widespread class of automata and on the other hand,
as they may represent a step towards the more general automata.

In § 2 we shall define the finite abstract random automaton investigating the
quantities that are determining the functioning of the antomaton and in § 3 we
shall show a way to the reducing of disturbances i. e. the reducing of disturbances
by passing from the current funetioning schema to the schema of extended
functioning.

§ 2. Finite abstract random automata. Definition and functioning
Definition 1. A finite abstract random automaton is an object

{A’ Xa Y.‘p(x(i))x X pAXX(' | (a’, w))ﬂpY(' i ((1,, .’X/'))} (1)

composed by three nonempty sets 4, X, ¥ and three probabilities p% x,

Paxx( ‘ (@, ), px(*| (@, %)). The set 4 will be denoted as the set of states of the auto-
maton, the set X is the set of input signals, and Y the set of output signals; p%, ¢
is the initial probability of states and input signals; paxx (- | (@, )) the probability
of transition and py (- | (@, x)) the probability of output.

P, x is defined on the cartesian product A X X; paxx(-|(a, 2)) is likewise a
probability on 4 x X conditioned by a system (a, ) € 4 X X. This probability
must be more completely written psxx((@’, 2')|(a, z)) and represents the transi-
tion probability of the automaton from its state a with the input signal z, in the
state @’ with the input signal ', in the next moment; py (y | (@, )) is defined on the
elements of set Y, conditioned by the system (a, ) and represents the probability
of the outputsignal y, if in the previous moment the automaton was in the state o
with the inputsignal x.

An automaton has two distinctly different communication channels. The first
one is A X X — 4 X X and the second leads from 4 X X — Y, the first being the
transition channel, the latter the output channel. The probabilities p4xx (* | (a, )
characterize the disturbances on the transition channel and py(-|(z, x)) the
disturbances in the output channel. If p4x x (-] (a, #)) takes the values 0 or 1 only,
for each (a, x) € A x X and (o', 2') € 4 X X, on the transitionel channel, there are
no disturbances at all. Analogically for py (-] (a, 2)).

Theorem 1. T'he functioning of a finite random automaton is determined by the
probabilities pY’, x, Paxx (] (@, 2)), py (| (@, z)).

Proof. The functioning schema of the automaton has the following structure

[A XX: (aa x):.pfg)xX] EM [Y= Y, :p({'l')]
|

paxx(|(a,2))

[4 X X, (a, 2), pP x] 27C1@D) [T, y, pP]

‘i
Y
, [AX X, (@ ), P x] PrC1@ 1Y, y, p§+D)

|
ilmxx('l(u,w))
X

[4x X, (a,2), piR] 22102 [V, g, pT2].



Finite Abstract Random Automata 281

The transmission over the transition channel corresponds to a Markov chain,
completely determined by the initial probabilities p{, x and respectively by the
transition probabilities: paxx (- | (a, 2)).

The probability fields determined by the set of states and by the set of output-
signals are varying in time.

The recurrence relations between these probabilities are, as it may be seen in
our schema

PR (antl, gntl) = P x (@m, 1) pascx (@1, zo+1) | (am, 2n)) (2)
(an,z")ed X X

(n=01,2,..)

PG 0y = > P x(an, xm) py (y7 | (an, z)) (3)

(@r, zm)edx X

where a” stand for a random state x* for a random inputsignal and y» for a random
outputsignal at the moment #.

This recurrence relations yield that 2D v, Daxx (- ] (@, ¥)), py (-] (@, z)) deter-
mined all other probabilities of the schema.

Remark. a. Let us assume card. (4 x X) = m. If (a', 2") is the event ¢ and
(@, z) the event r, we can write

P4 XX((a,: ZL”) I (a: .’E)) = Tlrq - (4)

One may easily calculate the probability that, the state of the automaton
should be ¢’ and the inputsignal &', if » steps before the state of the automaton was
@ and its inputsignal #, with other words one may calculate

PP x (@, )| (a,2) = aly . (5)

Indeed, let i3, A2, ..., A5 be the s distinet roots of the characteristic equation
A(2) = 0of the matrix T = (7rg)1 <» <m-

Thus we shall have 1sg=m
S
E=1
where ny is the multiplicity degree of the root 1. Putting

(n

nm (n—1) =

m MM

-1 1 )

= Z?m Tpq Zlﬂyfo ) itpg, My = Trg; (6)
p= =

denoting by Grq (1) the minor of the element 7,4 in the determinant | T — A 1|, D}
being the derivation operator of order p with respect to 4 and setting

|7 — A1

Y= Gy

we have according to Perron’s formula

s
1 1 [ A7 Gry(2)
(7) Z 1y — 1 g
Trg (ng — 1)!D11 [ P (4) L=h )
i=1
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b. These probabilities can be restricted within the states of the automaton by
a simple summation only:
pa(@' | (@, 2) =3 paxx((@’,2)](a,2)) , (8)
Ted
i.e. the probability to find the automaton in the state o', if at the previous moment
its state was @, and the inputsignal z.

Let us now presume, there are no disturbances in the automatoni.e. p4(a'| (@, %))
and py(y|(a, z)) take the values O or 1 only, whatever may be a’e 4,ye ¥ and
(2, z) e A x X. More precisely in this case only one ¢’ € A corresponds to the pair
(a, x), as well as a single output y. Consequently there are in this case two map-
pings: A transition mapping: §: 4 x X — 4 and an output mapping 2: A X X — Y.
Thus in this case the abstract random automaton reduces to a MEALY automaton :

{As Xa Y} 57 l}
its functioning schema being
AxX 1Y
P
AxXX *, Y
P
to which we must add the initial state a for which p$ (ae) = > P9, (ap, 2) =1.
zreX
In this case the functioning of the automaton is univocally determined by the
mappings 0 and 1 as it is defined by G. A. MEALY (4] and N. M. GLusukov [3].

§ 3. The entropies and the extension of the automaton

The two entroptes. Let us consider the finite abstract random automaton

{Ax X; Ysp,(}{))x X»pAXX{'} (u’) x)), PY('J(gx :I‘))} >

The degree of indetermination — the inputsignals — due to exterior causes —
and the outputsignals — due to the disturbances in the channel — are undergoing,
is given by the respective entropies.

The transition entropy at the moement m is

Hm(4XxX)=— > pfxlam am)log p@ vlam, am) = T HO (4 XX) (8)
(am, zm)e A x X

where T'(m) is m-iterate of the transformation 7' of matrix

(pAXX((“: x') l (@, w)))(w, zed x X

(2 z)ed x X
while the output entropy at the same moment is
Hm (Y) = — > p§” (ym) log p§” (y™) - (10)
yme¥Y

The recurrence relation (2) and (3) show that these entropies H(m (4 x X),
Hm (Y) are completely determined at each moment m by the probabilities
PO x: Paxx (] (@, @) pr (] (@, 2)).

The extension.. The entropies abgve defined give us the clue to the following
main problem: Given a finite abstract random automaton (1), what could be done
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in order to reduce the influence of the disturbances to the utmost, i.e. the entropies
Hm (A x X), H™(Y) should be at the moment m reduced as much as possible.
We are going to show now, that the reducing of the influence of the disturbances is
quite possible, by substituting to the automaton a certain extension of its.

Definition 2. Given a finite abstract random automaton

{A: X: Y: PE?)XX,PAXX(‘ ] (a’ x)): pY( l (a’ Z‘))}

we shall denote the lengthextension n of this automaton — the random auto-
maton —

1 n n

]__I n 1‘—[ (0)

{ Ak’ Xk7 Yk’ Pﬁ(AkXXk), Pﬁ(Ah;XXk) ('] (al; TLs s B xn)),
k=1 k=1 k=1 =1 B=1

Pr  (-|(a1, 21, ...,an,xn))}
k=1 *
where Ay = 4, Xy =X, Y=Y (k=1,2, ..., n) and the conditional probabi-
lities are given by the equalities
Pﬁ(AkXX];) ((ay, 21, ..., a, x;L)I (@1, %1, ..., Gy, Tp))
s (1
= paxx((a; xl) [ (@1, 21)) *** Daxx (@, Ty) [ (@n, xﬂ))

Pﬁ I ((?/1 yeres ?/n) l (@1, %1, ..., an, xﬂ)) =Py (?/1[ (“1’ xl)) TPy (?/n l (a'n; x'rb)) (12)
k=1
because we are presuming that we neither have on the transition-channel nor on
the outputchannel any memory; for the initial probability we have
(© -
" e 0 (@1, 1, .-, Any Tn) *+ PPy x (@2, 71) .. DT 2@y %) -
In other words, in the lengthextension » of an automaton a single state is sub-
stituted by a sequence of states having the length %, an inputsignal by a sequence

of inputsignals of length » and an outputsignal by a sequence of » outputsignals.
n

n n
The elements of the sets [ [ 4z, [[X#z |] Y& are named state-words, input-
E=1 E=1 E=1
words and output-words respectively, of length n.

The functional element of the schema: on the extension of length n of the

automaton is the following:

n
[H(AkXXIC)? (al’xla ceey Up, xn) >

k=1 Pﬁy('l(al,ch ..... Qn, ¥n)) n
(m) 3 (m + 1)
P k=1 con
ﬁ(AkXXk) l__[ Yk‘: (?/1; ’ yﬂ): PIZ‘I Y
k=1 k=1 k=1
P, ¢l (2, ey @n, Z0))
I (Adex Xz)
| k=1
v

n
Apx X 1, .. Grrb .
!ik]‘;I]‘( kX ]C)a (als 1s y Aq, x’ﬂ): P;Ifll(AkXXk)
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Theorem 2. Let be

{A’ X, Y:ﬁf/({))xX:pAXX(' l (@, ), pr (- l a, w))}
a random automaton.
Whatever ¢ > 0 may be, there is a natural number ng (&) such that in any extension
of length n = ng (&) of the random automaton, the indetermination may differ by less
than ¢ from the admissible minimum of indetermination.

Proof. For simplyfying let us denote

HGY = H<m>(ﬂ(Ak xXk)) (13)
k=1
o — (m)(n Yk) (14)
o — infﬁ;;i; o%% — inf A& (15)
n n “

The value O stand for the smallest mean indetermination at the moment m
in the first channel, with respect to all extensions of the automaton and C¥ is the
smallest mean indetermination at the moment m in the second channel, likewise
with respect to all extensions.

We firstly show that

0 = tim 8.

n—00

(18)

Indeed CJ being a lower boundary, there exists for any & > (0 a natural
number s, such that

ﬁ(m)
-———;s) é 0;;, + E.
The properties of the entropy yield

n=s; (rn——l)s<n<rn9:>H( ))£H(,. A

hence
. HE® < ry HE
implying
g _ rmlE ra_ HE %
< < ) < c .
n = n = rp—1 s =7,n__1(m+3)

Making n to tend to infinity, 7, is likewise tending to infinity and so we have

lim sup === HE =CF i1
n
for any &. Thus
R H(m) %
lim sup =% < C . (1n
n n
On the other hand, in accordance with the definition of C¥

7 ¢
HE
n

=0y (18)
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(17) and (18) are yielding

lim
n—0o

Thus, for any ¢ > 0 there exist n}%, (¢) such that for n = nX (¢)

I (m)
HEY _ ox
n "

0 < H(n)
n

—CF <&, (19)
In the same manner one may demonstrate that:

o — lim 18 (20)

H—>00 n

i.e. for any & > 0 there exist n}:* (¢) such that for n = n¥*(¢)

0 < H(n)

— 0% <e.
The random automaton has a ﬁmte lifetime [0, M.
We are writing
no(e) = max (ng; (e), my' (€)) -
l=msM

Then we have, in any extension of lenth n = ng(¢)

a3
<m)( T (4 xXk)) H(m)( i Yk)
k=1

=1
— O <0< -

0

fIA

— O <

n

whatever m(l = m =< M) may be.

Remark. A random automaton may fulfill its programme when the degree of
indetermination does not exceed a certain value H. Should this automaton
respond “on the fly”” to the disturbances appearing in the automaton, the indeter-
minations need to be less than H. At any moment an auxiliary device should
record the values of the entropies H (4 x X), Hm (Y). Should one of these
values go beyond H, one had to extend the length of the random automaton
conveniently.
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