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Summary. We consider the problem of controlling a system whose state at 
time t is given by p(t)~R", where we assume that we can choose the velocity 
r(t) of p(t) and the terminal time of control ( in an arbitrary manner, 
restricted only by the target condition Z(p(O)<O, the phase constraints 
Gj(p(t)) <0, j=  1,..., J for all t < (, and the requirement that the norm of r is 
either essentially bounded or a.s. constant. For  given cost function S the 
loss functional to be minimized is given by ~S(p(TA ~), TA O, where T is a 
nonnegative random variable with known distribution P. So we control the 
state effectively only up to the random terminal time TA ~. 

By means of the technique of Dubovitskij and Milyutin for the treat- 
ment of extremum problems in locally convex topological vector spaces, 
which turns out to be a powerful tool in the stochastic setting too, we 
derive necessary conditions on optimal controls under rather general as- 
sumptions on P, S, Z and G j, j = 1,..., J. In an important special case where 
we consider simple phase constraints and monotone cost function S the 
general theorems allow a rather complete description of locally optimal 
paths in simple form. 

I. Formulation of the Problem and Survey 

The starting point of this paper is the so-called "Fitzwitliam Street problem" 
posed by R. Davidson. A pedestrian walking with constant velocity wants to 
cross a street diagonally from one corner to another. If a car comes into sight 
before he has arrived at his target, he has to leave his planned path at once 
and walk straight to the opposite pavement, proceeding afterwards to his 
target on this side of the street. If the distribution of the arrival time of the 
first car is known, then the problem consists in choosing a planned path which 
minimizes the expected value of the actually travelled distance. 

For  exponential arrival time, E.M. Wilkinson (1974) has shown by means 
of geometrical considerations the existence of optimal planned paths and has 
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given a partial differential equation for the minimal expected distance as a 
function of the starting point, from which one can derive necessary conditions 
on an optimal path. He used a technique related to dynamic programming 
principle, relying heavily on the lack of memory of the exponential distribu- 
tion. In the following we derive a general approach to this type of navigation 
problem with random terminal time; in particular, we obtain necessary con- 
ditions for solutions of the "Fitzwitliam Street problem" for arbitrary distri- 
butions. 

The "Fitzwilliam Street problem" is a special case of a general problem of 
stochastic navigation under phase constraints which can be treated by methods 
of the generalized calculus of variations in topological vector spaces. The 
solution of such problems, which will now be described, also provides a better 
understanding of Wilkinsons result. 

We consider continuous paths p(t), t >0, in R", which start at time 0 in the 
initial state aeR  n, and whose velocities r(t) have a norm essentially bounded by 
a constant v S. The terminal time ~ of the paths, i.e. the time of last control, can 
be chosen arbitrary in [0, oo). It is required that p(~) be in a target region 
{xIZ(x)<O} c R  n and not leave an admissible region of R", which is described 
by phase constraints of the type sup{G(p(t))[O<=t<~}<O. Let T be the random 
time of the occurence of some event which forcibly prevents further control of 
the system in the case T__<~. Let l(T) denote the length of the path of our 
system up to time T. We assume that the costs are given by S(p(T), l(T), T) if 
T <  ~, and by S(p(~), l(~), ~) if T>~. Here S(x, l, t) is a given cost function on R" 
x [0, oo) x [0, oo). 

Now we want to determine conditions on paths which locally minimize the 
expected costs under the given constraints. We assume v s > 0, and writing T~ for 
the minimum of T and ~, we get the following optimization problem. 

(1.1) Determine a path p~C~[0, oo), a function of path length /~C1[0, oo), a 
velocity re/#oo[0, oo) and a terminal time ~>0, so that 

under the constraints 

L(p, l, r, [) = e S(p(T~), l(T~), T~) = min ! 

t t 

p(O=a+yr(s)ds l( t)=S IIr(s)lbds, 
0 0 

lit(Oil __<v~ a.s., 
z(p( ~)) < o, 
Gj(p(t)) <_ 0 for all t__< {, j = 1,... ,  J. 

The problem is to determine necessary conditions on a tuple (po, lO, r0 ,~o) 
which locally minimizes the loss functional L under all tuples satisfying the 
constraints. 

In the "Fitzwilliam Street problem" the speed of the controlled system is 
a.s. constant rather than merely essentially bounded from above, so that the 
time dependence and the length dependence of the cost function S coincide. In 
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general, whenever S(x, l, t) decreases as x approaches the target and increases in 
l and t (as in the "Fitzwilliam Street problem"), then it turns out that an 
optimal velocity r ~ for the problem (1.1) has to have a.s. constant norm equal 
to v s. 

Constraints of the type IJr(t)lp = v~ a.s. in which constant speed is required a 
priori, appear automatically, if the terminating random event depends on path 
length (e.g. attrition of material), rather than time. In such situations we have 
paths parametrized by their own relative length, and the costs S(x, I) depend on 
the state x, where the random event takes place, and on the length of path I up to 
this time. To unify terminology, we assume in the following that in this context 
the system really moves along the paths with constant speed, so that the length 
of path and time become interchangeable, and we get the following optimi- 
zation problem: 

(1.2) Determine a path pEC"[O, oo), velocity rd2oo[0, 09) and a terminal time 
__> 0, so that 

L(p, r, ~)= e S(p(Tr T;)=rain! 

under the constraints 

t 

p(t) = a + S r(s) ds 
0 

Itr(t)rl =vs 

Z(p(~)) __< 0, 

Gj(p(t)) <= o 

a.s. 

for all t<=~, j = l , . . . , J .  

In Chap. 2 we treat both optimization problems by means of the formalism of 
Dubovitskij and Milyutin, which provides necessary conditions on solutions of 
non-convex optimization problems in general locally convex topological vector 
spaces [Girsanov, 1972]. The formalism applies rather directly to (1.1) whereas 
the "thinness" of the set {rlllr(t)l I =vsa.s. } of admissible controls for (1.2) 
requires the preliminary solution of a transformed optimization problem. (The 
situation here is similar to that in the proof of the Pontryagin maximum 
principle given by Dubovitskij and Milyutin [Girsanov, 1972, Chap. 13].) 
However, the transition from this transformed problem back to the original 
problem can be interpreted more easily in our context than in the cited 
literature. To save space, we give only the proof of the solution of problem 
(1.1) (Theorem 2.1), but we use the transformation technique which is necessary 
for dealing with (1.2). The proof of Theorem 2.2, which gives the analogous 
result for problem (1.2), can be adapted from the proof of Theorem 2.1 with 
some minor changes. 

In Chap. 3, we apply our general results to an important special case. We 
consider the simplest type of phase constraints in which the parameters de- 
scribing the state of the System are simply bounded from above, i.e. we choose 
G j ( x ) = x j - z j ,  j - -1 . . . .  ,n, in (1.1) and (1.2). Furthermore, we assume that the 
cost function reflects the desire to reach the target quickly in the sense that S 
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decreases in the state coordinates as the state approaches the target region, 
and that S increases with time. This special structure, which is shared in 
particular by the "Fitzwilliam Street problem", makes it possible to give a 
complete description of all locally optimal paths in simple form. 

The formalism of Dubovitskij and Milyutin, which has proved to be a 
powerful tool in the solution of our problem, has not been much used in 
probabilistic optimization problems. Its usefulness stems partly from the fact 
that its application is not restricted by convexity assumptions. One application 
that has been made is the treatment of stochastic search problem [Pursiheimo, 
1977 and 1978; Lukka, 1977]. Especially the model described in the last-named 
paper is somewhat related to our model. But while Lukka considers de- 
terministic paths and random cost functions, we have a fixed cost function and 
paths subject to random influences. 

The conditions on optimal controls obtained by applying the approach of 
Dubovitskij and Milyutin are hard to interpret stochastically. Nevertheless, by 
using a heuristic dynamic programming approach it is possible to make them 
at least plausible. This will be carried out in the second part of this paper [to 
appear in this journal]. 

Notation 

OM, M~ boundary, interior and complement of the set McRn.  C"(A), 
/21(A), /2oo(A): the spaces of continuous, integrable and essentially bounded 
functions from A into R" with the usual norms II. IIc,ll. [[ 1, [I-l[ ~. 

VS(x,l,t): the vector of partial derivatives of S with respect to x 1,...,x., 
where x~R". 

As usual we write x-_< z instead of xj =< zi, j = 1, ..., n, where x, z~R". 

2. Necessary Conditions on Optimal Controls for General Cost Function 
and Phase Constraints 

It is possible to get necessary conditions on solutions of the optimization 
problems (1.1) and (1.2) directly from the Pontryagin maximum principle (e.g. 
Theorem 14.2 of Girsanov, 1972), if we make rather stringent assumptions, e.g. 
continuous differentiability of the density f of P [Franke, 1980]. But we prefer 
a direct approach to the results contained in Theorems 2.1 and 2.2, which not 
only admits weaker assumptions, but, due to the special structure of our 
optimization problem, is also more transparent than the related proof of the 
general Theorem 14.2 of Girsanov (1972). 

We only treat the optimization problem (1.1) with variable norm of velocity 
in detail, but we choose an approach, which is more general than necessary for 
analyzing (1.1), from which the respective results for problem (1.2) can be 
derived by some minor changes of proof. Both problems could be analyzed 
separately by somewhat simpler techniques [Franke 1980], which we combine 
in the following to get Theorems 2.1 and 2.2 simultaneously. 
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t 

The operator r~-~ [Ir(s)ilds from/2%[0, oo) into C'[-0, oo), which appears in 
0 

the constraints of problem (1.1), is not Fr6chet-differentiable in functions r, 
whose norm is not essentially bounded away from 0. So we would have 
difficulties with our functional analytic approach. We avoid this problem by 
treating norm and direction of velocity as separate variables of another optimi- 
zation problem equivalent to (1.1). 

Essentially, this idea would suffice for deriving most of the results of 
Theorem 2.1, but in the case of constant velocity (1.2) we would end up with a 
rather weak result. This effect is due to the fact that in the formulation of our 
optimization problems (1.1) and (1.2) we consider only paths as adjacent, which 
not only differ uniformly by a small amount, i.e. the C'-norm of their differ- 
ence is small, but additionally the /2~-distance of their velocities has to be 
small too. In the terminology of the classical calculus of variations we are 
searching for conditions on a "weak extremum',  i.e. we are searching for paths 
with velocities r minimizing the loss functional L locally with respect to a 
weak neighbourhood, i.e. in our case a/2~-neighbourhood. 

Now, if the paths are parametrized by their own relative length, i.e. if we 
consider the constraint tlr(s)ll = 1 a.s., the set of admissible variations is " thin"  
in/2~,  i.e. it has an empty interior. The case n = 1 is especially extreme. Here, 
r(s) a.s. can only assume the values _+ 1, so that there are no other admissible 
variations than r itself. The entire variability under the prescribed constraints 
of the optimization problem (1.2) consists of the possibility to choose different 

If we consider a so-called spike variation r(s)+6(s) of r [Girsanov 1972], 
where 6(s) is different from 0 only for s in some small interval, then the 
resultant path with velocity r(s)+b(s) lies adjacent to the original path in C n, 
and the value of the loss functional L does not change very much, even if 11611~ 
is not small. So it is natural to give up the claim to uniform nearness of the 
velocities and to proceed to another space, e.g./21, where the norm of a spike 
variation is small. In the terminology of the classical calculus of variations this 
corresponds to searching for "strong extremum conditions", i.e. for conditions 
on some (p, r) locally optimal with respect to a C" x/21-neighbourhood. 

In the following we do not analyze the loss functional L and the respective 
constraints directly in C'x/21,  but we employ an approach due to Dubovitskij 
and Milyutin [Girsanov 1972, Chap. 13] and proceed to an equivalent optimi- 
zation problem. H.ere we exploit the fact that the value of the loss functional L, 
which depends only on path p and relative length l, does not change, if we 
choose another time scale, i.e. if we consider a change of parameter s=V(t)  

$ 

=[. v(~)d~, where veL~[O, 1] and v(t)>O a.s. 
0 

Then q(t)=p(V(t)), k(t)=l(V(t)), n(t)=lir(V(t))ll on {tlv(t)>O} and u(t) 
=r(V(t))/n(t) on {tiv(t) >0, n(t) > O} are path, relative length, norm of velocity 

1 

and direction of velocity in the new parametrization; ~= V(1)=~ v(z)d'c is the 
0 

time up to the termination of control. On {tlv(t)=O} we can choose n(t) and 
u(t) arbitrary as far as we have O<n(t)<v s and Ilu(t)l j =1 for almost all t~[0, 1], 
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and the same is true for u(t) on {tln(t)=O}. Then (1.1) changes to the following 
optimization problem" 

(2.1) Determine a path qeC"[0, 1], a function of relative length k~Cl[O, 1], a 
function of direction u~g~[O, 1], a function of absolute velocity neLl[O,  1] 
and a parametrization density yeLl[O,  1], so that 

1 

A(q, k, u, n, v) = ~ S(q(t), k(t), V(t))f(V(t)) v(t) dt 
0 

+ S(q(1), k(1), V(1))P{T> V(1)} =min!  

under the constraints 
t 

q(t) = a + J u(z) n(r) v(r) dr 
0 

t 

k(t) = y n(~)v(~)d~ 
0 

]]u(t)]] = 1 a.s., O<=n(t)<= G a.s. 

O< v(t) a.s. 

Z(q(1)) < 0 

Gj(q(t))<=O for all 0_<t__G1, j - l ,  . . . ,d. 

Here V(t) is not a proper variable of the problem, but it only serves as an 
t 

abbreviation of y v(z) dz. 
0 

This optimization problem is equivalent to the original problem (1.1) in the 
sense that an arbitrary change of parametrization of a fixed trajectory does not 
influence the value of the loss functional and the validity of the constraints. 

Proposition 2.1. a) I f  (p, I, r, ~) satisfies the constraints of  (1.1), then (q, k, u, n, v) 
satisfies the constraints of  (2.1)for  arbitrary v~Ll[O, 1] with v(t)>=O a.s. 
and V(1)=~, where q(t)=p(V(t)), k(t)=l(V(t)), n(t)=llr(V(t))ll on {tlv(t)>0} and 
O<=n(t)K=v s a.s. on {tlv(t)=O}, u(t)=r(V(t))/n(t) on {tlv(t)>O , n(t)>0} and Ilu(t)ll 
= 1 a.s. else. Furthermore, L(p, l, r, ~) = A(q, k, u, n, v). 

b) I f  on the other side (q,k,u,n,v) satisfies the constraints of (2.1), then 
(p, l, r, 0 satisfies the constraints of (1.1), where p(s) = q ( V -  l (s)), l(s) = k ( V -  l (s)), 
= V(1) and r(s) = u(V-l(s)) n(V-l(s)). Again we have L(p, l, r, ~)= A(q, k, u, n, v). 
Here V -  l(s)= {tl V(t)=s} as usual. 

Proof. As V is monotonically increasing and absolutely continuous, we have 
[Hewitt and Stromberg 1965, Corollary 20.51 

1 

S(p(V(t)), l(V(t)), V(t)) f(V(t)) v(t) dt 
0 

v ( 1 )  

= ~ S(p(s), l(s), s)f(s) ds 
0 
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and 
t V(t)  

a + ~ r(V(s)) v(s) ds = a + ~ r(s) ds = p(V(t)) = q(t). 
0 0 

t 

Analogously, we conclude k(t)= ~ n(s)v(s)ds, and the rest of a) is obvious. 
0 

As v( t )=0 for almost all t >  V-I(V(1)) and s =  V(V-I(s)),  we have 

S(p(t), l(t), t) f (t) dt 
0 

V ( 1 )  

= ~ S(q(V - 1 (s)), k(V - l(s)), V(V - 1 (s))) f(V(V - 1 (s))) ds 
0 

1 

= ~ S(q(t), k(t), V(t))f(V(t)) v(t) dt 
0 

and 

a + ~ r(t) dt = a + ~ u (V-  l(s)) n ( V -  l(s)) ds 
0 0 

V - J (~) 

- - a +  ~ u( t )n( t )v( t )d t=q(V- l (z ) )=p(~) .  
0 

Analogously, l(z)= S [Ir(t)l] dt. Furthermore,  we have p(~)=q(V-l(V(1)))=q(1) ,  
0 

as q(t)--q(1) for all t > V-I(V(1)), and now the rest of b) is obvious. [] 

The following proposit ion provides necessary conditions on a solution of 
(2.1), which subsequently yield properties of solutions of (1.1) by means of 
Proposit ion 2.1. 

Proposition 2.2. Let the distribution P of the nonnegative random variable T have 
a density f which is continuous in [-0, oo). We assume that S(x, l, t), Z(x) and 
Gj(x), j = l , . . . , J ,  are continuously differentiable in x ~ R  n and l , t~R and that 
additionally 

VZ(x) * 0 on (xl Z(x) = 0}, 

VGj(x)seO on {xlG~(x)=O} j = l , . . . , J .  

if" o k o u o n o vo, Then, ~Y tq . . . .  ) is a solution of the optimization problem (2.1), one of the 
following two sets of conditions is fulfilled: 

( i )  There exist 2o>0,  2 > 0  and Borel measures v~ on [-0, 1], whose support 
is contained in Nj = {tl Gj(q~ = 0}, j = 1,. . . ,  J, so that 

(2.2) (k(t) u~ n~ = ~ k ( t )  u~ n~ k = 1 . . . .  , n 

for almost all t with v~ O, 
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( ( (](t), u~ ) + 2 0 ~(t)) n~ + ,~o ~(t) ~ = 0 
( <=o (2.3) 

{>o 
for almost all t with v~ =0 '  

I 
>O vs=n~ 

(2.4) ((~(t),u~176176 = 0  a.s. on {t[vs>n~ 

{<= o o = n~ 

where, if we write ~~ abbreviating for the tuple (q~ k~ V(s)), 0 <s < 1, 

1 

~(t) = -- 2 0 1 VS(~~176 v~ ds 
t 

_ )o Vs(~O(1)) P{T> V~ 
n 1 

-- 2 VZ(q~ ~ y VGj(q~ dvj(s), 
j = l t  

1 a 
D(t) = - ! N S( ~~ f (V~ v~ ds 

~ S(~~ n { T >  V~ 

1 

~(t) = ~ (VS(~~ u~ ) n~ f (V~ v~ ds 
t 

1 

+ ! ~ S(r176 n~176 v~ 

~tS(~ ~ P{ T >  V~ 

At least one of the numbers 2 ~ 2 or one of the measures vj, j =  1 ... . .  J, does not 
vanish, and additionally we have )L= 0 or Z(q~ O. 

(ii) VS(~~176176 a.s. 

~S(~~176 v~ a.s. 0 

VS(~~ P{T> V~ =0, 

~ S(~~ P{ T >  (1)} - O, V o 

~-~S(~~ V~ =0. 

Proof The proof of this proposition is based on a rather straightforward 
application of the approach of Dubovitskij and Miljutin for analyzing ex- 
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tremum problems in general locally convex spaces as described e.g. by Gir- 
sanov (1972). This method allows to investigate the differential properties of 
the loss functional and the functionals and operators, which define the con- 
straints, separately and then to combine the results in the so-called Euler- 
Lagange equation. From this equation we finally get necessary conditions for a 
local extremum by using the properties of our special optimization problem. 

We consider the tuple (q, k, u, n, v) as element of the Banach space 

E =  C"[0, 1] x C1[0, 1] x/2~[0, 1] x LI [0 ,  1] x L~[0, 1] 

with the norm 

II(q, k, u, n, v)llE = Ilqrlc + Ilkllc + llull ~-4-Ilnll ~ + Ilvll ~ .  

In the following we simplify our notation by writing e,e ~ ... .  instead of the 
tuples (q, k, u, n, v), (qO, k o, u o, n o, v o) .. . .  occasionally, where we especially assume 
that e ~ is a solution of the optimization problem (2.1). 

a) Investigation of the loss functional A. 
In the following we write ~(t), ~~ abbreviatingly for the tuples 

(q(t), k(t), V(t)), (q~176 V~ where 0 < t <  1. Now we show that the func- 
tional A(e) is Fr6chet differentiable in e ~ where the Fr6chet derivative is given 
by 1 

A'o(e ) = ~ < VS(~~ q(t)-u~ n~ V (t) > f (V~ v~ dt 
0 

+ i 3Z7 S(~~ {k(t)- n~ V(t)} f(V~ v~ dt 
0 

-4- (<VS(r176 S(~~ V~ 

+~ t  S(~~ V(1)P{T> V~ 

Firstly, we consider the case V~ As S and P are both continuously 
differentiable, we get at once the Fr6chet derivative of the second summand of 
A: 

S(~~ + ~(1)) P{ T> V~ + V(1)} -S(~~ P{ T> V~ 

= ((VS(~~176 t S(~~ V~ 

- S(~~176 V(1) + o([[ e []). 

Now we set f (O=O for t <0. As we have by continuity of f for almost all t 
with v~ > O: 

f(V~ V(t))~f(V~ as [[v[[~--*O 

we conclude from the mean value theorem and from Lebesgue's dominated 
convergence theorem: 
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i 

(S(~~ + ~(t))-S(~~ f (V~ + V(t)) {v~ + v(t)} dt 
0 

=i((VS(~~176176176 

1 8 
+ ! ~ S(~~ V(t)f(V~ v~ dt + o([] e/I). 

As P and S are continuously differentiable and qO, kO, V o and V are absolutely 
continuous, P(V~ P(V~ and S(~~176176176 are ab- 
solutely continuous as functions of t too, and their densities are 

{v~ + v(t)} f(V~ + V(t)), v~176 
and 

o n~ +~8 S(~o(t)) ) vo(t). {(VS(~~ u~ n~ S(~ (t)) + ~  

For the last term we write in abbreviated form a(t). Bearing in mind that V~ 
= V(0)=0, it follows by means of integration by parts [Hewitt and Stromberg, 
1965, Corollary 18.20]: 

1 

S(~~ {(v~ v(t)) f (V~ + V(t))-v~ f (V~ dt 
0 

1 

= --  ~ a ( t )  { P ( V  ~ (t) + V(t ) )  - -  n ( v ~  dt 
0 

+ S(~~ {P(V~ + V(1))- P(V~ 
1 

= - ~ a(t)f(V~ V(t) dt + S({~176 V(1) + o(11 v II ~) 
0 

where the last part follows by Lebesgue's dominated convergence theorem, if 
we take into account that for all t with V~ we have P(V~ 
- P ( V ~  = f ( V  ~ (t)) V( t )  + o([[ v [[ ~). 

If on the other hand V~ 0, i.e. v~  0, qO_ a and k ~  0, then we have 

1 

A(e ~ + e) -- A(e) = ~ S(a + q(t), k(t), V(t))f(V(t)) v(t) dt 
0 

+ S(a + q(1), k(1), V(1)) P{ T>  V(1)} - S(a, O, O) 

=i{(VS(a ' 0 k(t)}f(V(t))v(t)dt o, o), q(1)) +~S(a, o, o) 

+ i ~t S(a, O, O) V(t)f(V(t))v(t)dt 

1 

+ S(a, O, O) ~f(V(t)) v(t) dt - S(a, 0, 0) P(V(1)) 
0 
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+{(VS(a,O,O),q(1))+~S(a,O,O)k(1)} P(T> V(1)} 

8 
+ ~  S(a, O, O) V(1) P{T> V(1)} + o(llell). 

1 

As ~f(V(t))v(t)dt=P(V(1)) [Hewitt and Stromberg, 1965, Corollary 20.5], and 
0 

as P{T>V(1)}-+I as Ilvlloo~0, we finally get A'o(e)=(VS(a,O,O),q(1)) 

+~S(a,O,O)k(1)+ S(a,O,O) V(1) as Fr6chet derivative of A in e ~ in the case 

V~ So the representation of A~ given above is valid in this case too. 
Now we know from Girsanov (1972, Theorem 7.5) that the loss functional 

is regularly decreasing in e ~ and therefore the cone of directions of decrease 
for the functional A at the point e ~ i.e. the cone of directions e, from which A 
decreases in the right sense starting from e ~ [Girsanov, 1972, Chap. 6], con- 
sists of the directions e, for which A~(e)<0. 

If A' o does not vanish identically, the cone K o of directions of decrease for 
A at e ~ is not empty and the corresponding dual cone K~- of the continuous 
linear functionals, which are nonnegative on Ko, is given by [Girsanov, 1972, 
Theorem 10.2] : 

K g  = { - x ~ A;I ,~~ __> 0}. 

b) The constraint Q1 ={eeE[v(t)>>_O a.s.}. 
Q1 is a closed, convex set with non-empty interior. So, the dual cone K~- 

corresponding to the cone of feasible directions for Q1 at e ~ i.e. the cone of 
directions in which, starting from e ~ one does not leave Q1 too fast in the 
appropriate sense [Girsanov, 1972, Chap. 6], consists of the support functionals 
of the convex set Q1 at e ~ and so we have 

K[ ={cbleE'[cbl(e)>ebl(e ~ for all eeQ1 }. 

As only the v-coordinate of the tuple e = (q, k, u, n, v) is relevant for the fact that 
e belongs to Q1, such a support functional <hi does not explicitly depend on 
the other coordinates of e. 

c) The constraint Q2 = {esE[0 < n(t) < v s a.s.}. 
In exactly the same way as under b) we get as dual cone corresponding to 

the cone of feasible directions for Q2 at e~ 

K~ ={(02~E'l~2(e)>=cb2(e ~ for all eeQ2 }. 

The functionals ~ 2 ~ K ~  - depend only on the n-coordinate of e. 

d) The constraint Q3 = {eeEIZ(q(1)) <0}. 
As Z is continuously differentiable, we have 

Z(q~ + q(1)) = Z(q~ + (VZ(q~ q(1)) + o(11 q II c). 
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So the functional e~--~Z(q(1)) is Fr6chet differentiable in e ~ with derivative e 
F-~(VZ(q~ If Z(q~ this functional does not vanish identically 
due to our assumptions on VZ, so Corollary 8.1 of Girsanov (1972) provides 
the cone of feasible directions for Qa in e~ Ka={eeEl(VZ(q~ 
From Theorem 10.2 of Girsanov (1972) we finally get the dual cone 

1 3  = { - 2 ( V Z ( q ~  q(1) ) l  2____ 0}.  

If on the other side Z(q~ then e ~ belongs to the interior of Q3 so that 
all directions are feasible, and the dual cone contains only the zero functional. 

e) The constraints Q4d={eeElGj(q( t ) )<O for all 0___t_<l}. 
Let Nj={t[Gi(q~ be the set of parameter values t, for which the 

optimal path moves on the boundary of the admissible region {xlGj(x)<__O} 
cR" ,  j =  1, . . . , J .  As in the proof of Theorem 14.1 of Girsanov (1972) we get as 
cone of feasible directions for Q4,~ in e: 

K 4, i = { eeElsup (VGj(q~ q(t) ) < 0}, 
t~N3 

if the optimal path q~ O < t < l ,  comes into contact with the boundary of 
{xIG~(x)<O}, and K4, j=E,  if q~ O < t < l ,  is contained in the interior of the 
admissible region. Then the dual cone is 

q- _ _  ! eE] = - S (VG2(q~ q(t)) dvi(t), where v~ is K4, j -  ~(e) 
0 1 

a Borel measure on [-0, 1], whose support is contained in N3~. 

f) The constraints with empty interior. 
The remaining constraints can be written in the form Qs={eeEIA(e )=O}  

where A is the operator from E into C n [-0, 1] x C 1 [0, 1] x L~ [0, 1] given by 

( ) A(e) = q(t) - a - u(s) n(s) v(s) ds, k(t) - ~ n(s) v(s) ds, II u(s) tl - 1 . 
0 0 

On the basis of a theorem of Lyusternik [Girsanov, 1972, Theorem 9.1-1 it is 
sufficient to investigate the Fr6chet differentiability of the operator A in a 
neighbourhood of e ~ if we want to determine the cone of tangent directions of 
(25 at e ~ 

t 

1. The operator AI: e~--~q(t) -a-~u(s)n(s)v(s)ds  from E into Cn[0,1] is 
0 

Fr6chet differentiable in an open neighbourhood of e ~ and the derivatives are 
continuous in this neighbourhood. The derivative in e ~ is the linear operator 

t t 

A' t, o: e ~--~q(t) - ~ u(s) n~ v~ ds - ~ u~ n(s) v~ ds 
0 0 

t 

- S u~ n~ ~(s) as. 
0 
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This result follows from an obvious modification of Example 9.2 of Girsanov 
(1972) for the control (u, n, v) and with ~0(x, (u, n, v), t )= u n v. 

t 

2. Analogously, A2: e~-,k( t )-Sn(s)v(s)ds is Fr6chet differentiable in an 
0 

open neighbourhood of e ~ with derivatives, which are continuous in this 
neighbourhood, and the derivative in e ~ is given by 

t t 

Ai, o: e ~ k(t) - ~ n(s) v~ ds - ~ n~ v(s) ds. 
0 0 

3. As Ilu~ = 1  a.s., II~(t)/I is a.s. bounded away from 0 for all ~ in an 
appropriate neighbourhood of u ~ By means of a Taylor expansion we get 

I] fi(t) + u(t)rl = II~(t)ll + ( fi(t), u(t) ) /lJ~(t)lr + o( rlu(t)ll) a.s., 

so that the operator e~[lu(t)ll-1 is Fr6chet differentiable in a neighbourhood 
of e ~ with continuous derivative in ~: 

e~(~( t ) ,  u(t))/lIV~(t)][. 

Especially, the Fr6chet derivative in e ~ is e~--~(u~ as [[u~ = 1 a.s. 

4. So finally we get that A itself has in e~ the Fr6chet derivative 

A~" e F---~(A'I, o(e), A~, o(e), <u~ u(t))) 

which obviously is a surjective, continuous linear functional from E onto 
Cn[0,1] • C1[0,1] •  as especially [lu~ =1 a.s. So the cone of tan- 
gent directions of (25 at e ~ is given by K 5 = {e[A'o(e)=O }. 

5. As K 5 is a subspace of E, the dual cone consists of the continuous linear 
functionals vanishing on Ks:  

K~-={~5r  for all e~Ks} 

h) The Euler-Lagrange-equation in the case A~ @ 0. 
If A~@0, the theorem of Dubovitskij and Milyutin [Girsanov, 1972, 

Theorem6.1] yields the existence of functionals q~iCK~ +, i=0,1 ,2 ,3 ,5 ,  and 
~ K ~ , j , j =  1, . . . ,J,  where at least one of them does not vanish identically, so 
that the Euler-Lagrange-equation 

J 

j = l  

is valid. 
Due to the special structure of some of the dual cones this translates i n t o  

the existence of 20==_0, 2__>0 and Borel measures v j, whose support is contained 
in Nj, j = 1, ..., J, so that 

3 1 

2~176 q(1)) + ~ S <VGj(q~ q(s)) dvj(s) 
j= lo  

=q~l(e)+(b2(e)+q~5(e ) for all eeE. 
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Especially, 2=0  or Z(q~ 

Now we consider especially e=(q,k,u,n, v)~Qlc~Q2c~K 5, so that ~5(e)=0, 
~l (e)>~l(e  ~ and ~2(e)>q~2(e~ Then k and q are absolutely continuous with 
densities n(t) v~ + n~ v(t) and u(t) n~ v ~ (t) + u~ n(t) v~ + u~ n~ v(t), 
and from Fubini's theorem follows 

1 

20 ~ ( VS(~~ (s)), q(s))f(V~ v~ ds 
0 

+ 20( VS(~~ (1)), q(1)) P{T> V~ 

3" 1 

+ 2(VZ(q~ q(1)) + ~ 5 (VGj(q~ q(s)) dvj(s) 
j = l O  

1 

= - -  ~ (~(t), u(t) n~ v~ + u~ n(t) v~ + u~ n~ v(t)) dt 
0 

where 

1 

~(t) = - 2 0 ~ VS(~~176 v~ ds - 2 0 VS(~~ P{ T> V~ 
t 

J 1 

- 2  VZ(q~ ~ ~ VGi(q~ 
j = l t  

and analogously 

20 i ~ S(r176 k(s)f(V~ v~ ds + 20 ~S(r176 k(1) n{T> V~ 

1 

= - 20 S q~(t) {n(t) v~ + n~ v(t)} dt 
0 

where 

8 
alp(t) = - i ~ S(~~ f (V~ v~ ds - ~  S(~~ V~ 

t 

Finally we define 

~(t)= i { ( VS((~ u~ ) + ~ S(~~ n~ f (V~ v~ ds 

~ S(~~ P{ T> V~ 

and, employing the fact that e~K 5 and consequently (u~ a.s., we 
finally get from the Euler-Lagrange-equation the following three relations, if 
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we take into account that ~1 depends only on the v-coordinate of e and ~b 2 

only on the n-coordinate: 

1 

S ~ ~(t), u(t)5 n~ ~~ dt = 0 
0 

for all ue/~oo[O, 1] which are a.e. orthogonal to u ~ 

1 

{(8(0,  u~ n~ + 4 ~ •(t) n~ + 4 ~ ~(t)} {v~ v(t)} at 
0 

=~bl(e-e~ for all veL~[-0,1] with v(t)>O a.s., 

1 

{ (~(t), u~ +40 q~(t)} v~ {n~ n(t)} d/ 
0 

=q~2(e-e~ for all n e L l [ 0 , 1 ]  with O<=n(t)<=v s a.s. 

The second and the third condition imply at once the relations (2.3) and (2.4) 
of the proposition. From the first condition we get (2.2) by means of the 
following consideration. For fi >0  we set B~ = {t] [u~ __> 6}. Then, for arbitrary 
uFLa~[O, 1], j4:k, whose supports are contained in B~, we can define a corre- 
sponding function ue/2 [0, 1], which is a.s. orthogonal to u~ by choosing 

uk(t)= - ~ uj(t)u~176 
j:l:k 

Consequently we have 

1 

0 = j" (~(t), u(t)) n~ v~ dt 
0 

1 

= ~ n~ v~ Z {~j(t) -- ~k(t) u~176 uj(t) dt, 
0 j e k  

and this implies 

t~(t) u~ n~ v~ = ~,(t) u~ n~ v~ for almost all teU~. 

Now, as J[u~ a.s., the B~, k = l  . . . .  ,n, cover [0,1] a.s. for 6 sufficiently 
small, so that u~ is parallel to ~(t) for almost all t with ~(t)n~176 O. 

i) The case A~) ~ 0. 
If A~) vanishes identically, then the Euler-Lagrange-equation yields no infor- 

mation about the optimal e ~ as K~-=E. But from the condition A'o(q, k,u, n, v) 
=0  for arbitrary q, k, v, we get from the explicit expression for the Fr6chet 
derivative of the loss functional, given under a), at once the set (ii) of relations 
of Proposition2.2. [] 

The proof of the Pontryagin maximum principle, given by Dubovitskij and 
Milyutin, makes use of a special parameter transformation with density v~ 
whose support is a set of Cantor type with positive Lebesgue measure. Then, in 
terms of our special optimization problem, one would use the fact, that u~ 
and n~ can be chosen arbitrarily on the open intervals, where v~ is 
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vanishing, e.g. in such a way that u~ takes values in a dense set of {x] blxl] 
=1} separately in each of these intervals. On the support of v ~ one would 
choose u~176176176 These special u ~ and n o determine a local mini: 
mum of the loss functional of the modified optimization problem (2.1), and by 
means of Propositions 2.1 and 2.2 one would get necessary conditions on the 
optimality of the control r ~ of the original problem (1.1). 

We prefer to employ a somewhat simpler parameter transformation to 
carry over the results of Proposition 2.2 to our optimization problem (1.1). A 
direct transference of the conditions of Proposition 2.2 to the optimization 
problem (1.1) yields at once the condition that r ~ has to be parallel to a 
function derived from ~. To determine the correct sign we take advantage of 
the possibility to consider different parameter transformations v ~ correspond- 
ing to the same local minimum of the original problem. Essentially, we choose 

o in such a way that the transformed path qO stays for a whole interval of Vx 

time in the point p~ of the original path. Above all, this technique is 
important for analyzing the related optimization problem (1.2), where the norm 
of velocity is fixed, and the original path pO must not stay in a fixed point for 
some time, before proceeding further to the target region. Here, we introduce 
the necessary additional variability by allowing the transformed path to stop 
for a while at some points. 

The following theorem contains the result that locally optimal solutions of 
(1.1) in general have to correspond to"bang-bang" controls, i.e. the norm of 
velocity is either 0 or maximal. Then the direction of velocity is given by (2.5). 

As is obvious from the proof, the condition ~S(x , l ,  t)>O is not essential, but 

only provides a somewhat simpler form of the conditions of the theorem. On 
the other hand, it is rather natural to consider only cost functions S, which 
increase with the relative path length I. The set (ii) of possible necessary 
conditions on locally optimal paths describes extreme situations, e.g. the case 
that T is a.s. large, so that the target set can be reached undisturbedly a.s. 
Then, if for instance S does not depend explicitly on l and t, every path is 
locally optimal, which is steering towards a local spatial minimum of the cost 
function. 

Theorem 2.1. Let the distribution P of the nonnegative random variable T have a 
density f, which is continuous in [0, oo). We assume that S(x, l, t), Z(x) and Gj(x), 
j = l , . . . , J ,  are continuously differentiable in x~R" and 1, t~R and that ad- 
ditionally 

~ S ( x , l , t ) > O  for all x s R " , l e R ,  t>O, 

VZ(x)4=o on {xlZ(x)=0}, 
VGj(x) 4=O on {xl Gj(x)=O} j =  1,...,  J. 

Then, if  (pO, lO, r o, ~o) is a solution of the optimization problem (1.1), one of the 
following two sets of  conditions is fulfilled: 
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(i) There exist 2 ~  2 > 0  and BoreI measures #~ on [0, ~o], whose support 
is contained in m j = { t l G j(p~ ( t ) ) =0},  j = 1 . . . . .  J, so that 

a.s. 0 

where, if we write abbreviatingly rl o (t) for the tuple (pO (t), l ~ (t), t), 0 <= t <= ~o, 
~o 

O(t) = - 20 j" VS(ri ~ (s)) dP(s) -20  VS(ri~176 { T > ~o} 

j r 

- ~ v z ( p ~ 1 7 6  - Y_. ~ vG~(P~ 
j = l t  

~o 
S(ri~ { T >  ~-o} qb(t) = - - !  ~ S(r/~176 P 

and additionally we have 

(2.6) {llO(t)]l +2~ + G = -202: (0  a.s. 

where 

~o ) 
S(ri ~ (s)) il r~ (s)]l ~ dn(s) )~(t) = ! { ( VS (ri~ (s)), r~ (s) } + ~ 

c~t S(ri~176 P { T > ~o}. 

At least one of the numbers 2 ~ 2 or one of the measures #j, j =  1, ..., J, does not 
vanish, and additionally we have 2 = 0  or Z(p~176 
(ii) VS(p~ l~ t)f(t)=O for almost all t<(~ 

~S(p~176 for almost t < (  ~ all 

VS (pO ((o), l o ((o), (o) p { T > ~o} = O, 

~ S(pO(~O), lO(~O), ~O) p { T > ~o} = 0, 

0 0 ~ S(p (~ ), l~176 ~~176 

1 

Proof For  arbitrary v ~  with v~ a.s. and V~176 ~ 
0 

the tuple (qO, /co, u o, n o ' v o) is due to Proposi t ion2.1  a solution of the 
optimization problem (2.1), if we set q~176176 k~176176 n~ 
=-[[r~176 on {t[v~ and u~176176176176 on {tlv~ 
n~ Otherwise we can choose n o and u ~ arbitrary, as far as the con- 
straints O<n~ a.s. and Ilu~ =1  a.s. are fulfilled. Then, (qO, k o, u o, n o, 
v ~ has to satisfy the condit ions of Proposi t ion 2.2. 
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Firstly we consider the case that  the set (ii) of condit ions of Proposi t ion  
2.2 is fulfilled. By means of  subst i tut ion [Hewit t  and Stromberg,  1965, Corol-  
lary 20.51 we conclude that  

r 

VS(q~ k~ (z), V~ f (V~ v~ dr 
s 

VO(t) 

= S VS(p~176 dz for all 0__<s<t<l ,  
VO(s) 

and so VS(p~ l~ t)f(t)=O a.s. follows from 
VS(q~176 V~176176 a.s., as V ~ maps [0, 11 onto  [0, C~ The 

other  condit ions of case (ii) of  the theorem follows analogously from the 
corresponding case (ii) of Proposi t ion  2.2. In the following we assume that  
(qO, kO, u 0, n o, v o) are fulfilling the set (i) of condit ions of  Proposi t ion 2.2. We 
define: 

~J(t)=~({V~ O(t)=O({V~ and )C(t)=~({V~ 

As V ~ ({ V ~ - 1 (t)) = t, we get by substi tut ion 

Co 

t//(t) = - 2 0 j" VS(~I ~ (s)) dP - 2 ~ VS (r/~ ((o)) p { T > C ~ - 2 VZ (pO (co)) 
t 

j r 

- 

j = l t  

~o 0 o 0 
qS(t)= - !  ~ S(r 1 ( s ) )dP-~  SOI~176 {T>~~ 

z(t)=!~176176176176 

~  {T > C ~ P 

where # j = v j o  {V~ -1 is the image of the measure v, under  V ~ [Hewit t  and 
Stromberg,  1965, 12.45]. As V ~ maps [0, 11 onto  [0, ~dl, M j =  V~ and from 
this follows that  the support  of #j is conta ined in Mj.  

Now from (2.2) and (2.3) we get 

(2.7) r~176 k = l ,  . . . ,n ,  for almost  all t__<C ~ 

(2.8) (0( t ) ,  r~ +)t  ~ qS(t)[Ir~ + 2 ~  a.s. 

as by absolute cont inui ty  and monoton ic i ty  of  V ~ we have for almost  all 
images s = V ~ (t): v ~ (t) > 0. 

In the same way we conclude by mult iplying both  sides of (2.4) with n~ 

{>O=u ( [O<]lr~ [lr~ } (2.9) (O(t),r~176176 . .  a.s. on 
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If r~ we have n~176 too, and by Proposition 2.1 we can 
choose u~176 arbitrary from {x[ Ilxll =1}. If we specify u~176 
=r176162176 if the denominator does not vanish, then we 
get from the last line of (2.4) 

(2.10) [[r176 a.s. on {tlr~ 

In Proposition 2.2 (i) 2 ~ 2 and #j, j = 1,...,  J, depend on the special choice of 
v ~ so that it is possible that ~(t) and the function r derived from it, depend 
on the specification of v ~ too. On the other hand the expressions for qS(t) and 
Z(t) contain only the solution (p0, 1 o, r 0, ~0) of the original problem (1.1), and 
the Lagrange multipliers 2 ~ 2 and the measures #j do not appear, so that ~b(t) 
and Z(t) are the same for all choices of v ~ 

Now we consider the following special parameter transformation 

I ~  to O<--t<--to 
v~ to<t<tl,  where 0 < t o < t  I <1. 

( ( (~ - t l )  tl<_t<_l 

So we go along the path pO, which is optimal for the problem (1.1), with 
velocity increased by a constant factor, until we reach the state pO(~), where we 
stay for the time t 1 - t  o. Then we proceed to the target region with velocity 

o satisfies the conditions of Prop- increased by a constant factor again. This v~ 
1 

osition 2.1, especially V~~176 ~ and we have V~ for all 
0 

te[to, tl]. 
There is a solution to the optimization problem (2.1) associated to this 

specification of v ~ In the following we denote by 2 ~ 2,, V~s, j = l ,  . . . ,J,  ~(t),  
O,(t), q~(t) and ~(t) the numbers, measures and functions corresponding to this 
solution on the basis of Proposition 2.2 (i). We remark that specification of v ~ 
alone is not enough to determine the solution (2.1), as we have yet some 
freedom of choosing u ~ and n ~ Especially, as already mentioned, we define u ~ 
in such a way that for all t with r~ we have u~ ~ ]]r176 
= I/.L~ ({ K 0 } - 1 ( t ) ) .  

Now we direct our attention to the interval (to, tl), where V~ ~ vanishes and 
where we can yet choose u ~ and n o freely. But firstly we remark that from 
V~ for all t in this interval follows 

J t 

q~176 ~(t)=O~(~)-- ~, VGj(p~ ~ dv~j, ~(t)=~b(z) 
j=  1 to 

and 2/,(t)=Z(z ) for to<t<t ~. 

So by (2.3) we have on (to, tl) 

{ § ' t  (O,(r),u~ ,.., (VGj(p~ u~ ~ dv,j n~ 
j=  1 to ) 

(2.11) +2  0 r n~176 Z(~)-<0 a.s. 
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Now we choose u ~ and n o on (to, tl) in such a way that  

{ 
where t o < t a < t b < t 1. 

Due to the specification of u ~ the second summand  of (2.11) vanishes for 
almost  all ze[0 ,  1], as the density (VGj(p~176 of Gj(p~ vanishes for 
almost  all zsMi={t[Gj(p~ If on the other  hand  zq~Mj, it follows from 
Mj-=V~176176 that  (to, t1) is disjoint to the suppor t  of v~j, 

t 

which is conta ined in N~., and consequent ly  ~ dv~j=O for all tS(to, tl). 
to 

Putt ing in the definition of u~ and n~ in the relat ion (2.11), we get 

(2.12) +_ (0~(z), r ~ (~)) + 2 ~ • (z) II r~ (z)II + 2~ z(~) _-< 0 

for almost  all z =< ~o. 

If there is some z, for which (2.12) is true and 20=0 ,  then from (2.8) 
(~( t ) , r~  a.s. follows. Now by (2.7) r ~ and ~ can not  be or thogonal  to 
each other, if bo th  of  them do not  vanish. So we have for almost  all t: O~(t)=0 
or r~  But as 20=0 ,  we have for almost  all t with r ~  by (2.10): 0~(t) 
= 0  too, so that  0~( t )=0  for almost  all t=<~ ~ So in this case Theorem 2.1 (i) is 
true, if we choose 20=  0, 2 = 2~ and #j = #~. But this case, where especially the 
theorem does not  provide condit ions on r 6 itself, is degenerate,  as is shown by 
the corol lary following this proof. 

Now we let take z all values in [0, ~o], and we assume 20 > 0 for almost  all 
z __< ~o. Then  we conclude from (2.12) that  qS(z)[]r~ +:g(z)__< 0 a.s. T o  establish 
this relat ion we had in mind, as we in t roduced the special parameter  transfor- 

o As q5 and Z do not  depend on the special choice of v ~ we now mat ions  v~. 
consider again a fixed, but  arbi t rary  v ~ and the function ~, parameters  2 ~ 2 
and measures #j corresponding to it. 

Given  the above relation, now we are able to conclude from (2.8) that  
(O(t),r~176176176 a.s., and together  with (2.7) we get 
that  ~ and r ~ are not  only parallel, but  their or ienta t ion is the same too, i.e. 
we have 

(2.13) 
r ~ (t) / t l  r~ (t)II = ~'(t)/II 0 (t)II 

for almost  all t with r~ and ~(t)4=0. 

Taking into account  this relation, it follows from (2.9) and (2.10) 

o{, {:0 
(2.14) 1It (t)t [ = for almost  all t with []0(t)[] +2~ 

0 0" 

Additionally,  if we take into considerat ion (2.13) and the fact that  [[Ip(t)[I 
+2~  a.s. on the set { t [0<  ][r~ (2.8) assumes the form: {[[0(t)[I 
+,~~ - 2 ~  a . s .  
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Finally, if we assume ~ S(x, l, t)>O for all t>0 ,  x and l, we have 2~ 

a.s. and consequently O(t)+0 for all t with ]r0(t)[] +2~ So by (2.13) and 
(2.14) we get r~ for almost all t with [lO(t)H +2~ [] 

The set of conditions (i) of Theorem 2.1 allow some conclusions about r ~ 
only if 2~ But this is true for reasonable phase constraints and target 
regions. We encounter difficulties, if, e.g., the closures of the regions 
{x[Gj(x)<O} and {x] Gk(X)<O } have exactly one point y in common, if VGj(y) 
= -  VGk(Y), and if the path p~ touches the boundaries of the two regions 
exactly in this point y and nowhere else. In this situation the phase con- 
straints do not satisfy condition a) of the following corollary. 

Corollary 2.1. I f  a locally optimal (pO, i o, r o, ~o) satisfies conditions (i) of Theorem 
2.1, then 2 o >0, if additionally. 

a) The closed cone generated by VGk(P~ k~K,  in R" is a proper cone, i.e. 
it does not contain a linear subspace. Here, K is an arbitrary subset of  {1, ..., J}, 
and tEO{mk;  keK}.  

b) I f  Z(p~176 and Gk(P~176 for all k ~ K c  {1 . . . .  , J}, then the closed 
cone in R", generated by VZ(p~176 and VGk(P~176 keK,  is proper. 

Proof Let v = #1 + . . .  + #J, and denote by pj the density of #~ with respect to v, 
j = l ,  . . . , J .  If 2~ we get from Theorem 2.1 (i) and especially from (2.6) for 
almost all t < (o: 

j ~o 

(2.15) 0( t )=-2VZ(p~176 - ~ S VGj(p~ =0, 
j = l t  

where 2 or one of the measures/~j, i.e. equivalently v, does not vanish. 
If Z(p~176 we have 2=0.  Otherwise, 

J 

~ 1 7 6  = - " ~ V Z ( P ~ 1 7 6  - 2 ~j({~o))VG~(pO(~O)). 
j = l  

If (~162 we have #j({(~ and then we conclude from the assumption b) 
that 2 = 0  too, and that additionally #j({(~ j =  1, ..., J. 

Y 

Therefore we get from (2.15) ~ VGj(p~ v-a.s. But then we know 
j = l  

from assumption a) that pj(t)=0 v-a.s., j =  1, ..., J, so that finally we see that 2 o 
=0  implies 2 = 0  and v=0  too. But this is a contradiction to Theorem2.1 
(i) [ ]  

In those parts of the time axis, where we have []0(t)ll+2~ (2.5) 
yields no direct conclusion about the optimal control r ~ If we denote by 

H(x, l, u, ~, O, t) = (O, u) + 0 [[ u ][- 2 0 S(x, l, t)f(t) 

the generalized Hamiltonian of the optimization problem (1.1), then the special 
Pontryagin maximum principle following from Theorem 2.1 (i) signifies that for 
almost all t H(p~ l~ O(t), (a(t), t) assumes its maximum in u=r~ under all 
ueR" with Ilull <Vs. If ~,(t) and qS(t) vanish simultaneously, H assumes the same 



474 J. F r a n k e  

value for other controls too. In this case the optimization problem (1.1) 
possesses a singular extremum or, if r~ is not determined by the Euler- 
Lagrange equation for t contained in some subset of [0, ~0] only, an extremum 
with singular arcs [Bell and Jacobson, 1975]. 

There are methods for analyzing singular optimization problems by con- 
sidering second order variations, but they are not applicable to problems with 
phase constraints of the type sup{G(p(t))[t>O}<O. But the singularity of 
control arcs will not cause difficulties in the application of our general theo- 
rems to more restricted optimization problems in Chap. 3, as 0( t)=~b(t)=0 
implies at once r~  for the cost functions, which we consider there. The 
following corollary is an immediate consequence of (2.6) and the continuity of 
r and Z. 

Corollary 2.2. Under the assumptions of Theorem 2.1 we have 

{ I1~'(~ ~ -)l l  + ;t~ q~(~~ + v~ 

= 2 0 VS(tI~176 ~ + ~ VGj(P~176176 
j = l  

vz(pO(r - s (r162 T > :o}}+ + Vs 

= 2~ ~ SOl~176 P { T > ~~ 

where t/~176176176 lO(~O), (o) as usual. 

Essentially, this corollary provides a condition on the choice of the optimal 
terminal time (o. If especially 2~  P { T > ( ~  I[0(t)ll+2~ for al- 
most all t in some open interval (to, (0), so that r~ for t near (o, and if 
additionally the terminal state pO((O) is contained neither in the boundary of 
the target region {xlZ(x)<O} nor in the boundary of the admissible set 
(~ {xlG~(x)<O} given by the phase constraints, then the corollary is simplified 
J 

t o  

(2.16) I[ VS(p~176 ~,o)[ I _~//S(pO(~O), lO(~O), Go) 

c~ o o = ~ s ( p  (~), l~176 ~~ 

But if we consider the loss functional as function of ~ only and fix the path pO 
and its relative length l~ 

g ( 0  = S s (pO (t), l ~ (0, 0 dP (t) + s (pO (0,1 ~ (~), ~) P { T > ~}, 
0 

then (2.16) implies nothing else than the vanishing of the derivative g' of g with 
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respect to ~ in the optimal point ~0 as 

g,((o)={(VS(t/0(~o)), o 0 3 +~S( t l0 (~o)}p{T>~O } r (~))+~S(r/~176176176 ~?t 

by (2.5), for in the case 20>0  and 0 ( ~ ~  we have r~176176176 
Here we have used the fact that O(t) and consequently r~ are continuous, if t 
is close to ~0, due to our assumptions. So, if neither phase constraints nor 
terminal constraints induce the termination of control, an optimal control is 
terminated only in a situation, where the possible decrease of cost, which we 
can achieve by varying the state p~ further, is counterbalanced by the 
infinitesimal increase of cost, which is due to elongation of the path and the 
passing of more time, i.e. 

v a + ~  v~ II vs(~'~176 = s ~  s(~~176 at S(r/~176 

Finally, we formulate the general theorem giving necessary conditions for 
a solution of the optimization problem (1.2), where the norm of velocity is 
assumed to be constant. As already mentioned, this theorem can be proved in 
a completely analogous way to Theorem 2.1. The proof is even simplified by 
the fact that in the modified optimization problem, which corresponds to (2.1), 
n(t) = v s and k( t )=G V(t), so that these two variables do not appear in the proof 
of the following theorem, which we do not give here. 

Theorem 2.2. Let the distribution P of the nonnegative random variable T have a 
density f which is continuous in [0, oe). We assume that S(x, t), Z(x)  and Gj(x), j 
= i , . . . ,  J, are continuously differentiable in x e R "  and teR,  and that additionally 

vz(x)+o on {xlZ(x)=O}, 

VGj(x)~=O on {xlGj(x)=O} j = l  . . . .  ,J .  

Then, if (pO, r o, ~o) is a solution of the optimization problem (1.2), one of the 
following two sets of  conditions is fulfilled: 

(i) There exist 20 >0, 2 > 0  and BoreI measures #j on [0, ~o], whose support is 
contained in M j= {ot l G j(p~ (t)) =0}, j =  1,. . . ,  J, so that 
(2.17) r (t)=vs6(t)/IrO(t)l [ a.s. on {t<~~ 

where 
~o 

~b(t) = --2 0 ~ VS(p~ s ) d P - 2  ~ VS(p~176 ~~  ~o} 
t 

j ~o 

-;~VZ(p~ - 2 Y FCj(P~ 
j = l t  
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and additionally we have 

(2.18) 

where 

IlO(t)ll = - ~ ~  a.s. 

z(t) = ~ (VS(p~ s), r~ d P -  S(pO((O), (o) p {T > (o}. 
t 

At least one of the numbers 2 ~ A or one of the measures #i, J= 1, ..., J, does not 
vanish, and additionally we have 2 = 0 or Z(p~176 

(ii) VS(p~ t) f ( t )=O for almost all t < (  ~ 

VS(p~176 ( ~  (~ = 0  

0 o ~ S ( p  ( ( ) , ~ ~ 1 7 6  

Analogously to Corollary 2.1 we have 

Corollary 2.3. I f  a locally optimal (pO, r o, ~o) satisfies conditions (i) of Theorem 
2.2, and if the assumptions a) and b) of Corollary 2.1 are fulfilled, then 2~ 

3. Constant Cost Functions and Simple Phase Constraints 

In the following chapter we consider the case that we have phase constraints in 
the form of upper bounds of the state coordinates, i.e. Gj(x )=x j - z j ,  j = 1, ..., n, 
where z~R" is known and z>a. If we are considering the optimization prob- 
lem (1.1), it is favourable to select a velocity, which is constant and maximal, if 
we make some monotonicity assumptions on the cost function described in the 
following. Therefore, the dependence of the cost function on path length and 
time are essentially equivalent. So, for simplicity of notation, in this chapter we 
consider only cost functions S(x, t), which do not depend on path length l 
explicitly. The "Fitzwilliam Street problem", for instance, is a special case of 
an optimization problem with phase constraints and cost function of the type, 
which we shall consider now. 

For the present we assume only that the costs are increasing with time, i.e. 

& S(x, t)>0 for all t > 0  and x < z. Furthermore, we suppose P { T  > t} >0  for all 

t >__ 0 to exclude degenerate cases, e.g. the situation, where T is a.s. less than the 
time of arrival at the target region for all possible paths. These two assump- 
tions already suffice to prevent the occurence of case (ii) of Theorem 2.1, which 
corresponds to the vanishing of the loss derivative. 

We think of z as a target state we are striving for. Therefore, the target 
region {xlZ(x)<O} will be a neighbourhood of z. As z is contained in the 
boundary of the admissible state set {xlx <= z} given by our special constraints, 
we have to assume Z(z )<0  due to technical reasons. Additionally, we assume 

that ~ Z ( x ) < 0  for all x~{x lx~=zj ,  Z(x)=0},  j =  1, ..., n. This and the special 
cxj 
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type of phase constraints guarantees that 2 ~  by Corollary 2.1, and so we 
can choose 2~  1. Simple target regions, for which all assumptions are fulfilled, 

are defined e.g. by Z(x)=Hz-xll2-~ or by Z(x)=  ~ ( z j - x j ) - 6  for some 
j=l 

6>0.  
Firstly, we formulate a special version of Theorem 2.1: 

Proposition 3.1. Let the distribution P of the nonnegative random variable T have 
a density f which is continuous in [0, oo), and P { T > t } > O  for all t>O. We 
assume that S(x, t) and Z(x)  are continuously differentiable in x~R" and tcR, and 
that additionally 

8 
0t S(x, t) > o 

8 
- - Z ( x ) < 0  
0xj 

for all x<=z and t>O, 

for all x <z  with x j=z j  and Z(x)=0,  j =  1, ..., n. 

Then, if (pO, l o, r o, (o) is a solution of the optimization problem (1.1) with Gj(x) 
= x j - z j ,  j =  1, ..., n, and z>a,  there exist 2 > 0  and Borel measures #j on [-0, (o], 
whose support is contained in Mj={t[p~ j =  1, ..., n, so that 

r~ a.s. on {t~(~ 

~o 

O(t) = - S VS(p ~ (s), s) dP - VS(p~176 (o) p {T > (o} 
t 

n ~o 

- F, S d As) 
j = l t  

where 

and additionally we have 

IlO(t)ll vs= -Z( t )  a.s. 

~o 

Z(t) = ~ (VS(p~ s), r~ dP 
t 

8 
8t S(P~176 ( ~  ~~ 

where 

Especially, we have 2 = 0  or Z(p~176 and i~j is absolutely continuous with 
the possible exception of the points ~o and t~SMjc~SM k for some k+j ,  and its 
density is given by 

dt #j(t)= ~ S(p~ t) f ( t )  t e M  ~ 

t~M} 

Proof. With the exception of the additional properties of the measures #j, j 
=1, ...,n, the proposition follows from Theorem 2.1 and Corollary 2.1, if we 
bear in mind that ~b (t)= 0 for all t. 
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On Mj the j-th coordinate of pO is identical to zj, and so we have r~  
for almost all t in the interior M ~ of M s, and 

s(po( o), 
0x; 

~o 0 ~o 
+ ! S(p~ Oj(t)dt + ! 

= - O j ( t ) =  -r~ for almost al! t~M ~ 

As additionally the support of #j is contained in Ms, we get from this result 
the absolute continuity of #j on M}+ M ~ and the representation of the density 
given in the proposition. 

Finally, if t~VMj, t < ~  ~ and tq~c?M k for all k+-j, then the measures #k, k=t=j, 
and consequently Ok, k+j, are absolutely continuous in an open neigh- 
bourhood of t. On (0,~ ~ [l~,(s)l[ coincides with the absolutely continuous 
function X(s), so that we conclude the absolute continuity of lp2(s)= II~,(s)ll 2 

- ~ O2(s) and then of tp(s) in a neighbourhood of t. [] 
k4-j 

We can not expect a better statement about the smoothness of 0, as 
difficulties possibly appear, if the locally optimal path pO passes through states, 
which are contained in the intersection of two or more of the boundaries {x[xj 
=zj}, j = 1 . . . .  , n. [-Franke, 1980]. 

If an optimal path pO(t) coincides for t in some open interval with one of 

the boundaries {x [xj=zj},  then we have - ~ x .  S(p~ t) f(t)=~#j(t)>O. So, 

an optimal path stays on one of the boundaries, only if at this moment we do 
not have to reckon with the occurrence of the random event, i.e. f(t) = 0, or if a 
return to the interior of the admissible region {x]x<z} is not advantageous. 

0 
Otherwise, if f ( t )>0 and ~x.S(p~ the path leaves the j-th boundary 

- - 3  
immediately. So, here the optimal control takes into account the local be- 
haviour of the cost function. The influence of the /.t;term in the function 
keeps the path on the boundary and prevents the violation of the constraints 
in the case that it would be advantageous to leave the admissible region and 

cross the boundary {x[xj=zj}, i.e. if ~ S(p~ t) <0. 
d 

Under the assumptions, which we have made up to now, a situation can 
occur, where paths minimizing the expected costs do not approach the target 
region. If e.g. S(x, t) decreases much more faster for x ~ - o o  than it increases 
with respect to t, possibly there are locally optimal paths, which start in a and 
then move away from z, until they are stopped by the random event. Such 
situations are in contradiction to the spirit of a navigation problem, where the 
pre-eminent object is to get to the target region, and they hint at an in- 
adequate choice of the cost function. To exclude those situations, we assume in 
the following that the cost function decreases in all phase coordinates, i.e. 



Stochastic Navigation 479 

VS(x,t)<O for all x < z  and t>0 .  Especially, we then can conclude that  in 
general locally optimal paths are approaching the target region monotonously,  
if addit ionally f ( t )  > 0 a.s.: 

Lemma3.1 .  Additionally to the assumptions of  Proposition 3.1 we assume 

- - S ( x ,  t ) < O f  or all x < z and re(O, (o), and f ( t )>0 for almost all re(O, (o), where 
Oxj 
je{1 . . . .  ,n}. Then, if (p ~ l ~ r ~ (o) is locally optimal, we have r~ a.s. in 
~0, ~0]. 

Proof. a) Firstly, we assume that  there exists t F [ 0 ,  {o), so that r~ a.s. in 
(tj,~ ~ and the Lebesgue measure of the set {te(tj, 4~176 does not 
vanish, i.e. after time tj p~ is non-increasing and not constant. If we define r k 
= r  ~ for all k4=j, rj(t)=r~ for t< t j  and r j ( t )=(1-e ) r~  for t>t j ,  p( t )=a 

t t 

+~ r(s)ds, l(t)=y][r(s)[ Ids, then the tuple (p, l,r, {o) satisfies the constraints of 
0 0 

the optimization problem (1.1) with Gk(X ) = x k -  z k, k = 1,. . . ,  n, p(t)>=pO (t) for all 
t=_<( ~ and pj(t)>p~ for all t in a set of non-vanishing Lebesgue measure. As 
e > 0 is arbitrary, we get in an arbitrary neighbourhood of (pO, l 0, r o, ~o) another 
tuple (p, l, r, ~o), satisfying the constraints so that, due to our assumptions of the 
lemma, L(p, l, r, (o)<L(p0, 1 o, r0, (o) in contradiction to the local optimality of 
the latter. 

b) Otherwise, if we define ( j=sup{te(O,~~176 then for every 
s el0,  (j) the Lebesgue measure of the set {ta(s, (j) l r~  0} does not vanish. If 
( j=0 ,  then r~  a.s. in (0, {~ so that we assume ~ j>0  in the following. 
Furthermore,  if p~ is not non-decreasing, then there exist t', s', so that 

1 

0__<t '<s '<(j  and p~176 Together with the consideration above we con- 
clude that  for suitable t /> 0 there exist c51, c~2 > 0, so that  t' < s' - ~ 1 < s' + ~2 < (j, 

0 ~ 0 / pj ( t )=pj  ( t ) - t /  for all t in the interval ( s ' - ~ l ,  s' +32) and the Lebesgue mea- 
sures of the sets A = (s' - (~1, s') c~ {t [ r ~ < 0} and B = (s', s' + (~2) c~ {t I r ~ (t) > 0} 
do not  vanish. 

Now we define rk=t ~ for all k4=j, r j ( t )=(1-e l )r~  for teA, rj(t)=(1 
t t 

- @ r ~  for t eB  and rj(t)=r~ else, p( t )=a+~r(s )ds ,  l(O=~llr(s)ll ds, where 
0 0 

0 < e l < t / / I  ]lr~ and e~ small enough so that  e2=e ~ ~ Ilr~176 
A A B 

< 1. T h e n  the tuple (p,l ,r,(~ satisfies the constraints of the optimization 
problem, which we are considering, for 

pj(t)~=p~ ~ I]r~ ds~p~ for all t 
A 

in the interval ( s ' - ~ l , s ' + ~ 2 )  , and pj( t)=p~ else. Furthermore,  we have 
p(t)>=p~ for all t and pj(t)>p~ in an open interval a round s'. By choosing 
el > 0  small enough, as in part a) of the proof  we get again a contradict ion to 
the local optimality of (p0, l 0, r o, {o). So, necessarily r ~ (t) => 0 a.s. in (0, ~0). [] 
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If we consider a globally optimal (pO, l o, r o, Co), we can conclude r~ 
a.s. under weaker assumptions, e.g. VS(x,t)<O for all x < z  and t > 0  and 
VS(x,t)<O for x contained in the target region. But degenerated cases are 
possible, where paths, which are not non-decreasing, are locally optimal, be- 
cause their neighbourhoods do not contain enough tuples compatible with the 
constraints [Franke, 1980]. 

If r~ a.s., then we know especially that the corresponding optimal path 
stays on the boundary {x lx j=z j }  as soon as it has arrived there, i.e. if we 
define 

fmin  { t [p~ zj} if p~176 z2 
CJ=lC~ if p~ for all t__<C ~ 

then we get the following form of the set of points of time, at which p~ is 
contained in the j-th boundary: Mj=[-Ci, C~ P~176 or M j = r  p~176 
To avoid considering some special cases, we now assume additionally 
VS(x,t)<O for all x < z  and t > 0  and f ( t ) > 0  a.s. in [0, C~ so that we have 
r~ a.s. for all possible locally optimal paths. 

If C j <  C ~ and if we take into account the form of the density of #j in M ~ 
given in Proposition 3.1, then we get for almost all t>Cj: 

0 = r ~ ( t )  I I 4'(t) ll/vs = 4'j(t) 

_ ~ S(p0(Co), C~176176176 
~xj 

From the right-continuity of 4' we conclude additionally 0j(Cj)=0 and 4 ' i(~j-)  
-- - ~ j { ~ } .  As I I 4'(t)ll is absolutely continuous by Proposition 3.1, we have 

0 =  N4'(Cj)[I 2 . l14 ' (~j - ) l12= ~ (~,~(~)-4 '~(~j- ) )  
{k]~k = ~j} 

= ~ (~k {(j}) 2 , 

and so especially we have #~{C~} =0. 
Putting things together, we get the following form of 4 'k( t ) ,  k = 1, . . . ,  n: 

(3.1) 4'k(t)= ~-~Xk S(p~ + pk t<~k 

t>~k 

where Pk = - - ~ .  S(P~176 (o) p { r > (0} _ 2 VZ(p~176 - I~k {C ~ and especially Pk 

= 0 for all k with Ck < C ~ 

Theorem 3.1. Let the distribution P of the nonnegative random variable T have a 
density f, which is continuous in [0, oo), and P { T > t} > 0 f o r  all t >=O,f (t) > O a.s. 
in [0, C~ We assume that S(x, t) and Z(x) are continuously differentiable in xeR" 
and teR, and that additionally: 
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8 
otS(x,  t )>0 VS(x, t )<0 for all x < z  and t >O, 

0 
ox-- Z(x)<O for all x<=z with x j=z j  and Z(x)=0,  
J j = l , . . . , n .  

Then, if (pO, l o, r o, ~o) is a solution of the optimization problem (1.1) with Gj(x) 
= x j - z j ,  j = l  . . . .  ,n, and z>__a, there exist ~1,...,~,~C0,~~ t/1 . . . .  , t / ,>0  with 
II~l[ = 1, so that tlj =0  or ~j= (o for all j =  1,..., n, and 

(3.2) r~ for almost all t < (  ~ 

where 

~J 0 @J(t)= --( ~Xj S(p~ -[-tlJl)s ~ S(P~176 ~ ~  ~~ 

if t < (j, and O~(t) = 0, if t > ~j. 

Especially, p~ for all te[~;,~~ j = l ,  ...,n. Furthermore, one of the two 
following sets of conditions is satisfied: 

(i) Z(p~176 <0, t /•  S(p~176 (o) <= -v~ VS(p~176 ~o), 

t / j~  S(pO(~O), ~o)= _vs S(pO(~O), (o) for all j with p~176 

(ii) Z(p~176 there exists A >=O, so that 

c9 o o ~ S(p (~), ~o) <= _ v~ vs(p~176 ~o)_ A VZ(p~176 

a o o _v~S(pO(~O), ~O)_AVZ(pO(~O)) ~j~S(p (~), ~o)= 

for all j with p~176 

Proof. The theorem essentially follows from Proposition 3.1 and the special 
form (3.1) of 0 already. 

�9 ~ 0 0 If we take into account that ~ S(p (~), ~o) p {T > ~o} > 0, and if we define t/ 

0 0 0 0 by p v s = t l ~ S ( p  (~),~ ) P { T > ~  }, then we get t/=>0 by (3.1), as by Lemma3.1 

(t) = r ~ (t) [] ~ (t)[[/v~ > 0 for almost all t __< ~o. 
Ilr/ll =1 follows from IIg'(t)[I v~=-Z( t )  a.s., as 

IIt/ll v;  ~ ~ s(p~176 (~ T >  ~o} = [i ~,(~o-)11-- - z (~  ~ v;  ~ 

= v~- 1 ~ S(pO ((o), ~o) p { T > (o}. 
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Especially, we have ~ ( ~ o _ ) + 0 ,  so that we conclude 0 ( t ) ~ 0  for all t < (  ~ for 
is nonnegative and non-increasing, as r~ and -VS(p~ t ) f ( t )>O a.s. So; 
our assumptions exclude the existence of locally optimal paths with singular 
arcs, and we have in the whole interval [0, (o]: rO(t)=vs @(t)/ll0(t)[ ] a.s. 

If Z(p~176 then 2 = 0  by Proposition 3.1. From the definitions of q and 
p we conclude immediately the set (i) of conditions, as we have P { T > ( ~  
and Mj = 0, especially #j{~o} =0, for all j with pO(~o)< zj. 

If Z(p~176 then we define A = v s 2 / P { r > ( ~  a n d  (ii) follows anal- 
ogously from the definitions of ~/and p. []  

In Theorem 3.1 (i) we have 3 n + l  parameters characterizing a possible 
locally optimal (pO, l o, r o, ~o): the terminal state p~176 the terminal time ~o, 
the terminal direction of velocity tieR" and the time points ~j, j - -1  ....  , n, where 
we stop controlling the j-th state coordinate, as it has assumed its maximal 
admissible value. But only n of these parameters can be chosen arbitrarily, 
which corresponds to the n initial conditions p~ If, for instance, we 
have p~176 then we conclude from Theorem 3.1 ~j= (o and 

o o o _vs_~jS(pO(~O), ~o). ~j~S(p (~), ~ )= 

So, for all j =  1,..., n only one of the three parameters 

pO(~O)e(_ o% zj] and (je[0, (o] is not contained in the boundary of its interval 
of possible values, and additionally we have the condition I[~ll =1, which 
further reduces the number of free parameters by one. 

Analogously, the additional parameter A in case (ii) of the theorem is 
generally compensated by the additional constraint Z(p~176 

The set of conditions (i) of Theorem3.1 implies especially that 

~ S  o o ~-t (p (~), ~o) = v~ II VS(p~176 ~0) ll, if Z(p~176 < 0 and pO((O) < z j, j = 1,..., n. This 

fact corresponds to the remarks following Corollary 2.2. In general, the time 
derivative and the components of the spatial gradient of the cost function S 
determine also the choice of the terminal time (o, if the path is not stopped 
immediately at arrival at the target region. The first part a) of the following 
corollary implies that the control is terminated only if locally a further increas- 
ing of the coordinates of pO, which have not yet assumed the maximal ad- 
missible value, does not compensate the increasing of the costs caused by the 
lengthening of the time interval of control. Conversely, the decreasing of costs, 
caused by changing the state, must have been at least as large as the increasing 
of costs, caused by lengthening of the control interval, locally before the 
terminal time; otherwise, one could decrease the loss by stopping earlier. 
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Corollary 3.1. Let 

[ ~o~JS(pO((O), (o) if p~176 

g J= if p~176 

]~S(P~176  (~ if ~j= ~~ 

h~ = l0 if ~j < G ~ 

Under the assumptions of Theorem 3.1 we have 

a) Ilgll Vs< ~ S(P~176 ~o) 

c~ o o b) ~ S ( p  ((),G~ /f Z(p~176 <0. 

Proof a) If g=0,  e.g. if p~176 then the assertion is true, 

o <~t s(P~176 ~o). 

Otherwise, we assume 

a s  

< VS(pO(~O), ~o), g~ Ir g II > : II g II > ~ S(p ~176 ~o), 

and we consider the path p, which is identical to pO continued with a small 
t 

straight line, i.e. we choose p(t)=a+~r(s)ds  with r(s)=r~ for s__<( ~ and r(s)= 
o 

-g/llgl] for (~176 Here, we let z > 0  be so small that pj(~~ for 
all j with pO((O)< z~ and that 

(VS(p(t),t),g/llgll)>~--tS(p(t),t) for all t e [ ( ~ 1 7 6  

Then, S(p(t),t) decreases in the interval [~~176 as for t~l-~~176 we 
have 

d 
dt S(p(t), t) = ~ S(p( t), t) - (VS(p(t), t), g/II g ll ) < O. 

From this we finally conclude 

~o+.~ 
L(p, I, r, G 0 + z) - L(p ~ 1 ~ r ~ ~o) = ~ S(p(t), t) dP 

r 

+ S(p(( ~ + z), ~o + z) P{ T> ~o + z} - S(p~176 ~o) p{ T>  ~o} < 0, 

contradicting the optimality of pO. 
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b) The inequality follows at once from Theorem 3.1 (i) together with lit/I[ 
= 1 and t/j = 0 for all j with (j < G ~ [] 

Finally, we return to the "Fitzwilliam Street problem". Here, the loss 

functional has the simple form ~{v s T~- ~ (zj-pj(T~))~, which corresponds to 
j = l  ) 

2 

the cost function S(x, t) = - ~ x~ + v~ t, as constant summands do not influence 
j = l  

optimality considerations. If we assume 0 < v~__< 1, then the function Z, defining 
the target region, is not relevant, as in any case we can choose optimal paths 
ending in the target state z itself, i.e. p~176 [Franke, 1980]. 

As the gradient of the cost function is constant, Theorem 3.1 supplies an 
explicit representation of the optimal control r~ If we take into account that 
we have assumed p~176 especially Z(p~176 we get as possible locally 
optimal velocities r~ = ~O(t)/ll ~0(t)]l for almost all t_< ~0, where 

. .  (P (~~176  t < ( j  j = l ,  2 

with ~~ ~t,~ze[0,~~ t/ , ,~2>0, J)/lJ =1;  *b=0 or ~j=~o f o r j = l , 2 .  I f P  is 
the exponential distribution, this representation coincides with the Solution 
given by Wilkinson (1974). 

Now it is possible to choose a set of consistent terminal parameters ~o, {,, 
~2, q,, t/2 and, starting in the terminal state p~176 to integrate the paths 
backwards numerically, to get numerical approximations for locally optimal 
paths, which start in different initial states a [Franke, 1980]. 
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