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Let S be a countably  infinite set. For  each c~eS, suppose we have a finite state 
space E~ and a r a n d o m  variable X~ - on  underlying probabil i ty space (f~, B, tL) - 
with values in E~. The collection {X~} is said to define a r andom field over (S, {E~}). 

For  any A c S let E A = X E~ be the state space over A and let ~-a = o- {X~ I c~ ~ A t} 1 

be the o--algebra of  events observable outside of A. We will denote E s by E, and 
elements of  E (possible configurat ions of the r andom field) will be denoted by 
x= {x~[e~S, x~E~}. For  any x~E and any A c S, let x A = {x~l e s A }  ~E~ be the 
configurat ion over A. Let L be the collection of  finite subsets of  S. For  A~L, 
elements of  E A will be denoted by y or  y'. 

The Gibbs states are perhaps the best known  examples of r andom fields. 
They  are defined in terms of  their condit ional  probabil i ty distributions given 
"~A for all A~L: For  ~L a Gibbs state, A~L, y~E A 

e -- hA (y' x )  

Prob{XA=YlYA}(X ) -  ~ e_<~(y,,x ) for Fl a.e. x~E. (1) 

y'  ~ E A  

Here hA(y, x) is ffA-measurable in x and should be thought  of  as the energy pos- 
sessed by the configurat ion y over A when in the presence of  the configurat ion xA~ 
outside of  A. For  example, for the Ising model, S=2U,  E ~ = { - 1 ,  1}, and 

hA(y , x )=-J  ( �89 y~y~+ ~ y~x~). (2) 
e ,13sA  ct~A 

II~-Pll 1 B~A ~ 
II~-Pll-1 

Given a collection h =  {ha}, r andom fields satisfying (1) are called Gibbs states 
with energy h and this collection will be denoted by G(h). 

* On leave from Department of Mathematics, Cornell University. Supported in part by NSF Grant 
MPS 72-04534 

1 As defined, ~A ~ ~. We also regard @a as a c>algebra on E in the obvious way. We will also regard ~ 
as a measure on E. 
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Let us denote the right hand side of (1) by ~zA(y, x). Then, typically, (e.g., 
when h A is defined by (2)), zc A will satisfy the conditions 

rCA(Y,x)>O forany y~EA, x~E.  (3) 

E TCA(Y" X)= 1 for any x~E.  (4) 
y' ~EA 

~ZA(y , ") is @A-measurable, for any y~E A. (5) 

For A c ~ie L, there exists a function q5 ~ ~A 2 such that for all x e E 

and YeEA (6) 

7~2[ (y XA_ A, X) = (]~ (X) 7~ A (y, X) 3. (C) 

(Here we are using the following notation: 
For yl ~EA1, y2~EA2, A 1 c~A2=O, Yl y2~EA,~A2 is given by 

f(Yl)~ ~EA1 
(Yl Y2)~ =~ (y2) = c~A 2 �9 

Remark 1. (3) and (4) say that ~ZA(y, X) defines a probability distribution in y for 
fixed x. 

(6) says that {TZA} , A e L  defines a consistent family of conditional probabilities. 

Definition 2. A collection r e=  {~A JAIL}  satisfying (3)-(6) is called a specification 
[1, 2]. 

Thus Gibbs states have conditional probabilities given by a specification. 
For any random field we may define the conditional probabilities Pf  given ~A- 
"A priori", p a is defined for ~L a.e.x. For a random field with conditional prob- 
abilities given by a specification re, PA=rCA(', X) is defined for all x. "A priori", 
for A c A ,  Px ~ need be consistent with pa only for ~ a.e.x. If the random field is 
given by a specification, we have everYwhere consistency (6). 

For the study of Gibbs states, it is very important that they be defined by 
everywhere defined conditional probabilities. This can perhaps best be appreciated 
if we note that the extreme members of G(h) are mutually singular. 

What we show in this note is that every random field (over (S, {E~})) has 
conditional probabilities given by a specification. 

Theorem. Suppose {X~} is a random field over (S, {E~}). Then there exists a specifi- 
cation 7r such that for A E L, y ~ E A 

Prob{XA=Yl~a} (X)=rG(y , x  ) for # a.e. x. (7) 

Proof Let {A,} be an increasing sequence with A, EL, and ~ A, = S. 
n 

By the Martingale convergence theorem 

Prob{XA=Y [~A} (X)= l imPro b { XA=yIXA ,_A =X A ,_A }  for t~ a . e .x .  (8) 

2 ~'(be~A" means "q~ is bounded and @a-measurable" 
3 q5 depends upon A and 
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The sequence on the right hand side (RHS) of (8) is defined by elementary con- 
ditional probabilities. 

Definition 3. Let GA= {xeEI the limit on RHS of (8) exists for all yeEA}. Denote 
this limit by PA (Y, X). 

Lemma 4. Suppose A ~ A  and X~GAC~G ~. Then, there exists qSEJ~A such that 
for every YeEA, 

p~ (y x~_ a, x) = 4) (x) PA (Y, X). (9) 

Proof By elementary probability 

Prob {XA=y X A _ A [ X A n  A = X A n _ ~ }  

= Prob {X~_A=XA_a[XA,,_~=XA,_A} Prob {XA=y[XA._A=XA._A}. (10) 

Passing to the limit n--+ o% we obtain 

pa(y XX_A, X)----(~ pX(y' X~r_A, X)) PA(Y, X) (11) 
y" 

which is of the form (9). 

Definition 5. For A c A,, let 

PA"={XeGA.{ ~ PA.(Y'XA.-A,X)>O}. 
y' eEA 

oG 
Definition 6. ~ = U ~ eA As" 

n j--n 

Definition 7. For each eeS let v~ be a probability measure on E~. Then we define 
a specification ~z by 

7rA(Y,X)=~pA(y,x) if X e ~  
[ X v~(y~) if X~ ~ "  

~ 6 A  

To complete the proof we must show (a) that ~ is a specification and (b) that 
satisfies (7). (b) will follow immediately from (8) once we have established the next 
lemma. 

L e m m a  8. F~(~A) = 1. 

Proof It suffices to show that 

~(PA An) = 1 .  (12) 

But, 

1~ (( PAAn) c) = ~ dl[, ( x )  ,[l ((PAan)C l ~ a n ) ( X )  

~ d[~t(x) E pan(Z, X)= O. 
[z e EAn ] PAn (z, x) = 0 } 
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It remains to check (a). Since Pa(Y, x) is defined only for XEGA, it may not be 
immediately clear that 7c A is well defined for all x ~ ~A- This follows from the next 
lemma. 

Lemma 9. p~m c G a . 

Proof We must show that if x~PA am, then lira Prob{XA=ylXA_A=XA~_A}  
n ~ o o  

exists for all y e E  A. But x e P f  m 

lim Prob {XAm_AT-NAm_AIXAn_Am~-NAn_Am} >0. 
n ~ o o  

We may therefore pass to the limit in 

Prob {X A = Y[ X A._ A "~" XAn- A} 

= Prob{XAm-----yXA~-A[XA. am=XAn Am} (13) 

P r o b  {Xam_A:Xam AIXA._A =XA_A,~} ' 

(since the limits on the RHS exist because x~Gam ). This proves the lemma. 
We now show that 7~ is a specification. (3)-(5) are obvious. ((5) is true because 

24~a e ~a ' )  TO check (6) fix A c / i ~  L and fix y ~ E a . We must show that (C) is satisfied 
for all x~E. Four cases have to be considered: 

(i) x~ afa ~ 
(ii) X S a~A C~ afa r 

(iii) x ~ ~ m ~ x  

and 

(iv) x ~ af~ c~ 

Case (i): That  (C) holds in case (i) is the content of Lemma 4. 
Case (ii): 

Lemma 10. Suppose A c . 4 c A  m. Then 

PAAm c P2 m. (14) 

Proof 

2 PAm(jXA~-zI' x )~  s PA~(YtXAm-A 'x)" 
y'eE~ y' EEA 

V 
Therefore x ~ P  A~ ~ xEP A~. 

Lemma l l .  WAAC ~A' 

Proof Follows immediately from Lemma 10. 

That  case (ii) presents no problem follows from Lemma 11, which implies 
that ~A C~ ~ = ~b. 

Case (iii): 
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Definition 12. For X~PA Am and y6EA, we define 

PA~ (Y xA,,_ A, X) 
pAre(y, X) = 2 PA~ (Y' XA~- A, X) 

y' ~EA 

Lemma 13. If x ~  A', then 

p~ (y, x) = p ~  (y, x). 
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(15) 

Proof Passing to the limit in Equation (13) leads directly to (15). 

Lemma 14. Suppose A c A ~ L  and x ~ c ~  2C~. Then 

Px(Y' X~-A, X)=0. (16) 
y' ~E~. 

Proof x ~ ~ c~ ~ ~ there exists an m such that A c Am, x E p Arn and 

PAm(Y' XAm-A, X)=0. (17) 
y' ~EA 

For this in, 

P~r(', x)=PAAm( ", X) (Lemma 13) (18) 

and 

E Am / P~r (Y x~r-A,x)=0. (19) 
y' ~EA 

(from Eq. (17) and Definition 12). Combining (18) and (19) gives (16). 
Case (iii) thus presents no problem: Because of Lemma 14, (C) is satisfied by 

letting ~b(x)=0 whenever x E ( ~ c ~  ,~,YA)~: A. 
Case (iv): In this case 

rCA(yXS_A,x)=( • V(X~))( • V(y~)) 
s e A  A ~eA 

= ~ (x) ~ (y, x). 

This completes the proof. 
Very briefly, the idea of the construction of rc is as follows. G A is a set on which 

it would seem that rG(" , y) may be unambiguously defined by the limit in (8). 
However G A is too large. Configurations x in G A which are not in ~ are such 
that the "boundary"  XA~ is "atypical", so that the definition of ~rA(" , X) is not 
really determined by the random field. For such configurations x we define 
{~z A(-, x)} in such a way that it corresponds to an independent random field, so 
that consistency is easily satisfied. 

Several open problems remain: 
(a) Does the theorem remain valid if the E~ are allowed to be countably 

infinite? 
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(b) Does the theorem remain valid if E~=IR, for all e~S? This requires some 
explanation, since for this case the definition of specification must be reformulated. 
Suppose {=A} is a specification over (S, {E~}) with E~ finite (or countable). Let 

=a (A, x) = =A (Y, X) 
yeA 

for any ACEA, x~E. 
Then (3)-(6) may be replaced by 

(i) For fixed x~E, =a(' ,  x) is a probability measure on E A. 
(ii) For fixed A c E a ,  UA(A,')~,~ A. 

(iii) For any f ~ 2 s  4, A c / [  and x~E 

=a(d;, x) f ( y  XAC ) = S =~r(d-~, x)(j" =a(dY, 2 Xxc) f (y  2X_ A xxc)). 

(i)-(iii) may be used to define the concept of a specification for E~ = IR, if we regard 
E A as equipped with the Borel sets ~A (SO that in (ii) we replace A ~E A by A ~  a. 
The conclusion of the desired theorem would be of the form: Then there exists a 
specification 7c such that for A e L  and A ~ A ,  

Prob{XA~A[@~}(x)==a(A,x) for Ft a . e .x .  

(c) The most general setting is perhaps the following: 
L is any directed set, and {ffa ] A~L} is a decreasing collection of sub a-algebras 

of ~ (((2, N, #) is the underlying probability space) indexed by L - f o r  A <z  i, 
f f x c ~ a .  A specification will be an indexed collection g--{7ca(A, co)[A~L , 
A~2,  co~f2} such that 

(i) For fixed coef2, =a(',  co) is a probability measure on (f2, ~). 
(ii) For f~~ ~=a(dco', co)f(co') =f(co), and for A e ~ ,  =a(A, ")~Ja. 

(iii) For any f E ~ ,  A < A, and co E s 

rczr(dco', co) f(co') = ~ 7~A(dco', co)(~ 7CA(dco", CO') f(CO")). 

And here, the desired conclusion is of the form: Then there exists a specification = 
such that for A6L  and f e ~  

E,  ( f  ] ffA)(co) = ~ rca (d co', co) f(co'). 

(= thus defines a system of regular conditional probabilities for the ~A'S.) 
These problems, at least (b) and (c), require the use of more sophisticated 

methods than have been used here. In particular, the fact that for decent measure 
spaces conditional expectations are given by regular conditional probabilities 
would get things started. It should also be clear that the theorem is certainly 
false if complete generality is allowed in (c), since at the very least the theorem 
would require that the conditional expectation given ffA be given by regular 
conditional probabilities, which is not true with complete generality. For (c), 
the following additional assumptions seem reasonable: 

r B s is the na tu ra l  p roduc t  a -a lgebra  on E. 
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(1) (~2,~) is a s t a n d a r d  Borel  space 5 
(2) L is coun t ab ly  final. 

(2) means  that  there  exists a sequence AriEL such that  for any  A~L, A<An for 
some n. 

A p r o b l e m  re la ted  to the one invest igated here is tha t  of de te rmin ing  which 
r a n d o m  fields are  G i b b s  states for some energy h which is defined in terms of a 
po ten t i a l  [3]. This  p r o b l e m  has been inves t iga ted  by Koz lov  [4], Sul l ivan [5], 
and  Aver in tsev  [6]. Such a r a n d o m  field it is clear,  should  have (i) str ictly posi t ive 
cond i t iona l  p robab i l i t i e s  which (ii) depend  in some sense con t inuous ly  on the 
b o u n d a r y  xAc. (i) and  (ii) great ly  s implify the p r o b l e m  of  f inding a specification. 

Acknowledgement. The author wishes to thank E.B. Dynkin for raising the problem. 
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s Measurabie spaces which arise naturally are almost always standard Borel spaces. 


