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Let S be a countably infinite set. For each a8, suppose we have a finite state
space E, and a random variable X, —on underlying probability space (@, B, u)—
with values in E,. The collection { X} is said to define a random field over (S, {E,}).

Forany A=Slet E,= x E,be the state space over Aandlet #, =0 {X,|acA}*

aed

be the g-algebra of events observable outside of 4. We will denote Eg by E, and
elements of E (possible configurations of the random field) will be denoted by
x={x,|eeS,x,€E,}. For any xeE and any AcS§, let x,={x,|acA}€E  be the
configuration over A. Let L be the collection of finite subsets of S. For AeL,
elements of E, will be denoted by y or y'

The Gibbs states are perhaps the best known examples of random fields.
They are defined in terms of their conditional probability distributions given
#, for all AeL: For p a Gibbs state, AeL, yeE,

—ha(y. x}

Z o~ Ay, %)

y'eEa

Prob{X ,=y|Z}(x)= for u a.e. xeE. ()

Here h ,(y, x) is #,-measurable in x and should be thought of as the energy pos-
sessed by the configuration y over A when in the presence of the configuration x ;.
outside of A. For example, for the Ising model, S=Z¢ E,={—1,1}, and

ha,x)=—=J( 1Y y,¥,+ ZA Va Xp)- 2
a, fed ae
Hoc~%]\:1 BeAc
lla—gll =1

Given a collection h={h,}, random ficlds satisfying (1) are called Gibbs states
with energy h and this collection will be denoted by G(h).

*  On leave from Department of Mathematics, Cornell University. Supported in part by NSF Grant
MPS 72-04534

! Asdefined, #, = 4. We also regard %, as a ¢-algebra on E in the obvious way. We will also regard

as a measure on E.
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Let us denote the right hand side of (1) by =n,(y, x). Then, typically, (e.g.,
when h, is defined by (2)), n, will satisfy the conditions

n,(y,x)=0 forany yeE,, xecE. 3)
Z TEA(_V’a x)=1 for any x€E. (4)

y'eEa

n,(y,*) is #,-measurable, for any yeE,. (5)

For A< AeL, there exists a function ¢ e F,2 such that for all xe E
and yeE, (6)

Ty Xg_ 4, X)=(x) 14y, x)*. ©

(Here we are using the following notation:
Fory,eE, ,y,€E,,, AynAd,=¢, ¥, y,€E, 4, 18 given by

(yl)m OCEAI

(¥4 yz)a={(y2)a ned,’

Remark 1. (3) and (4) say that 7 ,(y, x) defines a probability distribution in y for
fixed x.
(6) says that {n ;}, A€ L defines a consistent family of conditional probabilities.

Definition 2. A collection n={n,|AcL} satisfying (3)-(6) is called a specification
L1, 2].

Thus Gibbs states have conditional probabilities given by a specification.
For any random field we may define the conditional probabilities P* given %,.
“A priori”, P4 is defined for y a.e. x. For a random field with conditional prob-
abilities given by a specification n, P4=n (-, x) is defined for all x. “A priori”,
for Ac A, P! need be consistent with P only for x a.e. x. If the random field is
given by a specification, we have every%yhere consistency (6).

For the study of Gibbs states, it is very important that they be defined by
ever ywhere defined conditional probabilities. This can perhaps best be appreciated
if we note that the extreme members of G(h) are mutually singular.

What we show in this note is that every random field (over (S, {E,})) has
conditional probabilities given by a specification.

Theorem. Suppose {X,} is a random field over (S, {E,}). Then there exists a specifi-
cation m such that for AeL, yeE,

Prob{X ,=y|F}(x)=n,(y,x) for u ae. Xx. (7)
Proof. Let {A,} be an increasing sequence with A,€L, and { ] 4,=S5.

By the Martingale convergence theorem "

Prob{X ,=y|Z,} (x)=}£r{10Prob (X, =yIX, _4=x4,_4 for uae x.(8)

“¢eF,” means ¢ is bounded and F-measurable”
3 ¢ depends upon A and A
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The sequence on the right hand side (RHS) of (8) is defined by elementary con-
ditional probabilities.

Definition 3. Let G ,= {x€E| the limit on RHS of (8) exists for all yeE ,}. Denote
this limit by p,(y, x).

Lemma 4. Suppose A=A and xeG,nG;. Then, there exists peZ, such that
for every yeE,,

Pay Xz_ 4, %)= (x) p4(y, x). ©)
Proof. By elementary probability
Prob{X ;=yx;_4|1X4, 1=%4,_1}
= Prob {XZ—A:xZ~A|XAn—Z=xAn—Z} Prob{X ,=y|X,,_ 1=x4,_4}. (10)

Passing to the limit n — oo, we obtain

pZ(y x/f—A:x):(Zp/T(y(x/f-Aax))p/l(y7x) s (11)
p
which is of the form (9).
Definition 5. For A= 4,, let

RlA":{XEGAnl Z P,V x4, 4, %)>0}.

V'eEa
Definition 6. A=\ | P{".
n j=n
Definition 7. For each aeS let v, be a probability measure on E,. Then we define
a specification n by

_ pA(yax) lf xe‘}ﬁi
200 x)—{ X v (y,) if xess’
aeAd

To complete the proof we must show (a) that 7 is a specification and (b) that «
satisfies (7). (b) will follow immediately from (8) once we have established the next
lemma.

Lemma 8. ()= 1.
Proof. 1t suffices to show that
p(Pi) =1, (12)
But,
p((BfY)= fdpu(x) p(BfF | 7, )(x)
sfdu®) Y py(w)=0,

(zeE4, |py, (2, x)=0}
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It remains to check (a). Since p,(y, x) is defined only for xe G ,, it may not be
immediately clear that =, is well defined for all xe 5. This follows from the next
lemma.

Lemma 9. P/'"=G,.
Proof. We must show that if xeP{', then lim Prob{X, =y|X, _,=x, _,}

" 00

exists for all yeE,. But xe P/ =

lim Prob{X, _,=x, X, _, =x4 4 }>0.

We may therefore pass to the limit in
Prob{X =yl X, _4=x, _4}

_ Prob{X, =yxs, 4l X 4= X4 an) (13)
PrOb {XAm_A:xAm7A|XA“—Am=xAn—Am} ,

(since the limits on the RHS exist because xeG, ). This proves the lemma.

We now show that = is a specification. (3)~(5) are obvious. ((5) is true because
#,eF,.)Tocheck (6)fix A= AeL and fix ye E ;. We must show that (C) is satisfied
for all xeE. Four cases have to be considered:

(i) xe#,n

(i) xe 5 H5

(ill) xe 5N H;
and

(iv) xe o N HF

Case (i): That (C) holds in case (i) is the content of Lemma 4.

Case (ii):
Lemma 10. Suppose A=AcA,,. Then

PAA'"C:PAfl'". (14)
Proof.
Z P,V Xa, a5 X)Z Z Pa, V' X4, a5 %)
yeEg v yveEa

Therefore xe P = xeP{.
Lemma 11. 2 < ;.
Proof. Follows immediately from Lemma 10.

That case (ii) presents no problem follows from Lemma 11, which implies
that J# N H5=¢.
Case (iii):
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Definition 12. For xe P/ and yeE ,, we define
PV X4, 45 %)

Z Pa OV X4, 4> X)

Y'eE,

pam(y, x) =

Lemma 13. If xe P/, then

PA(ysx)=P§11m(y= x)- (15)
Proof. Passing to the limit in Equation (13) leads directly to (15).
Lemma 14. Suppose AcAelL and xe#;n #;. Then

2 Paly x5y, X)=0. (16)

y'eEx

Proof. xe#; #; = there exists an m such that A<= 4,,, xe P~ and

> Pa, WV Xy, 4, %)=0. (17)
veEa
For this m,
pi(t,x)=py"(,x) (Lemma13) (18)
and
T b0 % 0 =0, (19)

(from Eq. (17) and Definition 12). Combining (18) and (19) gives (16).

Case (iii) thus presents no problem: Because of Lemma 14, (C) is satisfied by
letting ¢ (x)==0 whenever xe(#; N A)eF,.

Case (iv): In this case

n/f(y x/T—A’x)Z( />f< V(xa))( X v(yac))

=9(x) 7,4 (¥, x).

This completes the proof.

Very briefly, the idea of the construction of  is as follows. G, is a set on which
it would seem that 7,(*, y) may be unambiguously defined by the limit in (8).
However G, is too large. Configurations x in G, which are not in J# are such
that the “boundary” x,. is “atypical”, so that the definition of 7 ,(-, x) is not
really determined by the random field. For such configurations x we define
{m (-, x)} in such a way that it corresponds to an independent random field, so
that consistency is easily satisfied.

Several open problems remain:

(a) Does the theorem remain valid if the E, are allowed to be countably
infinite?
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(b} Does the theorem remain valid if E,=IR, for all «eS? This requires some
explanation, since for this case the definition of specification must be reformulated.
Suppose {rn,} is a specification over (S,{E,}) with E, finite (or countable). Let

nA(Aax): ZTEA(y7 X)

yed

for any AcE,, x€E.
Then (3)-(6) may be replaced by
(i) For fixed xeE, n,(*,x) is a probability measure on E .
(i) For fixed A<E,, n,(4,*)eZ,.
(iii) For any fe#¢* A=A and xeE

§r4(dy, %) [ x40 = m2(dZ, )| 74y, Z x5) fO 25 4 X1))-

(i)-(iii) may be used to define the concept of a specification for E, =R, if we regard
E , as equipped with the Borel sets 4, (so that in (ii) we replace Ac E , by 4€4,,.
The conclusion of the desired theorem would be of the form: Then there exists a
specification 7 such that for AL and Ae%,,

Prob {X eA| %} (x)=7,(4,x) for u ae. x.

(c) The most general setting is perhaps the following:

Lisany directed set, and {#,| A€ L} is a decreasing collection of sub g-algebras
of # (2,4, is the underlying probability space) indexed by L—for A<A,
FicF,. A specification will be an indexed collection n={n,(4, w)|A€cL,
AedB, we} such that

(i) For fixed weQ, n,(-, w) is a probability measure on (2, 4).
(ii) For feZ,, {n,(dw, ) f(0)=f(w), and for Ae B, n (4, )€ F,.
(ii)) For any fe#, A=A, and weQ,

[ 7100, ) (@)= 7, (der, 0)(] 714 (d0", ) f(@").

And here, the desired conclusion is of the form: Then there exists a specification ©
such that for AeL and fe%

E,(f1Z)(w)=]n,do, w) f(e).

(m thus defines a system of regular conditional probabilities for the Z,’s.)

These problems, at least (b) and (c), require the use of more sophisticated
methods than have been used here. In particular, the fact that for decent measure
spaces conditional expectations are given by regular conditional probabilities
would get things started. It should also be clear that the theorem is certainly
false if complete generality is allowed in (c), since at the very least the theorem
would require that the conditional expectation given &, be given by regular
conditional probabilities, which is not true with complete generality. For (c),
the following additional assumptions seem reasonable:

* A is the natural product ¢-algebra on E.
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(1) (Q, %) is a standard Borel space®

(2) L is countably final.

(2) means that there exists a sequence A,€L such that for any AeL, A<, for
some n.

A problem related to the one investigated here is that of determining which
random fields are Gibbs states for some energy h which is defined in terms of a
potential [3]. This problem has been investigated by Kozlov [4], Sullivan [5],
and Averintsev [6]. Such a random field it is clear, should have (i) strictly positive
conditional probabilities which (ii) depend in some sense continuously on the
boundary x .. (i) and (ii) greatly simplify the problem of finding a specification.

Acknowledgement. The author wishes to thank E.B. Dynkin for raising the problem.
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> Measurable spaces which arise naturally are almost always standard Borel spaces.



